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Abstract:
In this paper, the problem of the fault diagnosis of an advanced wind turbine benchmark will be
addressed using analytical redundant relations (ARRs) and observers that considers uncertainty
in a bounded context, using the so-called interval approach. The fault detection test is based on
checking the consistency between the measurements and the model by finding if the formers are
inside the interval bounds provided by the interval model. In case a fault is detected, using the
theoretical fault signature matrix against the full set of residuals available on-line, the fault is
isolated. Two fault isolation schemes are compared. One based in the classical column matching
and the other one using the row-reasoning inspired in the DX fault diagnosis approach. Finally,
the proposed approach will be tested using the advanced wind turbine benchmark proposed in
the literature.

1. INTRODUCTION

Wind turbines have become an important source of renew-
able power generation in the last years. A major issue with
wind turbines systems specially those located offshore,
is the relatively high cost of operation and maintenance
(OM). Also, poor reliability directly reduces availability
of wind power due to the turbine downtime. Condition
monitoring and fault diagnosis of wind turbines has thus
greater benefit for such situations.

Due to the great interest in fault diagnosis of wind turbines
coming from the industry and academia, a first benchmark
paper and competition about fault detection and isolation
of wind turbines was presented in [Odgaard and Stoustrup,
2013]. After the announcement of results of the first bench-
mark, a second challenge was presented in [Odgaard and
Johnson, 2013]. This second challenge differed from the
previous one in several ways: wind turbine is modeled in
FAST simulator [Jonkman et al., 2005], differing from the
first benchmark in which all the subsystem models were
provided. This means that a higher-fidelity, more detailed,
aerodynamic, structural and realistic wind turbine model
was used, requiring more sophisticated fault detection and
fault-tolerant control tools and likely making the results
of greater applicability to the wind industry. This higher-
fidelity model also allows the use of more realistic wind
inputs that vary spatially across the rotor plane in addi-
tion to temporally. Also, the fault scenarios were updated
and additional information detailing their relevance was
provided.

Fault detection and isolation methods can be classified as
either model or data based. In this paper, a model-based
approach that combines the use of analytical redundancy
relations (ARRs) and observers is used. Uncertainty in
parameters and noise is modeled using an unknown but

bounded approach. This leads to formulate the fault de-
tection test based on checking if the measurements fall
inside the estimated output interval obtained from the
mathematical model of the wind turbine. Finally, results
obtained in the advanced wind turbine benchmark are
presented.

The structure of the paper is the following: In Section
2, the ARRs obtained from the available measurements
and the fault diagnosis model are presented. Section 3
presents how parametric uncertainty is estimated. The
fault diagnosis scheme is presented in Section 4. The
results obtained with the proposed approach applied to
the advance wind turbine benchmark are summarized in
Section 5. Conclusions are presented in Section 6.

2. ARR GENERATION

The overall wind turbine system model of the advanced
wind turbine benchmark is divided into appropriate sub-
models suitable of being modeled separately to perform
fault diagnosis. The different submodels collected from the
literature are used for generating the ARRs. These are the
Blade and Pitch model, Power Subsystem model, Drive
train model and Blade Root Moment model. The interac-
tion between these subsystems is illustrated in (Fig. 1).

The design of the fault diagnosis system is based on
deriving a set of ARRs by combining the model equations
with the available sensors.

ARRs are defined as relations between known variables
and can be derived combining the measurement model
(known variables) with the system model (unknown vari-
ables). Combining the model equations with the available
sensors described in the wind turbine benchmark [Odgaard
and Johnson, 2013], by means of the structural analysis
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Fig. 1. Subsystems models interaction of the wind turbine
system model.

approach [Blanke et al., 2006] the following set of dynamic
and static ARRs is presented below.

2.1 Static ARRs

ARR 1 is obtained directly from the model presented in
Odgaard and Stoustrup [2013]

Pgm(t) = ηgωgm(t)Tgm(t) (1)

because the power generated Pgm(t), the rotor speed ωgm

and the generator torque Tgm(t) are all measured variables.

ARRs 2, 3 and 4 are obtained from the blade root mo-
ment model presented in [Markou et al., 2002]. During
the simulation tests performed with FAST simulator, some
problems were found with this model and the behavior did
not correspond to the one observed in the simulations. Af-
ter observing this phenomenon in the blade root moment
behavior and considering the influence of the wind speed
and blades pitch angle on this variable, an experimental
model was proposed to be used. This experimental model
is based on the mean values of the blade root moment
and pitch angle signals in steady state. Several tests with
different constant wind speeds and therefore different pitch
angles were performed. A relation between the different
pitch angles and the mean value of the blade root moment
in steady state was found. As it can be seen in Figure (2) a
first, second and third order polynomials were considered
to represent the mean blade root moment as function of
the pitch angle.

Finally, the proposed model for the blade root moment
dynamics was the third order blade root moment mean
model:

M̄B,i,m(t) = a3β̄i,m(t)3 + a2 β̄i,m(t)2 + a1 β̄i,m(t) + a0 (2)

where: M̄B,i(t) is the blade root moment and β̄i is the
pitch angle on blade i. The values of the coefficients αi
for blade root moment mean models for each one of the
blades corresponding to experiments of winds higher than
12 m/s, are shown in Table 1.

ARR 9 (eq. 3) and ARR 12 (eq. 4) were derived consid-
ering the steady state behavior of the drive train model
proposed in [Esbensen et al., 2009]. A relation between
ωg,m(t) and Tg,m(t)

Bgωg,m(t) = −Tg,m(t) +K (3)
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Fig. 2. Estimated Blade Root Moments models

Table 1. Blade Root Moment Mean Model
Coefficients

Mean BRM model α3 α2 α1 α0

M̄B,1(t) -0.0778 9.3204 -469.4313 10038

M̄B,2(t) -0.0777 9.3159 -469.3210 10037

M̄B,3(t) -0.0776 9.3228 -469.6690 10040

where the constant K is the torsion angle in steady state,
as well a relation between ωg,m(t) and ωr,m(t) through Ng
can be established as follows

ωrm(t)− 1

Ng
ωgm(t) = 0 (4)

where: Bg is the viscous friction of the high-speed shaft,
Ng is the gearbox ratio, Tg,m(t) is the generator torque,
ωg,m(t) and ωr,m(t) are the measured generator and rotor
speed, respectively.

2.2 Dynamic ARRs

ARR 5 is obtained from the generator/converter model in
[Esbensen et al., 2009] as follows

τg
dTgm(t)

dt
+ Tgm(t) = Tg,ref(t) (5)

where Tgm(t) and Tg,ref(t) are the measured and reference
torque, respectively.

ARRs 6, 7 and 8 are the ARRs for the pitch subsystems
derived from the model proposed in [Odgaard and Stous-
trup, 2013] according to

d2βi,m(t)

dt2
+ 2ζωn

dβi,m(t)

dt
+ ω2

nβi,m(t) = ω2
nβref (t) (6)

where βi,m is the pitch angle in the ith blade and the
reference is βr.

Using the input/output equations of the drive train model
presented in [Esbensen et al., 2009] with the dynamics
of the torsion angle neglected because there is no sensor
available for this variable in the benchmark, ARR 10 (eq.
7) and ARR 11 (eq. 8) are obtained

f1 (ω̇rm(t), ωrm(t), Ta∗(t), Tgm(t)) = 0 (7)

f2 (ω̇gm(t), ωgm(t), Ta∗(t), Tgm(t)) = 0 (8)

where the aerodynamic torque Ta∗(t) can be estimated
because it is function of known variables through the
following expression
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Ta∗(t) = f (ωrm(t), vm(t), βm(t)) (9)

3. MODELS FOR FAULT DETECTION

3.1 Static and dynamic models

Previous ARRs will be used to create residuals to detect
and isolate faults. These residuals will be generated in
order to check the consistency between the observed and
the predicted process behavior. Looking at the obtained
ARRs, they can be divided in two groups: static and
dynamic.

The generation of residuals is straightforward in case of
static ARRs since they follow directly from the mathe-
matical expressions. On the other hand, in case of dy-
namic ARRs several options for generating residuals are
possible ranging from parity equations to observers. In
this paper, residuals generated using observers for dynamic
ARRs have been preferred because the enhanced fault
detection performance achieved after their application to
the advanced wind turbine benchmark.

The model of each dynamic ARRs is rewritten in observer
canonical form as follows:

x(k + 1) =A(θ̃)x(k) +B(θ̃)u(k) (10)

y(k) =C(θ̃)x(k) + ṽ(k) (11)

where u(k) ∈ Rnu is the system input, y(k) ∈ Rny is the
system output, with x(k) ∈ Rnx is the state-space vector,

ṽ(k) ∈ Rny is the output noise that is assumed to be

bounded |ṽi(k)| < σi, with i = 1, . . . , ny, A(θ̃), B(θ̃), C(θ̃),

are matrices of appropriate dimensions where θ̃ ∈ Rnθ is
the parameter vector. Uncertainty in the parameters is
considered as follows

θ ∈ Θ =
{
θ ∈ Rnθ | θi ≤ θi ≤ θ̄i, i = 1, . . . , nθ

}
(12)

Then, from the dynamic ARR expressed in state space
form (10)-(11), a interval linear observer with Luenberger
structure is considered as follows:

x̂(k + 1, θ) = (A(θ)− LC(θ)) x̂(k, θ) +B(θ)u(k) + Ly(k)

=A0(θ)x̂(k, θ) +B(θ)u(k) + Ly(k) (13)

ŷ(k, θ) =C(θ)x̂(k, θ)

where x̂(k, θ) is the estimated system state vector, ŷ(k, θ)
is the estimated system output vector and A0(θ) = A(θ)−
LC(θ) is the observer matrix. The observer gain matrix
L ∈ Rnx×ny is designed to stabilize the matrix A0(θ)
and to guarantee a desired performance regarding fault
detection for all θ ∈ Θ using the LMI pole placement
approach [Chilali et al., 1996].

The input/output form of the observer (13) is expressed
as follows:

ŷ(k, θ) = G(q−1, θ)u(k) +H(q−1, θ)y(k) (14)

with:

G(q−1, θ) =C(θ)(qI −A0(θ))−1B(θ) (15)

H(q−1, θ) =C(θ)(qI −A0(θ))−1L (16)

The effect of the uncertain parameters θ on the observer
temporal response ŷ(k, θ) will be bounded using an interval
satisfying:

ŷ(k, θ) ∈
[
ŷ(k), ŷ(k)

]
(17)

Such interval can be computed independently for each
output i = 1, . . . , ny, neglecting couplings among outputs,
as follows:

ŷi(k) = min
θ∈Θ

ŷi(k, θ) and ŷi(k) = max
θ∈Θ

ŷi(k, θ) (18)

subject to the observer equations given by (14). The
bounds shown in (18) can be determined using the zono-
tope approach presented in [Puig et al., 2013].

Finally, taking into account that the additive noise in the
system (11) is bounded, the following condition should be
satisfied

yi(k) ∈
[
ŷi(k)− σi, ŷi(k) + σi

]
i = 1, . . . , ny (19)

in a non-faulty scenario.

3.2 Parameter uncertainty estimation

One of the key points in passive robust model based fault
detection is how models and their uncertainty bounds are
obtained. Assuming that the measured variables are cor-
rupted by additive noises with known statistical distribu-
tions and that the model structure is known, a parameter
estimation algorithm will provide nominal values for the
parameters together with descriptions of the associated
uncertainty in terms of the covariance matrix or confidence
regions for a given probability level. However, this type of
approaches cannot be applied when measurement errors
are described as unknown but bounded values and/or
modeling errors exist. The problem of bounding the model
uncertainty has been mainly stated in many references
coming from the robust control field.

The methodology bounded-error or set-membership esti-
mation [Milanese et al., 1996] assumes the bounded but
unknown description of the noise and parametric uncer-
tainty, which produces a set of parameters consistent with
the selected model structure and the pre-specified noise
bounds. This approach is used for estimating parametric
uncertainty of the interval observers in (13). The goal of
the parameter estimation algorithm is to characterize the
parameter set Θ (here a box) consistent with the data
collected in a fault-free scenario. Given N measurements
of system inputs y(k) and outputs u(k) from a scenario
free of faults and rich enough from the identifiability
point of view, the parameters tolerance α, and a nominal
model described by a vector θn obtained using a standard
least-square parameter estimation algorithm, the uncer-
tain parameter estimation algorithm proceeds by solving
the optimization problem (20).

min α
subject to :

yi(k) ∈
[
ŷ
i
(k)− σi, ŷi(k) + σi

]
i = 1, ..., ny k = 1, ..., N

ŷ
i
(k) = min

θ∈Θ
ŷi(k, θ) i = 1, ..., ny k = 1, ..., N

ŷi(k) = max
θ∈Θ

ŷi(k, θ) i = 1, ..., ny k = 1, ..., N

ŷ(k, θ) = G(q−1, θ)u(k) +H(q−1, θ)y(k) k = 1, ..., N
Θ = [θn(1− α), θn(1 + α)]

(20)
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Regarding the uncertain variables that appear in (13),
it is assumed that a priori theoretical or practical con-
siderations allow to obtain useful intervals associated to
measurement noises (19), leading to an estimation of the
noise bound σ. A similar algorithm can be used for the
static ARRs.

4. FAULT DIAGNOSIS APPROACH

4.1 Fault Detection

Fault detection is based on generating a nominal residual
comparing the measurements of physical system variables
y(k) with their estimation ŷ(k) provided by the observer
(13):

r(k) = y(k)− ŷ(k, θn) (21)

where r(k) ∈ Rny is the residual set and θn the nominal
parameters. The form of the nominal residual generator,
obtained using (14), is:

r(k) =
(
I −H(q−1, θn)

)
y(k)−G(q−1, θn)u(k) (22)

that has been derived taking into account the input/output
form of the observer.

When considering model uncertainty located in parame-
ters, the residual generated by (21) will not be zero, even in
a non-faulty scenario. To cope with the parameter uncer-
tainty effect, a passive robust approach based on adaptive
thresholding can be used [Puig et al., 2006]. Thus, using
this passive approach, the effect of parameter uncertainty
in the components ri(k) of residual r(k) (associated to
each system output yi(k)) is bounded by the interval [Puig
et al., 2006]:

ri(k) ∈ [ri(k)− σi, ri(k) + σi] i = 1, ..., ny (23)

where:

ri(k) = ŷ
i
(k)−ŷi(k, θn) and ri(k) = ŷi(k)−ŷi(k, θn) (24)

where ŷ
i
(k) and ŷi(k) are the bounds of the system output

estimation computed component-wise using the interval
observer (14) and obtained according to (18).

Then, the fault detection test could be based on checking
if the residuals satisfy or not the condition given by (23).
In case that this condition does not hold, a fault can be
indicated. Notice that checking condition (23) is equivalent
to check condition (17).

Fault detection based on interval observers presents non
detected faults (missed alarms) because of the uncertainty.
This is due to the fact that there exists a minimum fault
size that guarantees the activation of the fault detection
test (23) despite the uncertainties. On the other hand,
interval observers guarantee that there are no false alarms
since uncertainty bounds are determined to explain the
data collected in non-faulty scenarios for estimation.

4.2 Fault Isolation

Fault isolation consists in identifying the faults affecting
the system. It is carried out on the basis of fault signatures,
generated after the detection process, and their relation
with all the considered faults. Robust residual evaluation
presented in Section 4.1 allows obtaining a set of observed

fault signatures φ(k) = [φ1(k), φ2(k), . . . , φny(k)], where
each fault indicator is given by:

φi(k) =

{
0 if ri(k) ∈ [ri(k)− σi, ri(k) + σi]
1 if ri(k) /∈ [ri(k)− σi, ri(k) + σi]

(25)

Standard fault isolation reasoning exploits the knowledge
about the binary relation between the set of fault hypoth-
esis and the set of residuals that is stored in the so called
Fault Signature Matrix (FSM), denoted as M . An element
mi,j (i indicates rows, j indicates columns) of M is equal
to 1 if the fault f j affects the computation of the residual
ri; otherwise, the element mi,j is zero-valued. A column of
M is known as a theoretical fault signature and indicates
which residuals are affected by a given fault. A set of
faults is isolable if all the columns in M are different (two
columns that are equal indicate two faults that can not be
distinguished).

The procedure accepted as standard by the FDI com-
munity involves finding a matching between the observed
fault signature and one of the theoretical fault signatures.
However, this reasoning is not appropriate in an unknown
but bounded context. Due to the uncertainty, when a fault
is present in the system, an undefined number of the resid-
uals affected by the fault can be found inconsistent, mainly
depending on the sensitivity of each residual with respect
to the fault and on the fault magnitude. In this case, if
the column-matching procedure is used, then the particu-
lar fault will not be identified. An appropriate reasoning
which comes from the DX community only consider the
residuals that are inconsistent when searching for the fault
(inconsistency is relevant, consistency is not). Based on
the proposed framework by [Cordier et al., 2004], the fault
signature matrix is interpreted as in DX approach to fault
isolation considering separately each line corresponding to
a violated ARR, (i.e., a set of components that are to be
considered abnormal in order to be consistent with the
observed fault signature) before searching for a common
explanation, i.e., follows a row view of the fault signature
matrix.

From the set of 10 faults proposed in the benchmark, the
fault scenarios f2, f6 and f10 were not treated in this paper
because it was not possible to find suitable models in the
literature to perform model based diagnosis, remaining to
be studied in future work.

Based on the information provided by the set of obtained
residuals, the logical test that allows to isolate the faults
has been generated. Tables 3 and 4 list the logical reason-
ing test in the case of applying column and row reasoning
approaches respectively, where ∆Nri indicates an abnor-
mal behavior of ith residual.

5. SIMULATION RESULTS

In this section , the results obtained for some of the
faults scenarios detailed in [Odgaard and Johnson, 2013],
are presented. These faults are only present during a
determined period of time. In the following section some
representative results will be presented. In Figure 3, the
fault scenario f1 is presented, which corresponds to a blade
root moment sensor scaled by a factor of 0.95 and it is
present between 20 s and 45 s. On the other hand, Figure
4 presents fault scenario f5, which occurs in the generator
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Table 2. Fault Scenarios

No. Faults Type

f1 Blade root bending moment sensor Scaling

f2 Accelerometer Offset

f3 Generator speed sensor Scaling

f4 Pitch angle sensor Stuck

f5 Generator power sensor Scaling

f6 Low speed shaft position encoder Bit error

f7 Pitch actuator Abrupt

f8 Pitch actuator Slow

f9 Torque offset Offset

f10 Yaw drive Stuck drive

Table 3. Column reasoning approach

Logical Test Diagnostic

∆Nr2 f1−M,B,1,m
∆Nr3 f1−M,B,2,m
∆Nr4 f1−M,B,3,m

∆Nr1 ∧ ∆Nr9 ∧ ∆Nr11 ∧ ∆Nr12 f3
∆Nr2 ∧ ∆Nr6 f4−β1 ∨ f(7−8)−PA1

∆Nr3 ∧ ∆Nr7 f4−β2 ∨ f(7−8)−PA2

∆Nr4 ∧ ∆Nr8 f4−β3 ∨ f(7−8)−PA3

∆Nr1 f3 ∨ f5 ∨ f9
∆Nr1 ∧ ∆Nr5 ∧ ∆Nr9 ∧ ∆Nr10 ∧ ∆Nr11 f3 ∨ f9

Table 4. Row reasoning approach

Logical Test Diagnostic

∆Nr1 f3 ∨ f5 ∨ f9
∆Nr2 f1−M,B,1,m ∨ f4−β1 ∨ f7−PA1 ∨ f8−PA1

∆Nr3 f1−M,B,2,m ∨ f4−β2 ∨ f7−PA2 ∨ f8−PA2

∆Nr4 f1−M,B,3,m ∨ f4−β3 ∨ f7−PA3 ∨ f8−PA3

∆Nr5 f9
∆Nr6 f4−β1 ∨ f7−PA1 ∨ f8−PA1

∆Nr7 f4−β2 ∨ f7−PA2 ∨ f8−PA2

∆Nr8 f4−β3 ∨ f7−PA3 ∨ f8−PA3

∆Nr9 f3 ∨ f9
∆Nr10 f9
∆Nr11 f3 ∨ f9
∆Nr12 f3

power sensor scaled by a factor of 1.1. Fault f5 is present
in the time interval from 240s to 265s.

In both fault scenarios shown in Figures 3 and 4, it
can be observed that the measurement goes out of the
detection thresholds and that the fault indicator activates
during the interval of time in which the fault is present,
either permanently or intermittently. The fault detection
results are summarized in Table 5. The values for required
detection time (tD) are those specified in the benchmark
[Odgaard and Johnson, 2013]. The real time detection (tD
real) is the one obtained for the first residual activated in
presence of the fault, where Ts is the sampling period. It is
also shown which residuals were activated for each one of
the considered fault scenarios during the simulation tests.

In the work of [Blesa et al., 2013] interval based observers
have also been applied for fault diagnosis of the first
benchmark [Odgaard and Stoustrup, 2013], one difference
between the benchmark solution of [Blesa et al., 2013]
and this one relies in the residual generation. The resid-
ual generation in [Blesa et al., 2013] relies on physical
redundancy, there are two measurements for the pitch
systems of all blades, the rotor and the generator. Instead,
the FDI scheme presented in this paper is strictly model
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Table 5. Fault Detection Results

Fault tD required tD real Activated Residuals

f1 <10 Ts 128 Ts r2, r3 and r4
f2 Not considered - -

f3 <10 Ts 3 Ts r1, r9 and r12

f4 <10 Ts 3 Ts r2, r3, r4, r6, r7 and r8
f5 <10 Ts 3 Ts r1
f6 Not considered - -

f7 <8 Ts 375 Ts r2, r3 and r4
f8 <100 Ts 33 Ts r2, r3 and r4
f9 <3 Ts 3 Ts r5 and r9
f10 Not considered - -

based in which all the residuals are generated using the
structural relations derived from the physical models. Both
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FDI schemes presented good performance regarding the
detection and isolation requirements.

5.1 Isolation based on Column Reasoning

Comparing the activated residuals with the logic condi-
tions described in Table 3 it is observed that faults f1

and f5 can be isolated. Faults 4, 7 and 8 correspond to
faults that occur in the sensors and actuators of the pitch
subsystems, they have the same fault signature, as a conse-
quence they cannot be isolated between each other. Faults
3 and 9 signatures do not match exactly with its theoretical
ones because not all its residuals were activated, see Table
5. Therefore in a strict reasoning, these faults scenarios
are not isolable because do not match with none of the
signatures in the theoretical signature matrix. However,
in the case these fault scenarios occur it is possible to
calculate which one of fault signatures is the one that
adjust the best to the current observation.

5.2 Isolation based on Row Reasoning

Comparing the activated residuals with the logic condi-
tions described in Table (4), the following diagnosis is
obtained. In the case of activation of r1, the possible faults
would be f3, f5 or f9. In the case of r2 or r6 activation,
the fault would be f4−β1 ∨ f7−PA1 ∨ f8−PA1, detecting a
fault in pitch subsystem 1 but not being able to isolate if
it is the sensor or the actuator the faulty component. The
same diagnosis is obtained in case that r3 or r7 and r4 or
r8 activates, the fault would be in pitch subsystem 2 or
3 either the sensor or the actuator. If r5 activates, fault 9
would be isolated. In the case of r9 activation, the possible
faults would be f3 or f9. The case of r10 activation would
result in f9 isolation. If r12 activates, the isolated fault
would be f3.

6. CONCLUSIONS

In this work, a model based diagnosis approach using
interval based ARRs (static and dynamic) and observers
has been applied to an advanced wind turbine benchmark,
in which a set of fault scenarios was defined. In most of
the cases, the obtained ARRs proved to be able to detect
the different fault scenarios of different types (scaling,
offset and stuck) taken into account the uncertainty in the
models parameters and the noise in the sensors proposed
in the benchmark. The quality of the models used for
fault detection is of primary importance. In case that
theoretical models do not present a good approximation
of the observed dynamics, an experimental model can be
used if it is correctly calibrated.

The fault isolation techniques based on column and row
reasoning applied to the signature matrix obtained from
the simulation tests, have shown that only some of the
faults were completely isolable. The limitation of column
reasoning is that in case that not all the residuals activate,
a none exact match with theoretical FSM is obtained and
therefore the isolation is not very robust. Instead, the
DX row based reasoning is more robust since it allows to
isolate faults even though not all the theoretical residuals
activate. As final conclusion, to improve the obtained
results, it is necessary to add more ARRs that lead to a

more complete fault signature matrix in order to improve
isolation and robustness.
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