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Abstract: Estimating a dynamic model of a servo actuator often has to be done on the basis of
noisy closed-loop experiments in which feedback is controlling the servo actuator. The presence
of feedback complicates the estimation procedure due to strong correlation of control signals
with disturbances present on the servo system. This paper shows how information on the
feedback controller can be used to equalize the effects of disturbances on the control signals
and estimate low order models of the actuator dynamics. The approach uniquely relies on a
fractional representation of the feedback controller and a coupled least squares optimization
problem to estimate an actuator model. Motion control experiments of a servo actuator in a
Linear Tape Open drive operating under feedback will be used to illustrate the effectiveness of
the procedure and will show the possibility to estimate low order servo actuator models.
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1. INTRODUCTION

Understanding actuator dynamics in a servo control sys-
tem is imperative to design a high bandwidth motion
system. It has been recognized that resonance modes that
deemed to be insignificant in the open-loop operation
of a flexible actuator system, might be detrimental for
the performance and robustness in a feedback operation
(Hughes, 1987; Skelton, 1989). Closed-loop system identi-
fication that uses measured input/output (I/O) data from
an actuator operating in feedback operation is an viable
and accurate methodology to formulate models suitable
for high performance control design (Gevers, 2005) and
recent applications in high precision motion control follow
that route (Oomen et al., 2013).

Performing identification on the basis of closed-loop data
is challenging as the presence of feedback causes strong
correlation of both the I/O data with possible disturbances
present on the servo system. This challenge manifests itself
as a possible error (bias) in the estimation of the actuator
dynamics when the estimation of a noise model, modeling
the spectral contents of the disturbance, is omitted (Ljung,
1999). The problem of bias in closed-loop identification can
be circumvented in a motion control system by using an
externally applied reference signal. The reference signal is
needed to provide sufficient excitation and can be assumed
to be uncorrelated with the disturbance present on the
feedback system. An excellent overview of closed-loop
identification methods and applications can be found in
Perez and Sala (2002) and Gevers (2005). It is shown that
the challenge of closed-loop identification should not be
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circumvented in order to find models suitable for control
design (Gevers et al., 2011).

In most of the closed-loop identification methods, an in-
direct approach is followed to identify actuator dynam-
ics. Common examples include the classical two-stage
method (Van den Hof and Schrama, 1993), the bias-
elimination least-squares method (Zheng and Feng, 1995),
the tailor-made parametrization method in van Donkelaar
and Van den Hof (2000) or advanced versions that use
(normalized) coprime factorizations (Oomen and Bosgra,
2012). Knowledge of the external reference signal present
during the closed-loop experiment can be exploited to
formulate de-correlation (projection) methods via identi-
fication of non-causal closed-loop transfer functions (Fors-
sell and Ljung, 2000) or formulate Instrumental Variable
(IV) estimators (Gilson and Van den Hof, 2005) to deal
with unknown or non-linear feedback dynamics. Combin-
ing knowledge on both the external reference signal and
the possibly non-linear feedback controller is possible in
virtual closed loop methods (Agüero et al., 2011) that
balancing noise de-correlation against noise modeling in
a user-chosen flexible fashion.

Existing closed-loop identification methods are quite pow-
erful in providing the tools to find low order models based
on feedback experiments. Most methods only use the fact
that an externally applied reference signal is uncorrelated
with the disturbance and do not exploit the fact that the
dynamics of the noise on the I/O signals is very similar
in a linear feedback connection. Furthermore, it may be
desirable to exploit linear optimization techniques to allow
model estimation to be performed by the firmware of a
motion control system without user-chosen interaction.
This paper shows how information on linear controller
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dynamics can be used to equalize the noise on the closed-
loop I/O data and facilitate an (iterative) Constrained
Least Squares (CLS) optimization to find a low order
model of an actuator based on motion control experiments.

Noise equalization and the CLS estimation is illustrated
on a simulation example to study the variance aspects
of the method. The simulation example shows how the
combined noise equalization and CLS estimation computes
models with a small variance around the bandwidth of
the feedback system and estimates the resonance modes
of a flexible actuator that are most predominant in the
closed-loop operation of the actuator. The paper wraps
up a demonstration of the method by an application to
the motion control system of a mechanical Linear Tape
Open (LTO) drive system.

2. PROBLEM FORMULATION

Consider a linear (discrete-time) feedback control or servo
system described by the equations

y(t) = G0(q)u(t) + d(t)
u(t) = r(t) + C(q)y(t)

(1)

where |t| ∈ N denotes a discrete-time dependency. In the
closed-loop equations given in (1), a known and persis-
tently exciting reference signal r(t) is added to the output
of a known feedback controller C(q) and both the in-
put/ouput (I/O) signals {u(t), y(t)} are available for iden-
tification of the unknown actuator dynamics G0(q). The
objective is to estimate a (low order) model approximation
of G0(q) based on the available information in the closed-
loop signals {u(t), y(t)}, the reference signal r(t) and the
feedback controller C(q). Although this objective is similar
to many other existing closed-loop estimation techniques
(Gevers, 2005), in this paper an additional requirement
is imposed: to only use (recursive) Least Squares (LS)
or Instrumental Variable (IV) estimation techniques to
facilitate the computational implementation of parameter
estimation in the firmware of a motion control system.

For the sake of simplicity, the I/O signals {u(t), y(t)} are
assumed to be scalar (single input, single output actuator)
and rewritten as

y(t) =
G0(q)

1− C(q)G0(q)
r(t) +

1

1− C(q)G0(q)
d(t)

u(t) =
1

1− C(q)G0(q)
r(t) +

C(q)

1− C(q)G0(q)
d(t)

(2)

indicating that presence of feedback complicates the esti-
mation procedure to obtain a (low order) model for G0(q)
due to strong correlation of both I/O signals {u(t), y(t)}
with the disturbance d(t) present on the servo system.
The problem of finding a low order model for G0(q)
is especially challenging when the estimation of a noise
model, modeling the spectral contents of the disturbance
d(t) = H0(q)e(t) as a filtered white noise e(t), is omitted.
Using only the I/O signals {u(t), y(t)} and ignoring or
approximating the noise dynamics H0(q) in the general
prediction error framework will induce bias in the estima-
tion of a model for G0(q) (Ljung, 1999).

Most of the closed-loop identification methods summarized
in the introduction of this paper will provide solutions to

the problem of finding a low order model based on feedback
experiments, but do not exploit the fact that the dynamics
from r(t) to the I/O signals {u(t), y(t)} and the noise on
the I/O signals {u(t), y(t)} is similar. Moreover, scaling
of the gain of the system G0 and the controller C at the
cross-over frequency ωc for which |G0(e

jωc)C(ejωc)| = 1
can influence the quality of the closed-loop identification.
It can be observed from (2) that in a poorly scaled feedback
systems where the actuator gain |G0(e

jωc)| is ‘small’ and
the controller dynamics |C(ejωc)| is ‘large’, the noise on
the input u(t) will be significantly larger than the noise
on the output y(t). In that case, estimating the map from
the reference signal r(t) to the input u(t) in the first step
of an indirect identification method will lead to (closed-
loop) models with a large variance. It is evident that the
common noise dynamics can be exploited and the results
will be beneficial in reducing the variance on the models
being estimated, especially in motion control system where
a large noise might be present on the I/O signals.

3. CLOSED-LOOP NOISE EQUALIZATION

To exploit the common noise dynamics and allow gain
adjustment in case of a poorly scaled feedback system,
information on the feedback controller C(q) in the form of
its transfer function

C(q) = Nc(q)/Dc(q)

can be used to define the filtered signals

yf (t) = Nc(q)y(t), uf (t) = Dc(q)u(t) (3)

The filtering in (3) rewrites the closed loop signal in (2)
into the closed-loop noise equalized signals

yf (t) =
G0(q)Nc(q)

1− C(q)G0(q)
r(t) +

Nc(q)

1− C(q)G0(q)
d(t)

uf (t) =
Dc(q)

1− C(q)G0(q)
r(t) +

Nc(q)

1− C(q)G0(q)
d(t)

(4)

This simple operation ensures that the noise on the filtered
I/O signals {uf(t), yf (t)} has been equalized and contains
the same dynamics. Realizing that the (unknown) system
G0(q) can also be written in a coprime representation

G0(q) = N0(q)/D0(q)

the filtered I/O signals {uf(t), yf (t)} are written as

A0(q)yf (t) = N0(q)ry(t) + C0(q)d(t)
A0(q)uf (t) = D0(q)ru(t) + C0(q)d(t)

(5)

where the filtered reference signals ry(t) and ru(t) are
defined according to

ry(t) = Nc(q)Dc(q)r(t), ru(t) = Dc(q)
2r(t) (6)

and the polynomials A0(q) and C0(q) are given by

A0(q) = Dc(q)D0(q)−Nc(q)N0(q)
C0(q) = Nc(q)Dc(q)D0(q)

It should be noted that all the filter operations given in
(3) and (6) only require information on the controller C(q)
and are simple Finite Impulse Response (FIR) filter opera-
tions that yield bounded output signals. Furthermore, the
closed-loop noise equalized I/O signals {yf (t), uf (t)} in (5)
satisfy three important properties.

• First of all, if d(t) is a white noise, both the map
from ry(t) to yf(t) and the map from ru(t) to uf (t)
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exhibit an ARMAX structure (Ljung, 1999). The
noise equalization ensures that the A0(q) and C0(q)
polynomials are the same for both maps. It should be
noted that this also holds in case the dynamics of the
noise d(t) can be represented by a (high) order FIR
model

d(t) = H0(q)e(t), H0(q) =

n
∑

k=0

h0(k)q
−k

where e(t) is a white noise. In that case, the noise
d(t) is still equalized on the filtered I/O signals
{yf (t), u)f(t)} but the C0(q) polynomial is expanded
to C0(q)H0(q) to maintain the ARMAX structure.

• The transfer function of the map from ry(t) to yf (t)
and the map from ru(t) to uf (t) respectively given
by N0(q)/A0(q) and D0(q)/A0(q) constitutes the dy-
namics of the unknown and possibly unstable system
G0(q), but each map individually is stable. The addi-
tional filtering in (6) ensures that the stable coprime
factors of G0(q) can be estimated instead of the pos-
sibly unstable G0(q) itself.

• Finally, the order and/or parameters of A0(q) are
irrelevant when computing a model for G0(q) via the
ratio of the map from ry(t) to yf (t) and the map from
ru(t) to uf(t). This property can be exploited during
the identification of a (low order) model for G0 while
trying to approximate the closed-loop dynamics and
the noise dynamics with a (high order) parametriza-
tion for A0(q).

It should be noted that the last property can only be ex-
ploited when both maps are used during the identification.
Approximations of the noise and closed-loop dynamics
can be made by simply ignoring the estimation of the C0

polynomial and increasing the order of the A0 polynomial
to get a better approximation of the noise dynamics, while
keeping the order of N0 and D0 polynomials bounded to
find a (low order) model for G0. The idea of using a Least
Squares optimization with a unique and easy computable
global minimum, while increasing the order of the A0

polynomial to allow for an approximation of the ARMA
noise dynamics and reduce bias on the model estimation,
has been exploited in closed-loop identification as early as
(Zhy and Stoorvogel, 1992) and in Verhaegen and Verdult
(2007), Badwe et al. (2011). However, in these methods
the order of the A0 polynomial influences the order of
the model being estimated, requiring additional model
reduction. With the proposed closed-loop estimation with
noise equalization, the freedom in choosing a higher order
model forA0 will not influence the order of the model being
estimated. More details on the closed-loop identification
procedure that exploits the favorable properties of the
noise equalization follows.

4. CONSTRAINED LEAST-SQUARES MODEL
ESTIMATION

The closed-loop identification procedure in this paper ex-
ploits the favorable properties of the noise equalization
and formulates a Coupled Least Squares (CLS) optimiza-
tion problem with a unique and easy computable global

minimum to estimate a (low order) model for G0. To
introduce the main idea behind the proposed closed-loop
identification procedure, a model for the closed-loop noise
equalized signals in (5) is parametrized as follows

A(q, θ)

[

yf(t)
uf (t)

]

= B(q, θ)

[

ry(t)
ru(t)

]

+

[

εy(t, θ)
εu(t, θ)

]

(7)

where A(q, θ) and B(q, θ) are diagonal matrix polynomial

A(q, θ) =

[

A(q, θA) 0
0 A(q, θA)

]

B(q, θ) =

[

N(q, θN ) 0
0 D(q, θD)

]

parametrized according to

A(q, θA) = 1 + a1q
−1 + · · ·+ ana

q−na

N(q, θN ) = q−nk(n0 + n1q
−1 + · · ·+ nnn

q−nn)
D(q, θD) = d0 + d1q

−1 + · · ·+ dnd
q−nd

(8)

where nk is the number of delays desired in the model and

θA =
[

a1 · · · ana

]

θN =
[

n0 · · · nnn

]

θD =
[

d0 · · · dnd

]

Although the closed-loop noise equalized signals in (5)
exhibit an ARMAX structure, the reason for choosing
the parametrization in (7) is obvious: the prediction error
[εy(t, θ) εu(t, θ)]

T will be linear in the parameters θ and
Least Squares (LS) minimization of the prediction error
has a unique global minimum. Special attention has to
be given to the coupled estimation of the polynomial
coefficients of A(q, θ), as both outputs yf (t, θ) and uf (t, θ)
are weighted by the same coefficients in the A(q, θA) poly-
nomial, creating a Coupled Least Squares (CLS) problem.

The main reason for the repetition of A(q, θA) on the
diagonal ofA(q, θ) is to allow the computation of an (open-
loop) I/O model that will be independent of the order of
the polynomial A(q, θA) or the parameter values θA. In
fact, ifN(q, θN ) andD(q, θD) are coprime and do not share
common zeros, the order and dynamics of

G(q, θ) = N(q, θN )/D(q, θD) (9)

only depends on the choice of the size and the numerical
values of θN and θD. Although A(q, θA) and its parameter
θA is irrelevant for the open-loop model G(q, θ) in (9),
it should be stressed that the polynomial A(q, θA) does
serve an important role in the closed-loop identification.
The order of the polynomial A(q, θA) and its parameters
θA can be used to compute a better approximation of
the closed-loop ARMA noise dynamics in (5) and reduce
bias on the model estimate due to the linear regression
parametrization.

It can be shown that the CLS problem can still be written
in a standard LS problem by the appropriate definition
of a parameter vector and a regressor. Without loss of
generality and to simplify notations, it is assumed that
nn = nd. In that case, the parametrization in (7) can be
written in a linear regression form

[

εy(t, θ)
εu(t, θ)

]

=

[

yf (t)
uf(t)

]

− θTφ(t) (10)

where the parameter vector θ has the special form

θT =

[[

n0 0
0 d0

]

· · ·

[

nnn
0

0 dnd

] [

a1 0
0 a1

]

· · ·

[

ana
0

0 ana

]]
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and where the regressor is given by

φ(t) =



































ry(t− nk)
ru(t)
...

ry(t− nk − nn)
ru(t− nd)
yf (t− 1)
uf(t− 1)

...
yf (t− na)
uf (t− na)



































The special structure of the parameter θ in (10) due to the
diagonal matrix polynomial A(q, θ) and B(q, θ) is easily
enforced by vectorizing θ via Kronecker calculus (Bellman,
1970) to obtain

ε(t, θ) = y(t)− φ̄T (t)θ̄,
φ̄T (t) = [φT (t)⊗ I2×2]

θ̄ = vec(θT )

(11)

where ⊗ denotes the Kronecker product and vec(·) the
Kronecker vector operation. Eliminating those columns in
φ̄T (t) for which θ̄ has zero entries and realizing that θ̄
has repeated entries for the diagonal matrix polynomial
A(q, θ) allows (11) to be reduced to the final format

[

εy(t, θ)
εu(t, θ)

]

=

[

yf (t)
uf(t)

]

− φ̃T (t)θ̃ (12)

where the modified regressor φ̃(t) is given by

φ̃(t) =





























[

ry(t− nk) 0
0 ru(t)

]

...
[

ry(t− nk − nn) 0
0 ru(t− nd)

]

[

yf (t− 1) uf (t− 1)
]

...
[

yf (t− na) uf (t− na)
]





























The modified parameter vector θ̃ in (12) has no zero or
repeating entries and given by

θ̃T =
[[

n0 d0
]

· · ·
[

nnn
dnd

]

a1 · · · ana
]

Clearly, LS minimization of the prediction error

θ̂NLS = argmin
θ

1

N

N
∑

t=1

[

εy(t, θ) εu(t, θ)
]

[

εy(t, θ)
εu(t, θ)

]

now follows immediately from the linear regression expres-
sion in (12) and given by

θ̂NLS =

[

1

N

N
∑

t=1

φ̃(t)φ̃T (t)

]−1 [

1

N

N
∑

t=1

φ̃(t)

[

εy(t, θ)
εu(t, θ)

]

]

(13)

As a final remark, it is reiterated here that the degree
na of the A(q, θA) polynomial can be chosen larger than
the specified order of the model computed by (9) to
allow for a better approximation of both the closed-loop
dynamics and the dynamics of the noise d(t) and reduce
the bias on the model estimation. The method does not
preclude the use of Steiglitz-McBride iterations (Stoica
and Söderström, 1981) or iterative Instrumental Variable

(IV) estimators (Gilson and Van den Hof, 2005) to further
improve estimation results by reducing the estimation bias
caused by the colored regression noise in (5).

5. SIMULATION EXAMPLE

Consider the simulation example of a discrete-time system
G0(q) defined as the Zero Order Hold (ZOH) discrete-time
equivalent of a continuous-time actuator

G(s) = K
s2 + 2β1ω1s+ ω2

1

(s2 + 2β2ω2s+ ω2

2
)(s2 + 2β3ω3s+ ω2

3
)s2

sampled at the normalized frequency of 1Hz. In this
example, K = 2.5 · 10−4, the resonance frequencies are
given by ω2 = 0.1rad/s and ω3 = 0.5rad/s and a complex
zero at the frequency of ω1 = 0.15rad/s. The ZOH discrete-
time equivalent is controlled by a digital PD controller

C(q) =
−0.5 + 0.49q−1

1− 0.95q−1
=

Nc(q)

Dc(q)
(14)

providing a phase margin of only 24 degrees due to the
(unknown) resonance modes present in the actuator dy-
namics. The closed-loop signals in the feedback connection
are described by (2) and closed-loop experiments with
N = 1000 points are generated. The reference signal
r(t) is simply changed randomly between the values of
−1, 1 for the motion control experiments and a closed-
loop white-noise d(t) with a variance of 0.1 is added to the
actuator output y(t) to challenge the closed-loop system
identification.

10
−3

10
−2

10
−1

10
0

−100

−50

0

50

100

10
−3

10
−2

10
−1

10
0

−500

−400

−300

−200

−100

0

ω [rad/s]

m
a
g
[d
B
]

p
h
a
se

[d
eg
]

Fig. 1. Bode plot of sixth order actuator dynamics
G0(q) (red/dark line) and estimated 4th order mod-

els G(q, θ̂NLS) with the CLS optimization using 100
Monte-Carlo simulations (green/light lines).

It is clear that G0(q) is a sixth order system and is
marginally stable due to the double integrator that is
typical for a dynamic relation between a force input and a
position output in a free moving inertial actuator. Based
on the closed-loop data, estimating a full order sixth order
model would be an obvious choice, but the objective in
this example is to find a lower 4th order model that can
capture the double integrator behavior and provide an
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accurate estimate of the main resonance mode that is most
predominant in the closed-loop data.

The noise equalization summarized in Section 3 is used and
parameters are estimated via CLS optimization outlined in
Section 4. With nk = 0, nn = 4, nd = 4 and an order na =
5 for the common A(q, θA) polynomial in the CLS problem,

the LS parameter estimate θ̂NLS in (13) is computed using a
Steiglitz-McBride iteration (Stoica and Söderström, 1981).
To illustrate the effectiveness in estimating the main
resonance mode that is most predominant in the closed-
loop data, 100 Monte Carlo simulations where performed
to inspect the variance of the estimated model. The result
of this simulation example is summarized in Fig. 1 where
it can be seen that an excellent estimate of the resonance
mode at ω2 = 0.1rad/s is obtained. It can be observed that
the variance of the model estimates is very low around the
cross-over frequency of the closed-loop system – a feature
that is due to the (noise equalized) closed-loop data used
in the identification.

It should be noted that this example illustrates two im-
portant features. Firstly, the ability to estimate a model of
a marginally stable actuator dynamics operating under a
stabilizing feedback using only a simple Least Squares (LS)
optimization. Secondly, the possibility to find a lower order
model that emphasizes the predominant behavior of the
actuator dynamics operating under closed-loop conditions.

6. APPLICATION TO LTO ACTUATOR

For the application example in this paper, closed-loop
experimental data is used from the data tracking servo
control system in a Linear Tape Open (LTO) drive avail-
able at the System Identification and Control Laboratory
(SICL) at the University of California, San Diego.

Fig. 2. Photograph of LTO actuator in a magnetic tape
drive for motion control and tape track following.

In the LTO (version 3) drive depicted in Fig. 2, a flexible
tape runs along a magnetic read/write head and decodes
the digital Position Error Signal (PES) y(t) (Pantazi et al.,
2012; Lantz et al., 2012). During tape transport, Lateral
Tape Motion (LTM) is one of the main disturbance d(t) on
the PES y(t) and a second order embedded digital servo
controller C(q) is used to provide a control signal u(t)

to the LTO servo actuator for motion control and track
following with a cross-over frequency of approximately
1kHz. The closed-loop signals in the feedback connection
are again described by (2) and closed-loop experiments
with N = 105 are used for the identification of a low order
model of the LTO servo actuator dynamics. As the lateral
movement of the tape during normal servo operation of the
tape generates quite some noise in the LTO motion control
system, at least 5 seconds of data sampled at 20kHz is
needed to average the effect of the LTM and find a reliable
model of the servo actuator.

Aiming for a sixth order model, the algorithm summarized
in Section 4 is initiated with nk = 0, nn = 7, nd = 6 and
an order na = 12 for the common A(q, θA) polynomial

in the CLS problem. The LS parameter estimate θ̂NLS in
(13) is again computed using a Steiglitz-McBride iteration.
The resulting sixth order model of the LTO actuator is
summarized in the Bode plot of Fig. 3. The Bode plot of
the model is compared with the estimated frequency re-
sponse of the servo actuator obtained by standard closed-
loop spectral analysis (Wang and de Callafon, 2012). Using
the notation Φyr(jω) to indicate the cross-spectral density
function between r(t) and y(t), the estimate

Φ̂yr(jω) =

∑p
k=1

Yk(ω)R
∗

k(ω)
∑p

k=1
Rk(ω)R∗

k(ω)

is found via the Welch method of averaging an N -point

Fourier transforms Yk(ω) =
∑N

t=1
yk(t)e

−jωt and Rk(ω) =
∑N

t=1
rk(t)e

−jωt Ljung (1999) of the signals yk(t) and rk(t)
for different experiments k. Based on this estimate, fre-
quency domain data G(jω) of the servo actuator G0(e

jω)
is computed via

G(jω) =
Φ̂yr(jω)

Φ̂ur(jω)
(15)

and the Bode response of the estimate Gi(jω) in (15) has
been included in Fig. 3 for comparison purposes.
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Fig. 3. Bode plot of estimated sixth order model G(q, θ̂NLS)
with the CLS optimization (blue/dark lines) com-
pared to frequency domain estimate G(jω) obtained
by closed-loop spectral analysis (green/light lines)
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It can be observed from Fig. 3 that the sixth order model
obtained with the CLS estimation using only 5 seconds
of closed-loop data measured at 20kHz captures some
of the small resonance modes and their accompanying
phase shift close to the cross-over frequency of 1kHz and
the main resonance mode close to 3kHz. The large low
frequency resonance mode around 140Hz is omitted in the
low order model approximation. The results indicate that
the low order model has emphasized the resonance modes
that are most dominant during the closed-loop operation
of the servo actuator, as expected from a closed-loop
identification method. The resulting modeling results can
be used to re-calibrate the embedded servo controller to
account for unmodelled dynamics or production variations
in the LTO servo actuator.

7. CONCLUSIONS

Information on the dynamics of a linear feedback controller
can be used to equalize the effects of disturbances on
the input/ouput signals during a closed-loop experiment.
Noise equalization is a finite impulse response (FIR) fil-
tering and ensures that the noise equalized actuator input
signal and output signal have the same noise dynamics.
In turn, the noise equalization can be exploited in the
system identification to estimate a (low order) model of
the actuator dynamics. When approximating the closed-
loop data in a simple linear regression, the parameter
estimation problem can be written as coupled least squares
(CLS) optimization. In the CLS optimization, the closed-
loop transfer functions and the noise on the equalized
input/ouput data are restricted to have the same pole
locations. The CLS can be written as standard linear
regression estimation problem for which a unique LS min-
imum can be computed. Motion control experiments of a
servo actuator in a Linear Tape Open drive operating un-
der feedback illustrate the effectiveness of the procedure.
Low order models approximate the predominant dynamic
behavior of the actuator dynamics operating under closed-
loop conditions.
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