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Abstract: This paper considers a production system of a single product, with constant transportation 

delays of items, between the machine and the buffer and between the buffer and the customer. The 

demand arrives with a constant rate. The system is modeled by a continuous-flow model. The machine is 

subject to time-dependent failures and the piloting policy is of hedging point type. We employed a 

preventive maintenance policy that is realized at each certain period. A performance evaluation of the 

system is made by simulation. 

Keywords: single-product manufacturing system, transfer delay, transportation delay, preventive 

maintenance, continuous flow model. 

 

1. INTRODUCTION 

This study deals with a continuous-flow model (CFM) of a 

failure-prone manufacturing system. Indeed, this model is 

very useful for continuous production systems when the 

number of parts produced in a manufacturing system is 

important and could be considered as a continuous flow 

(Mourani et al. (2008)). A lot of authors have performed this 

model to evaluate performances or to control the 

manufacturing system and the literature is extended. For 

example, Plambeck et al. (1996) investigated a failure-prone 

tandem production line. Machines are arranged in series and 

each one has different processing rates. Between each pair of 

machines there is a finite capacity buffer. Wardi and 

Melamed (2001) considered single-flow continuous flow 

models and their results were extended to multi-flow 

continuous flow models. A continuous-flow system, with two 

stages separated by a finite capacity buffer and different 

single-flow rates related to each state, was considered in Tan 

and Gershwin (2009).  

However, in CFM or other models, the impact of possible 

delays in production systems is generally neglected or 

implicitly considered. To the best of our knowledge, few 

works consider explicitly delays such as transportation delays 

or transfer delays. Van Ryzin et al. (1991) showed for the 

first time the importance of considering delays in a job shop. 

We can also cite Mourani et al. (2008) who considered an 

assembly production system of a single-part-type, with 

machines subject to failures with a period of time that the 

materials flowing out from the machine must wait before 

arriving to its downstream buffer, and Turki et al. (2012) who 

studied a failure-prone manufacturing system composed of 

one machine with a constant delay between the buffer and the 

customer. The objective of this paper is to generalize these 

works by considering transfer and transportation delays in the 

proposed CFM model.  

The considered control policy of the machine is the so called 

hedging point policy. Kimenia and Gershwin (1983) were the 

first to study the stochastic optimal control problem of a 

simple failure-prone manufacturing system with continuous 

production flow. They established a strategy known as 

hedging point, with a production surplus   that minimizes the 

cost, while satisfying the demand. Akella and Kumar (1986) 

considered a manufacturing system subject to failures, 

producing a single commodity. The system can be in two 

states: functional or breakdown state. It was modeled as a 

continuous time system. The aim of this model is to control 

the production rate at time  . For this purpose they obtained a 

critical number called the optimal inventory level which 

determines the production rate. 

Boukas (1998) studied a failure-prone manufacturing system 

of one machine that produces one piece. This model takes 

into account the corrective maintenance. Afterwards, the 

model was widespread to a system formed by   machines 

and   different parts. This planning control problem showed 

to be more efficient than the one given by Akella and Kumar 

(1986) and it increases the system availability and improves 

the productivity. In Bielecki and Kumar (1988) a model of a 

simple failure-prone manufacturing system, that produces a 

single commodity was considered. It was proved that for 

some conditions, a zero-inventory policy seems to be 

efficient. A manufacturing system of multiple part-type and 

with a single machine that is subject to failures, was 

considerate by Perkins and Srikant (1995). They established 

optimality conditions of JIT (Just-In-Time) policies and 

furnished upper bounds on the buffer levels and upper and 

lower bounds on optimal hedging points. 

A more recent work (Gharbi et al. 2010) considered a 

manufacturing system composed of one-machine that 

produces one piece and that is subject to failures, taking into 

account the interactions between periodic preventive 

maintenance and inventory control problem, with non-
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negligible repair and maintenance durations. They considered 

a three-parameter joint control policy that yields an important 

cost reduction with respect to the use of a hedging point 

policy with a conventional periodic preventive maintenance 

policy. 

 

This study is an extension of the work presented in Gomez 

Urrutia et al. (2011), taking into consideration the notion of 

delays. In this paper we present a manufacturing system 

composed of one machine that produces a single commodity, 

a finished product buffer and a customer. This system is 

modeled by a continuous-flow model. We consider constant 

delays between the machine and the buffer and between the 

buffer and the customer. The machine is subject to time-

dependent failures with TBF (Time between failures) and 

TTR (Time to repair) following a distribution with an 

increasing failure rate.  We also consider a block preventive 

maintenance policy to reduce the global costs or increase the 

availability of the system. In this paper our interest is to make 

the performance evaluation instead of the 

control/optimization problem, which will be studied in future 

works. 

The rest of the paper is organized as follows. Section 2 

introduces the studied system, the piloting policy, the 

maintenance policy and the cost function. Section 3 gives an 

analytical study of the paths of the inventory level and the 

inventory position. Section 4 contains numerical results of the 

performance evaluation gotten using simulation. Finally 

section 5 presents some conclusions and perspectives. 

 

2. STUDIED SYSTEM 

 

 
 

Fig. 1. Studied system 

 

 

The system is consisting of a machine  , a buffer   with a 

finite capacity   and a customer  . Products are stored while 

a constant demand   arrives. Material flow is modeled as a 

continuous-flow model. This system considers transfer delay 

between the machine and the buffer, and transportation delay 

between the buffer and the customer. The number of 

transported parts at time t from M to   and from    to    is 

denoted by        and        respectively. The transfer and 

transportation delays    and    considered are strictly 

positive and constant. The machine is subject to dependant 

time random breakdowns, following a distribution with an 

increasing failure rate. If   fails an action of corrective 

maintenance is realized. The preventive maintenance policy 

consists of realizing a preventive maintenance action 

whenever the time reaches a certain period    (block 

preventive maintenance policy). 

 

Let      be a variable that represents the machine state at 

time t.         if    is up,        if   is down or repair  

and        if   is in a preventive maintenance.  

 

      

                                                            
                                                                     

                                                 

  

 

The optimal control policy has a hedging point structure 

(Kimemia and Gershwin, 1983).  The control policy is 

described as follows: if the inventory level      is lower than 

the hedging point   , the machine produces at its maximum 

rate  . If       is upper than    or the machine is down or in 

a preventive maintenance, the machine does not produce  at 

all, but if      is equal to    it produces at a rate equal to the 

demand.  

 

Analytically, we can represent the production rate as follows: 

 

      

                                                       

                                                    

                                            

      

    

Assumption (1): The maximum production rate   is upper 

than the demand   in order to satisfy the demand      . 
 

Let      be the inventory position at time  .  
 

The inventory position      at time   matches to the sum of 

the inventory level      at time   and the transported parts at 

time  . It is given by (3). 

 

                                                           
           

The system dynamics is given as follows: 

 
     

  
                                                                        

  

                                                      
  

The total amount of products in transit between machine   

and buffer B is given by (6), and the total amount of products 

in transit between the buffer B and the customer is given by 

(7). 

                                                    
 

    
                     

 

                                                   
 

    
                   

  

Assumption (2). The maintenance policy, is subject to 

perfect repair, that means that the system returns to "as good 

as new" after a maintenance action.  

 

The maintenance cost        based on a type-block strategy 

is given by (8) (Chelbi and Ait-Kaidi 2004), where   is the 
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preventive maintenance period,     matches to the cost of 

the corrective maintenance action,     is the cost of the 

preventive action and        is the mean number of failures:  

    

       
               

 
                                                         

  

The total cost      matches to the sum of the storage, the 

transportation, the maintenance, and the shortage costs. We 

consider in this paper, that the transportation cost     is fixed. 

ct1 is the cost of the transported parts from the machine to the 

buffer and ct2 is the cost of the transported pieces between the 

buffer and the customer.  

                                                       
 

with: 

         
                 

                  
                                    

 

        denotes the inventory cost at time t,    is the unit 

inventory holding cost and    is the shortage cost per unit. 

The total expected average cost over an infinite horizon      
is then given by: 

 

         
   

 

 
                       

   

   

                                            

 

In the following part, we will study the obtained paths 

analytically. 

 

 

3. ANALITICAL STUDY OF THE PATHS 

 

The following theorem shows the link between the inventory 

level and the inventory position. 

 

Theorem.                               
             
 

Proof. We suppose that at    , we have: 

 

                                                                                 
 

by (4) and (12) we can express the inventory level as: 

 

                        
 

 
                             

 

since        , we can decompose (13) as follows: 

                       

  

 

                 

 

  

 

we do         and we get: 

                   

 

   

            

    

 

                 

                                                                  
 

by (3) and initial conditions we have: 

 

                        

 

   

 

   

                    

 

                          
 

   
                                                

                                

So: 

                                          
 

   
          

      

By replacing (16) in (14), we obtain:        

 

                                     

    

 

     

          

by (5) and (12) and assuming a constant demand we obtain: 

 
     

  
         

 

                    

 

 

 

 

we do       1 and we get : 

 

                                    
    

 
          

 

Then: 

                       
    

 
                           

 

By replacing (19) in (17), we finally obtain: 

                                                          

   

Q.E.D. 

 

This result allows highlighting that the fact of using I for the 

calculation of the cost function has not much impact because 

B and I are dependant each other and the difference is:  

 

                      

 

Assumption (3). The time between failures (TBF) and the 

time to repair (TTR) are i.i.d. 
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4. NUMERICAL RESULTS 

 

To simulate this problem, we used a discrete event 

simulation, where possible events are: the failure of the 

machine  , machine repair, inventory saturation (     
reaches  ), inventory depletion (     becomes 0), the change 

in the production rate      of the machine   and the 

preventive maintenance. We develop a program in Dev-C++ 

IDE and it is tested on a 2.3 GHz Intel ® Core ™ i7-3610QM 

with Windows 7. The parameters of the simulation are 

defined in table 1. 

Table 1. Simulation parameters 

 

R D             
TBF TTR 

        

4 1 20 200 1 2 8 2 1.5 2 

 

We realized the performance evaluation by employing integer 

values for the preventive maintenance periods and buffer 

level units. We calculate the cost function making use of a 

discrete event simulation. To calculate it, we studied the 

possible cases for the storage cost between two successive 

events. These cases were considered in Mourani et al. (2008). 

Fig. 2 shows different curves of the cost function with respect 

to the inventory level for different preventive maintenance 

periods. 
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Fig. 2. Average total cost vs. buffer level. 

 

 

 
 

Fig. 3. Enlarged view of the cost function curve. 
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Fig 4. Average total cost vs. preventive maintenance period. 

 

From Fig. 3 and Fig. 4, we can see that the minimum cost 

value is obtained with a  preventive maintenance period equal 

to 20 units of time and a buffer level   = 25 units. The 

associated cost is 478.26 monetary units. 

 

 
 

Fig. 5. Inventory position vs. time 

 

 

 
 

Fig. 6. Inventory level vs. time. 

 

Fig. 5 and Fig. 6 show the link (see Theorem) between the 

inventory level and the inventory position. The both curves 

show the effect of the delays and of the constant demand.   
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Fig. 7. Availability vs. preventive maintenance period 

 

We calculated the availability of the system depending on 

different preventive maintenance periods for   =25 units (see 

Fig. 7). 

The preventive maintenance period that maximizes the 

availability is equivalent to 20 units of time. The maximum 

value of the availability is 88.27%. Relative error and 

confidence interval are given in Table 2. The confidence 

intervals are stated at the 95% confidence level.  

 

Table 2. Simulation results for the availability  

     TU (Time units) and      TU. 

 

tp 

Average 

availability Relative error 

Confidence 

interval 

10 0,87534589 5,0621E-06 4,43109E-06 

14 0,8812919 4,67466E-05 4,11974E-05 

20 0,88273238 1,47422E-05 1,30135E-05 

30 0,87751846 2,05024E-05 1,79912E-05 

50 0,86181165 1,96105E-05 1,69006E-05 

100 0,85124923 7,60789E-06 6,47621E-06 

 

We simulated the problem with    equal to 10 TU and    

equal to 20 TU. We obtained a buffer level   = 26 units with 

an  associated cost of 524,34796 monetary units (see Fig. 8). 

 

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

5 10 15 20 25 26 30 35 40 45 50

A
ve

ra
ge

 t
o

ta
l c

o
st

Buffer level

Average total cost vs. Buffer level

tp10

tp14

tp20

tp26

tp30

tp50

tp100

 

Fig. 8. Average total cost vs. buffer level   =10 TU and 

  =20 TU. 

The preventive maintenance period that maximizes the 

availability is equal to 26 units of time with a value  of 

88.28% (see Fig.9). Relative error and confidence interval are 

given in Table 4.  

 

 
 

Fig. 9. Availability vs. preventive maintenance period   =10 

TU and   =20 TU.  

 

The average total cost is given in Table 3 in both cases. It is 

specified for the optimal preventive maintenance period. 

 

Table 3. Simulation results for the average total cost 
 

  =1 TU,   =2 TU 

and tp=20 TU 

  =10 TU,   =20 TU 

and tp=26 TU 

h 

Average total 

cost h 

Average total 

cost 

5 115165704 5 83748291,6 

10 50665175,2 10 28198691,3 

15 17041543,2 15 7297396,85 

20 62557,95 20 1583674,15 

25 478,26 25 252303,82 

26 498,47 26 524,35 

30 627,73 30 604,14 

35 677,58 35 704,15 

40 777,52 40 804,53 

45 877,51 45 904,13 

50 977,56 50 1004,06 

 

 

Table 4. Simulation results for the availability   =10 TU 

and   =20 TU. 

 

tp 

Average 

availability Relative error 

Confidence 

interval 

10 0,875041111 4,1024E-05 3,58977E-05 

14 0,881127778 5,55821E-06 4,89749E-06 

20 0,882756 8,71511E-17 7,69331E-17 

30 0,877513 1,75344E-16 1,53866E-16 

50 0,86182 8,92682E-17 7,69331E-17 

100 0,851244 9,03773E-17 7,69331E-17 
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5. CONCLUSION 

 

In this paper, we study a single-product failure-prone 

manufacturing system with constant demand and delays. The 

machine is subject to time-dependent failures, which allows 

us the use of a preventive maintenance policy. We focus on 

the performance evaluation instead of optimization problem. 

We test several values for the preventive maintenance period 

and for the inventory level. We note that this problem is very 

sensitive to the chosen parameter values. We have seen that 

the constant demand as well as the delays are reflected on the 

path of the inventory position and of the inventory level. The 

results show that the preventive maintenance policy increases 

the operation time and the optimal preventive maintenance 

period maximizes the availability. We also proved by 

simulation and theoretical study, the link between the 

inventory level and the inventory position.  

 

For future works, we will use a random demand as well as 

random delays. We will also apply an optimization method to 

find the optimal buffer level and the optimal preventive 

maintenance period. In the same way, we could employ 

another piloting policy different to the hedging point policy. 

These results could be extended to assembly/disassembly 

lines or to transfer lines such as in Fu and Xie (2002). They 

solve the problem by defining sub-systems composed of two 

machines separated by a buffer, studying these sub-systems 

and generalizing the obtained results to the all system.  
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