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Abstract 

In this paper, it is shown that linear time-invariant fractional models do not reflect the reality of physical systems in 
terms of energy storage ability. It is first shown that this property may result from poorly chosen asymptotic 
behaviors. Another reason is that a fractional model can be viewed as a doubly infinite model. Indeed, its real state 
is of infinite dimension as it is distributed. Moreover, this state is distributed on an infinite domain. It is precisely 
this last feature that induces the ability to store an infinite energy, even if the fractional behavior is limited to a 
frequency band. As a consequence, even if fractional models permit to capture accurately the input-output 
dynamical behavior of many physical systems, the obtained models do not reflect the internal behavior of the 
modelled system which implies hard theoretical problems. Such problems may be avoided by the use of other 
models that exhibit the same input-output behavior but that do not have an infinite energy storage ability. As a first 
attempt to solve this issue, a new class of models is thus introduced in the paper. 
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1 - Introduction 
 
Fractional modelling has found applications in assorted 

fields, like engineering (Sabatier et al, 2007), physics (Hilfer, 
2000), finance (Scalas, 2006), chemistry (Nigmatullin and Le 
Mehauté, 2005) and bioengineering (Magin, 2006). 
Fractional order models are usually described by fractional 
differential equations or pseudo state space descriptions. In 
system identification or system modeling, fractional models 
are used to capture long memory phenomena that are 
encountered for instance in electrochemical devices or visco-
elastic materials. 

The objective of the present paper is to show that 
fractional models do not reflect the reality of physical 
systems in terms of energy storage ability. This property may 
result from poorly chosen asymptotic behaviors. Another 
reason is that a fractional model can be viewed as a doubly 
infinite model as revealed using the interpretation recently 
proposed in the literature (Sabatier et al, 2008) (Sabatier et al, 
2010). Indeed, its real state is of infinite dimension as it is 
distributed. Moreover, this state is distributed on an infinite 
domain. It is precisely this last feature that induces the ability 
to store an infinite energy, even if the fractional behavior is 
limited to a frequency band. Using another interpretation, 
fractional models are not strictly speaking long memory but 
rather infinite memory models. As a consequence, even if 
fractional models permit to capture accurately the dynamical 
behavior of some systems, the use of fractional models 
implies some difficult mathematical problems that are not 
related to the physics of the modeled phenomena. Thus, 
fractional models analysis approaches based on internal (in 

state sense) behavior, such as initialization, internal stability, 
controllability, observability among others, are not linked to a 
physical reality but stem from the used models.  

In this paper, an interpretation of fractional models that 
exhibits their double infinite nature is first reminded. It is 
first shown that model with fractional asymptotic behavior in 
low frequencies may store an infinite amount of energy. 
Then, it is shown that, even if the fractional behavior is 
limited to a frequency band, this infinite energy storage 
ability remains. As a first attempt to overcome these 
problems, a new class of models is introduced: the long 
memory models. Two examples illustrate their efficiency to 
describe long memory behaviors from an input output point 
of view, while not having the drawbacks described above. 

 
2 – Representation of fractional systems 

 
In recent years, an increasing number of studies have been 

done on fractional order models, namely models that can be 
described by differential equations that involve fractional 
derivatives or alternatively described by transfer functions 
that involve fractional powers of the Laplace variable s. In 
this paper, only linear time-invariant fractional differential 
equations are considered. Let a fractional differential 
equation linking the system input   Rtu  and the system 
output   Rty defined by: 
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where 01  ll   and 01  kk  .   kdtd   and 

  ldtd   denote fractional differential operators of orders 

Rk  and Rl  respectively. Such operators are 

defined in (Oldham and Spanier, 1974) (Samko et al, 1993) 
(Miller and Ross, 1993) (Podlubny, 1999) and a detailed 
survey of the properties linked to these definitions can be 
found in (Oldham and Spanier, 1974).  
 
 Based on its impulse response, model (1) also admits the 
following state space description (Sabatier et al, 2008), 
(Sabatier et al, 2010):  
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      tytyty 21  , (3) 

with 
    tCvty 1 , (4) 
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0

2 , dxxtwxty  . (5) 

In relations (2) and (4), A, B, C are state space description 
matrices associated to the systems poles that can be computed 
as described in (Sabatier et al, 2010), (Sabatier et al, 2012). In 
relation (5), function (x) is defined by (Matignon,1998): 
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and 
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Laplace transform of relation (5) (using Laplace 
transform of relation (7)) is given by: 
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Such a representation is connected to the “diffusive 
representation” introduced by Montseny (Montseny, 2005) 
and Matignon (Matignon, 1998).  

Using the change of variable  ex  (Sabatier et al, 
2010), relation (8) becomes 
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In relation (3), y1(t) is the model poles response (model 
exponential part) and corresponds to the response of a 
classical integer model. Depending on the model, this part 
may be zero (no pole). y2(t) is the response of an always 
stable model. If the initial fractional model is unstable, the 
instability appears in y1(t). 

 
Initial conditions are defined for relation (5) by 

   xxw ,0  and thus permit to give the exact expression 

of the system response with initial conditions (Sabatier et al, 
2008): 
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Function y2(t) can also be written as (using spatial Fourier 
transform) (Sabatier al, 2010): 
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with 

     2221 44   Fm ,  (12) 

     2240, 1 z  F  R . (13) 

As illustrated in figure 1, any fractional model can thus be 
seen as the association of an infinite dimensional system 
described by a diffusion equation (diffusion based submodel) 
and a classical linear (exponential) model (integer order 
submodel). 

 

Figure 1 - Representation of a fractional model as the 
association of a diffusion based submodel and an integer 

order submodel. 
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3 – Infinite storage ability of fractional models 
 

From existing fractional models found in the literature, 
this section shows the ability of fractional models to store an 
infinite amount of energy. Articles proposing these models 
are deliberately not referenced because authors cannot 
provide an exhaustive list of these papers, it would not be fair 
to mention some and not others. The concerned papers can be 
provided upon request to the authors.  
 
3.1 – Infinite storage ability due to asymptotic behavior 
 

We consider first a capacitor. A classical integer model of 
this electrical component is a resistance R (in order to model 
ohmic loses) in series with a capacitance C (in order to model 
charge accumulation). The model linking the current applied 
to the capacitor to the voltage is thus: 
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R
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If a constant voltage U0 is applied to the capacitor, the 
current is thus defined by 
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The energy stored by the capacitor is thus 
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Even though this model is not perfect, it reflects a 
physical reality: the energy stored by the capacitor is of finite 
value. 

Among the fractional models for capacitors that are 
available in the literature, one can find the following transfer 
functions 
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Depending on the papers 5.0   or 3.0  and 
98.0 . If a constant voltage U0 is applied to such a model, 

the resulting current is 
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As time tends towards infinity, the current decreases as: 
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The energy stored is thus defined by 
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which is infinite. This is not physically consistent.  
 
 The electric domain is not the only one to have produced 
models that can store an infinite energy. Literature proposes 
this kind of models for processes involving thermal transfers 
or viscoelastic materials. In this last case, the spring-spot 

element introduced in the Maxwell or Kelvin-Voigt model 
has the same drawback. 
 

This infinite storage ability also appears clearly on the 
electrical realizations of a fractional integrator of figure 2. 
Whether it is a ladder network or parallel network, these 
realizations highlight an infinity number of capacitance 
without any possibility for the electrical charges to shunt the 
capacitance. Note that if a shunt resistance is added to these 
networks, the circuit no more behaves as a fractional 
integrator, but as a first kind fractional system (no more 
asymptotic behavior problem) (Oustaloup, 1983). 

 

 

 
Figure 2 – Electrical realizations of fractional integrator 

U(s)/I(s)=1/sn 
 

Remark 1 
If previous comments focus on the low-frequency 

asymptotic behavior, the high-frequency behavior is now 
studied. For this, the following thermal models, that can be 
found in the literature, are considered 
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This model links the temperature T(s) to the thermal flux 
(s). It is supposed that a constant flux 0 is applied to the 
system and the temperature variation is studied at time t=0. 
Using initial value theorem, then: 
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Relation (22) demonstrates that as soon as the flux is 

applied, the temperature increase in the model is infinite 
during an infinitesimal time. In fractional behaviors in low 
frequencies can produce physically inconsistent problems, 
this last analysis shows that high frequencies asymptotic 
fractional behaviors can produce models that are not 
physically compatible with the thermal behavior of a material 
supplied by a heat flow (heat transfer by electronic 
agitation).  

  
The authors are well aware that a model is not intended to 

represent the reality of a system, but to gives an image for a 
specific use. The models that have been used as examples in 
this section have likely proven their accuracy in describing 
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dynamic input-output behavior of the system while exhibiting 
a reduced number of parameters. However, they also imply a 
property that has nothing to do with the modeled system. If 
this problem can be easily solved using a convenient low 
frequency asymptotic behavior, as shown in the next 
paragraph, fractional models introduce the ability for the state 
to store an infinite amount of energy, whatever the model 
high and low frequencies asymptotic behavior. 

 
3.2 – Infinite storage ability due to infinite space  
 

Whatever the asymptotic behavior of model (1), equation 
(11) highlights that a fractional model is always defined on 
an infinite domain (integral on space from -∞ to +∞). If the 
continuous nature of this representation brings up an infinite 
number of time constants, the infinite nature of the definition 
domain brings up infinitely fast and infinitely slow time 
constants. Relation (8) indeed shows that the model time 
constants are x with Rx . 

A consequence is the state infinite energy storage ability 
of fractional models. This can be highlighted on the 
following example. Consider the diffusion based submodel of 
a fractional model as indicated on figure 1. Using relations 
(5) and (7), the output y2(t) of this submodel is also given by 
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In (23), w(t, x) can be viewed as the state of the diffusion 
based submodel (state of the whole fractional model being 
given by w(t, x) along with the state v(t) of the integer 
submodel). System (23) is stable as all the roots of the 
dynamical part of (23) are in R . It is now supposed that the 
system input (of finite energy) is defined by 

      TtHtHtu  ,  (24) 

H(t) being the Heaviside function. w(t, x) in response to u(t) 
is thus given by 
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with Rx . Energy stored by w(t, x) is given by the relation 
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or, after the integral on time 
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A limited Taylor expansion of the integrant in (26) 
permits to show that 
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and permits to conclude that ET tends towards infinity 
 RT . The internal energy of the state is infinite for a 

finite energy input signal, which is not a consistent physical 
behavior for a stable system. This infinite energy storage 
ability is the results of infinitely low time constants. The 
infinitely low time constants provide to these models an 
infinite memory. This infinite memory is also physically not 
compatible with the behavior of physical systems (thermal, 
electrical, or other) that may only exhibit a long but finite 
memory.  
 

If a model is always an approximation of reality, the 
infinite memory of fractional models thus gives them 
radically different properties from those of the modeled 
system. In relation to the literature in the field, the infinite 
history has given rise to works on initialization problem 
(Lorenzo and Hartley, 2001) (Lorenzo and Hartley, 2007) 
(Sabatier et al, 2010). These difficult problems are thus not 
linked to a physical reality but stem from the used models. 
Moreover, due to the infinite history, fractional models have 
properties such as observability (Sabatier et al, 2012), or 
controllability which are not necessarily those of the modeled 
system. It is interesting to note that the stability property is 
not affected, since the stability only depends on integer order 
submodel whose output is y1(t) (classical integer order 
model), diffusion based submodel whose output is y2(t) being 
always stable. However, as evidenced by the literature, in 
most cases the (fictitious) infinite history of fractional models 
(linked to the infinite domain definition that has created 
initialization problems), induce large difficulties in their 
properties analysis (stability with Lyapunov based method, 
observability, controllability…). 
 
3.3 – On the need of new class of models to handle a long 
memory behavior  
 

In spite of the above mentioned limitations, the authors 
acknowledge that fractional models are nice 
conceptualization tools. There are numerous examples of that 
in the literature. Crone control (Sabatier et al, 2002), Crone 
suspension (Oustaloup et al, 1996) concepts, signal (Das et 
pan, 2011) or image filtering (Mathieu et al, 2003), … have 
shown that some properties of fractional operators can 
advantageously be used to ensure the robustness or more 
discriminating filter. But the implementation of these 
concepts always involves an approximation step (Oustaloup 
et al, 2000). The problems that have arisen in recent years 
(initialization, observability, …) do not concern the 
aforementioned approaches.  

In contrast, during modeling or identification by 
fractional model, a real system is represented by a model that 
has infinite energy storage ability. This system is indeed a 
model of infinite dimension (that is not a problem) on an 
infinite space (double infinity). If from an input output point 
of view and in system modeling/identification context this is 
not a problem for many reasons (limited sampling periods, 
limited test durations, limited effects of the infinite reaction 
velocity and an infinite memory on the global model 
response), the double infinity feature have given rise to 
problems that have no physical reality and are simply induced 
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by the handled models. These models are thus adapted to 
study a system input-output behavior, but not its internal 
properties (initialization, internal stability, controllability, 
observability among others). Another conclusion is also that 
variable w(t, x) in relation (23) along with v(t) in relation (2), 
that can be considered as the model state, has no connection 
with the internal real state of the modeled system. 

The question is in fact what is the need? The need is 
modeling and identification of systems with long memory 
behaviors (not infinite). Fractional models meet the need with 
their infinite memory but introduce inconsistencies on the 
system state, some of which being described above. The goal 
of the next paragraph is thus to show that the need can be met 
by the introduction of a new class of models, without 
involving infinite domains. 
 
4 – A new class of models: long memory models 
 
4.1 – Model definition 
 

To overcome the problem of infinite memory inherent to 
the diffusion based submodel, a truncated version of relation 
(5) or relation (8) may be used. However, using a truncated 
version of representation (11), function m() is difficult to 
compute (inverse Fourier transform) in order to establish a 
link with fractional models. Using a truncated version of 
relation (5): 
 
- it is difficult to combine several models under this 
representation; 
- a physical interpretation is not easy to derive as x is 
homogenous to a frequency. 
 

Moreover, integrals in relations (5) or (8) do not help in 
the analysis of model properties. 
 

Thus a new representation is required. Before proposing 
one, it must be first noticed that there exists in the literature 
results showing that some classes of partial differential 
equations behave as real or complex fractional integrators in 
a given frequency band. The first results on this topic are 
available in (Oustaloup, 1983), (Oustaloup and Sabatier, 
1995), (Levron et al, 1999). They are limited to a single class 
of equation and a first generalization has been recently 
proposed in (Sabatier et al, 2013).  
Here we propose to generalize one more time this approach, 
through the representation: 
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To show the ability of this class of model to capture the 

long memory of a system, let 

 
   tf

tz
,

, 







 (29) 

and suppose that Z1 and Z2 tend towards infinity. Output y(t) 
is thus defined by 

 

   

      tztzCd
tz

C

dtfCty

,,
,

,


























. (30) 

Laplace transform of relations (28) and (30) thus leads to 

              




   dsBufsCsy 0,1  (31) 

or with B=C=1 

                




   dsufssy 0,
111 .(32) 

If initial conditions are supposed equal to 0, relation (32) 
becomes: 

    
   

 








 sud

s
sy 




1

1

. (33) 

and using 

        ee1     and           e1 , (34) 

relation (31) becomes: 

 
 
 

 










0





d

es

ee

sU

sY
. (35) 

This corresponds to the Laplace transform of relations (5) 
and (7) and permits to conclude that representation (28), that 
will be denoted “long memory” representation in the sequel 
behaves as a fractional model in a frequency band defined by 
Z1, Z2, and functions    and   . In system (28) and 

according to (Sabatier et al, 2013) and relation (35), the 
system lowest time constant is defined by  

    2
1

2 ZZ    (36) 

and the system highest time constant is defined by  

    1
1

1 ZZ  . (37) 

Thus, with this class of model: 
 
- a physical interpretation can be done in many domains 
(electrical, thermal, mechanical, …) and implementations can 
be deduced in all these domains (in the mechanical domain 
   and    can be connected to the damping coefficient 

and the stiffness of a material) ; 
- the domain definition is finite and the long memory 
behaviors can be captured; 
- behaviors that were captured with complex fractional 
differentiation can also be captured with this class of models; 
- many tools existing for partial differential equations 
analysis and control could be adapted to study this class of 
models; 
- reduced number of parameters property induced by a 
fractional modeling is maintained with these models. 
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4.2 – Examples 
 

Suppose a long memory system whose dynamic behavior 
can be described by the fractional model whose transfer 
function is: 

  
as

sH


 
1

. (38) 

Such a model can also be represented by the partial 
differential equation 

 
         

      tZztZzCty

tBu
t

tztz

,,

,,

21

2


















, (39) 

with B=1, C=1 and with 

        

  eaae cos2

sin
2 , (40) 

         

 eeaae  cos2

sin
2  (41) 

and 2021  ZZ . 
Laplace transform of relations (39) to (41) leads to the 

transfer function G(s)=Y(s)/U(s) with 

      
  











20

20
22

1

cos2

sin








d

eaea

esee
sG . (42) 

A comparison of the bode diagrams of transfer functions 
(38) and (42) with a=1 and =0.4 is proposed in figure 3. It 
highlights the ability of the introduced class of models to 
behave, on a frequency band, as a fractional model. This thus 
also highlights their ability to catch long memory dynamical 
behaviors. Note that transfer function (42) frequency 
response has been obtained thought an integral discretization 
method (Euler method). 
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Figure 3 – Bode diagram comparison 

 

Using the change of variable  ex , and according to 
relations (5), (7) and (23), the response to an input u(t) of the 
system characterized by G(s) is given by: 

 

     

     
  
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
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




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



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

20
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22 cos2

,sin

,
,

















d
eaea

twee
ty

tutwe
t

tw

. (43) 

with  20,20 . For the input  

       TtHtH
T

tu 
1

,  (44) 

energy stored by  ,tw  is given by the relation 

   dx
ee

Teee

T
TE

xT

TeTe

T 





20

20
32

11


 

. (45) 

The variations of ET(T) are represented by figure 4 and 
highlights that ET(T) tends towards a finite value as T tends 
towards 0, namely as the input behaves as a Dirac pulse. 
 

 
 

Figure 4 – Variations of ET(T) 
 
Now, consider a system modeled by this (implicit) 

transfer function: 

  
 as

sH



1

. (46) 

Such a system can also be represented by partial 
differential equation (28) with B=1, C=1 and with 

        


   1

sin
eae       

 


  1

sin
e (47) 

and 2021  ZZ . 
Laplace transform of relations (28) and (44) leads to the 

transfer function G(s)=Y(s)/U(s) with 

    
 









20

20

sin 






d

aese

e
sG . (48) 

These examples thus show the ability of the introduced 
class of model to represent systems that are usually modeled 
by implicit fractional order transfer functions. However the 
drawback linked to the doubly infinite dimension of 

Log(T) 
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fractional systems disappears with the introduced class of 
models. 
 
5 – Conclusions 
 

In this paper, it is shown that linear time-invariant 
fractional models do not reflect the reality of physical 
systems in terms of energy storage ability. Sometimes, it is 
the consequence of a bad choice of the low frequency 
asymptotic behavior of these models. This is shown in this 
paper on several examples. This problem can nevertheless be 
easily solved by a proper choice of the low frequency 
behavior. However, the doubly infinite property of fractional 
models confers to fractional models the ability to store 
internally an infinite amount of energy. Using an 
interpretation reminded in this paper, it is indeed shown that 
fractional models can be viewed as a distributed parameter 
models on an infinite domain. This infinite domain induces 
infinitely fast and slow time constants and thus an infinitely 
fast dynamical behavior and an infinite memory.  

Even if these infinitely fast dynamical behavior and this 
infinite memory is not a problem in system 
modeling/identification for many reasons (limited sampling 
periods, limited test durations, limited effects of the infinite 
reaction velocity and an infinite memory on the global model 
response), they have given rise to problems that have no 
physical reality and are simply induced by the handled 
models. These models are thus adapted to study a system 
input-output behavior, but not its internal properties 
(initialization, internal stability, controllability, observability 
among others). 

As a first attempt to overcome the above mentioned 
problems, and taking into account that a need is for models 
which can catch long memory (not infinite) input-output 
dynamical behaviors (which led to use fractional models), the 
authors propose a new class of models: the long memory 
models. These models are described by partial differential 
equations on a limited space domain. They are a 
generalization of models previously introduced by the authors 
that have shown the ability to behave as frac 

tional integrators on a limited frequency band (Oustaloup, 
1983), (Oustaloup and Sabatier, 1995), (Levron et al, 1999), 
(Sabatier et al, 2013). Analysis of these new models 
properties will be the topic of future work by the authors. 
 To conclude, the authors think that the new class of 
models introduced, partially solve the question of the real 
nature of the internal state of systems that exhibit fractional 
behaviors. A partial differential equation is a solution to fit 
the input-output behavior of a system, and tackle the infinite 
energy storage ability problem, but it perhaps hides 
something more essential about the fractional models nature. 
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