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Abstract: The problem of controlling boundary layer streaks induced by free stream turbulence
for flow over a flat plate is considered. The flow model is expressed in a velocity-pressure form,
and analytic expressions of initial and outer boundary conditions can be obtained. From these,
a spatially varying linear small perturbation model at a particular wavenumber is obtained
for which a control, in the form of wall-normal transpiration, can be applied. Because the
initial conditions and disturbances are known, an open-loop optimal control that minimizes the
maximum perturbation energy is proposed. Standard minimum sum of square controls are also
used. The results provide performance limits for the system as well as potentially providing the
basis for a model predictive control scheme.

1. INTRODUCTION

The feedback control of flow fields is a problem that has at-
tracted significant interest over recent years. In particular,
the problem of controlling the boundary layer of a spatially
developing flow is of importance for drag reduction on
air and marine craft. The main objective of the control
is prevent the flow becoming turbulent and so maintain
the flow as laminar. For flow over a flat plate there are
essentially two mechanisms causing a transition from a
laminar flow to turbulence. The first generally occurs when
the freestream turbulence is low and background noise
(resulting from wall roughness, wall vibrations as well as
free-stream vortical, acoustic and entropy perturbations)
excites boundary layer instability modes such as Tollmien-
Schlichting waves. The second, known as bypass transition,
occurs when free-stream perturbations are relatively high
and longitudinal vortices/streaks interact with the bound-
ary layer leading to unstable environment which leads to
the onset of turbulence. This flow scenario is very common
over turbine blades and in other industrial internal flows.

A common measure of the system sensitivity for flow
field control problems is the transient energy growth
[Reddy and Henningson, 1993, Bewley and Liu, 1998,
Schmid and Henningson, 2001, for example]. The transient
energy perturbations is the square of the (appropriately
weighted) Euclidian distance of the state of the linearized
system from the origin. The transient energy growth is
the maximum energy following an initial unit energy state
perturbation. Hence for fluid flow control systems, a useful
control objective is the minimization of the maximum
transient energy growth of the flow perturbations [Bewley
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and Liu, 1998, Zhao and Bau, 2006, Whidborne and
McKernan, 2007, Whidborne et al., 2008, for example].

The problem of the feedback control of the streaky struc-
tures via active-wall transpiration has been the subject
of a recent study by Lu and Papadakis [2014], also see
Lu et al. [2014]. In this study, the freestream vorti-
cal perturbation which generates the streaks inside the
boundary layer is rigourously accounted for. Other models
that describe the streaks instead completely neglect the
freestream perturbation [Luchini, 2000, Andersson et al.,
1999, for example]. An outline is given in Section 2, where
a finite-dimension state-space model is developed based on
a velocity-pressure formulation. The model is discretized in
the streamwise direction, and formulated such that the in-
dependent variable is the streamwise distance. This results
in a linear spatially varying model (or, more generally, a
linear sample varying model) with known disturbances and
initial condition. A two degree-of-freedom linear spatially
varying controller that minimizes a cost function that is
a traditional sum of the transient energy over the spatial
domain is used. This requires the solution of an algebraic
Riccati equation at each point in the streamwise direction.

Since the initial condition and external perturbation are
known, the optimal control can be calculated by solving
in an open-loop optimal control problem. This is relatively
straightforward from a mathematical perspective for a
stable linear system. Of course, the system is subject to un-
known perturbations and disturbances and hence this ap-
proach is not suitable for practical implementation. What
the open-loop optimal control does provide is the limit of
performance of any closed-loop scheme. Furthermore, to
account for the unknown perturbations and disturbances,
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the control could be implemented in a model predictive
control fashion [Kothare et al., 1996, Maciejowski, 2002].

Hence this paper investigates the open-loop optimal con-
trol of boundary layer streaks. The next section gives an
overview of the derivation of a linear spatially varying
model developed by Lu and Papadakis [2014], this is based
on the work of [Leib et al., 1999] where fuller details and
definitions can be found. The control problems are defined
and solutions proposed in Section 3. The results of the
optimal control solutions are also presented in Section 4.
Finally some conclusions are drawn along with a discussion
of potential future work to extend to an MPC scheme.

2. FLOW MODEL

Consider a flow of uniform velocity, U∞, over an infinitely-
thin flat plate due to a homogeneous, statistically-
stationary turbulence field. The purely convected pertur-
bations are passively advected by the mean flow. In this
paper, the flow is described in terms of a Cartesian coordi-
nates system, in which a point can be represented as a posi-
tion vector [x, y, z], where x, y and z define the streamwise,
wall-normal and spanwise directions, respectively. These
coordinates are non-dimensionalised by Λ, the spanwise
integral length scale of the free-stream turbulence. The
velocity and pressure are made dimensionless by U∞ and
ρU2

∞
, respectively, where ρ is the constant free-stream fluid

density. Time is normalized with Λ/U∞. The parameter ǫ
is a measure of the turbulence intensity.

Since turbulence in the free-stream is assumed to be of low
intensity, it can be treated as a linear perturbation about
the mean flow and subsequently the scaled turbulence
velocity can be represented as a superposition of harmonic
disturbances of the form [Leib et al., 1999]

ǫu∞(x− t, y, z) = ǫû∞ei(k·x−k1t) (1)

where i is the imaginary number, and from the continuity
equation we have

û
∞ · k = 0 (2)

where û
∞ = {û∞

1 , û∞

2 , û∞

3 } and k = {k1, k2, k3}, k1,
k2 and k3 are the streamwise, wall-normal and spanwise
wavenumbers, respectively.

We suppose that the turbulent Reynolds number is defined
as rt = ǫRΛ, where RΛ ≡ U∞Λ/ν is the ordinary Reynolds
number based on Λ, and ν is the kinematic viscosity
of the fluid in the free-stream. When RΛ is taken to
be asymptotically large, the flow domain can be divided
into four asymptotic regions [Goldstein, 1997] as shown in
Figure 1.

Region I is a primarily inviscid region which has O(Λ)
dimensions surrounding the leading edge of the plate. The
disturbances in this region are small and they can be
treated as linear perturbations about the uniform flow.

Region II is a viscous region underneath region I. The
unsteady perturbations in this region are governed by the
Linearised Unsteady Boundary-Layer (LUBL) equations
[Goldstein, 1997, Leib et al., 1999]. The mean boundary
layer is governed by the Blasius equation and the solution
in region II is given in Leib et al. [1999].

The perturbation solution in region II is determined by the
LUBL equations [Leib et al., 1999] with no-slip boundary
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Fig. 1. Flow configuration illustrating the asymptotic
structure [Lu and Papadakis, 2014]

conditions at the wall. The solutions of the LUBL equa-
tions can be divided into two parts Gulyaev et al. [1989], of
which the part involving the velocity perturbation vector,
{ū, v̄, w̄}, dominates and is used as the upstream condition
of the solutions in region III.

The solution in region II becomes invalid when the thick-
ness of boundary layer becomes of the order of the span-
wise length scale which takes us into region III. The
dominant component solution can be obtained from the
linearised Navier-Stokes equations in the form

−iū+ F ′
∂ū

∂x̄
− F

2x̄

∂ū

∂η
− 1

2x̄
ηF ′′ū+ F ′′v̄ =

1

2x̄

∂2ū

∂η2
− κ2ū,

(3)

−iv̄ + F ′
∂v̄

∂x̄
− F

2x̄

∂v̄

∂η
− 1

4x̄2
(η(ηF ′)′ū− F ) ū

− 1

2x̄
η(ηF ′)′ū = − 1

2x̄

∂p̄

∂η
+

1

2x̄

∂2v̄

∂η2
− κ2v̄,

(4)

−iw̄ + F ′
∂w̄

∂x̄
− F

2x̄

∂w̄

∂η
= κ2p̄+

1

2x̄

∂2w̄

∂η2
− κ2w̄, (5)

∂ū

∂x̄
− η

2x̄

∂ū

∂η
+

∂v̄

∂η
+ w̄ = 0, (6)

where F is the Blasius function, η = y
√

RΛ/(2x) is a
similarity variable, x̄ = k1x is a scaled streamwise variable
[Leib et al., 1999] and κ := k3/

√
k1RΛ is the scaled stream-

wise wavenumber with k1 > 0. Equations (3) - (6) are
called the Linearised Unsteady Boundary-Region (LUBR)
equations [Lu and Papadakis, 2014] and correspond to a
rational asymptotic limit of the Navier-Stokes equations
for low frequency and streamwise-elongated disturbances
[Leib et al., 1999]. The equations are solved by using the
given upstream and far-field boundary conditions. The
condition of upstream boundary is provided by the three-
dimensional component of the LUBL equations in region
II. The far-field boundary condition can be derived as
η → ∞ by considering the flow in region IV. The con-
ditions are given by Leib et al. [1999].

The set of LUBR equations, (3)–(6), represent a system
of linear PDEs. To obtain the solutions they must be
discretised in space in order to get a system with a finite
number of state variables and so provide an approximate
solution. Spectral collocation and finite difference discreti-
sation methods are used.
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The variation of solution in the spanwise direction is ap-
proximated by Fourier series. The LUBR equations derived
above are based complex perturbation variables ū, v̄, w̄
and p̄ of two dimensions, x̄ and η which describe the
streamwise and wall-normal directions for a particular
given frequency and spanwise wavelength. The Fourier
transform in the spanwise direction enables a separate
controller to be designed for every independent wavenum-
ber. The individual Fourier modes can be investigated and
also they can be superimposed for the whole wavenumber
spectrum.

In the wall-normal direction, the distributions of ū, v̄,
w̄, p̄ are projected into a series of rational Chebyshev
polynomials [Boyd, 2001]. The Chebyshev polynomials
series do not make an assumption of periodicity and they
have a higher clustering of grid points in the boundary
layer compared to Fourier series. The form of Chebyshev
polynomials is

Γn(y) = cos(n arccos(y)) (7)

where −1 ≤ y ≤ 1. The equations are expressed at a grid
of Chebyshev collocation points, yk, where

yk = cos(πk/N), k = 0, . . . , N. (8)

To map the domain [−1, 1] to the domain of the boundary
layer, η ∈ [0, ηmax] we use the mapping proposed by Jones
et al. [2011] that is suitable for semi-infinite domains and
clusters the collocation points in the near-wall region:

ηk =
a(1 + yk)

(byk)
(9)

where a = ηmidηmax/(ηmax − 2ηmid) and b = 1 + 2a/ηmax.

The variables ū, v̄, w̄ and p̄ are approximated by a finite
number of N + 1 Chebyshev polynomials series as

ū(x̄, η) =

N
∑

n=0

aū,n(x̄)Γn(η), v̄(x̄, η) =

N
∑

n=0

av̄,n(x̄)Γn(η),

w̄(x̄, η) =

N
∑

n=0

aw̄,n(x̄)Γn(η), p̄(x̄, η) =

N
∑

n=0

ap̄,n(x̄)Γn(η).

The derivatives of the approximations with respect to η
can be obtained by differentiating the Chebyshev polyno-
mials only, for instance

∂ū(x̄, η)

∂η
=

N
∑

n=0

aū,n(x̄)Γ
′

n(η) (10)

The distribution of the variables at the collocation points
becomes







ū(x̄, η0)
...

ū(x̄, ηN )






=







Γ0(η0) · · · ΓN (η0)
...

. . .
...

Γ0(ηN ) · · · ΓN (ηN )













aū,0
...

aū,N






(11)

and the derivatives become






ū′(x̄, η0)
...

ū′(x̄, ηN )






=







Γ′

0(η0) · · · Γ′

N (η0)
...

. . .
...

Γ′

0(ηN ) · · · Γ′

N (ηN )













aū,0
...

aū,N






(12)

After the spectral discretization of the LUBR equations in
the wall-normal direction, the evaluation of the equations
at all the collocation points are obtained and the equations
can be assembled into the form

L
dq̂

dx̄
= Mq̂+ d (13)

where where vector q̂ is the set of all coefficients of velocity
and pressure i.e.

q̂ = [aū,0, . . . , aū,N , av̄,0, . . . , av̄,N ,

aw̄,0, . . . , aw̄,N , ap̄,0, . . . , ap̄,N ]T

and L, M contain the coefficients of the unknown variables
corresponding to the LUBR equations and d describes
the external forcing from free-stream turbulence and is
obtained from the far-field boundary conditions in region
IV.

The discretization of the LUBR equations are described
in Lu and Papadakis [2014]. The developed set in (13)
is parabolic in the streamwise direction, x̄. Because the
streamwise derivative of pressure does not appear in the
equations, all the elements of the corresponding columns
for the matrix on the left-hand side are zeros, and it
is singular. But by discretizing with a first-order Euler
implicit scheme, the system in (13) becomes

(

L(i)

∆x̄
−M(i)

)

q̂(i+ 1) =
L(i)

∆x̄
q̂(i) + d(i) (14)

where i and i + 1 denote the values of state variables at
positions x̄(i) and x̄(i + 1) respectively, and ∆x̄ = x̄(i +
1)− x̄(i) is the distance between two consecutive positions
and is constant for all i. Now the left-hand side of the
system is nonsingular and so the autonomous LTV system
is obtained as

q̂(i + 1) =

(

L(i)

∆x̄
−M(i)

)−1
L(i)

∆x̄
q̂(i)

+

(

L(i)

∆x̄
−M(i)

)−1

d(i). (15)

The system can be controlled by applying transpiration at
the surface of the plate, which means varying the boundary
condition. From the flow system presented in the previous
section, we know that the LUBR equations-based system
is linear and homogeneous with homogeneous boundary
conditions at the wall. With transpiration, the non-zero
wall-normal velocity at the wall, v̄w, introduces inhomo-
geneous boundary condition. Since the system is linear,
the homogeneous equations with inhomogeneous boundary
conditions can be transformed into inhomogeneous equa-
tions with homogeneous boundary conditions. The state
vector q̂ can be obtained as the sum of two parts: qh, the
solution of the homogeneous problem with homogeneous
boundary condition and qp, the solution of the homoge-
neous problem with inhomogeneous boundary condition
[Högberg and Henningson, 2002]. It can be expressed as

q̂ = qh + v̄w(x̄)qp (16)

where v̄w(x̄) is the streamwise dependent wall-normal
velocity and qp is the particular solution of homogeneous
system when the wall-normal velocity is set as v̄w(x̄) = 1.
With the discretization schemes described earlier for the
uncontrolled case, the system can be expressed in the form
of (17) that is used next.

3. CONTROL METHOD

3.1 Model Description

The system description considered is linear sample varying
systems with a known state disturbance. This descrip-
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tion also includes linear discrete-time varying and linear
discrete-time invariant system models. The state space
description is given by

q̂(k + 1) = A(k)q̂(k) + d(k) +B(k)u(k) (17)

where k = 0, 1, . . . , n is the sample index number, A(k) ∈
R

p×p is the state matrix at the kth sample, B(k) ∈ R
p×m

is the input matrix, q̂(k) ∈ R
p, u(k) ∈ R

m and d(k) ∈
R

p denote the state vector, control variable and state
disturbance respectively.

Let the initial condition, q̂(0), disturbance, d = [dT (0),
dT (1), . . . ,dT (n)]T and control, u = [uT (0),uT (1), . . . ,
uT (n)]T be known. Then the solution to (17) is given by

q̂(1) = A(0)q̂(0) + d(0) +B(0)u(0)

q̂(2) = A(1)q̂(1) + d(1) +B(1)u(1)

= A(1)A(0)q̂(0) +A(1)d(0) + d(1)

+A(1)B(0)u(0) +B(1)u(1)

= Φ(1, 0)q̂(0) + Φ(1, 1)d(0) + d(1)

+ Φ(1, 1)B(0)u(0) +B(1)u(1)

...
...

...

q̂(n) = Φ(n− 1, 0)q̂(0) + Φ(n− 1, 1)d(0)

+ Φ(n− 1, 2)d(1) + . . .+ d(n− 1)

+ Φ(n− 1, 1)B(0)u(0) + Φ(n− 1, 2)B(1)u(1) + . . .

. . .+B(n− 1)u(n− 1)
(18)

where Φ(k, j) := A(k)A(k − 1) · · ·A(j + 1)A(j) for all
k ≥ j. This can be written as

q̂(i) = Φ(i − 1, 0)q̂(0)

+

i−1
∑

j=1

Φ(i− 1, j)d(j − 1) + d(i− 1)

+

i−1
∑

j=1

Φ(i− 1, j)B(j − 1)u(j − 1) +B(i− 1)u(i − 1)

for i = 1, . . . , n. (19)

We can also write (18) in matrix-vector form as













q̂(1)
q̂(2)
...

q̂(n− 1)
q̂(n)













=













Φ(1, 0)
Φ(2, 0)

...
Φ(n− 1, 0)
Φ(n, 0)













q̂(0)

+

















I 0 0 · · ·
Φ(1, 1) I 0 · · ·
Φ(2, 1) Φ(2, 2) I · · ·

...
...

...
. . .

Φ(n−2, 1) Φ(n−2, 2) Φ(n−2, 3) · · ·
Φ(n−1, 1) Φ(n−1, 2) Φ(n−1, 3) · · ·

· · · 0 0
· · · 0 0
· · · 0 0
. . .

...
...

· · · I 0
· · · Φ(n−1, n−1) I





























d(0)
d(1)
...

d(n− 2)
d(n− 1)













+

















B(0) 0 0 · · ·
Φ(1, 1)B(0) B(1) 0 · · ·
Φ(2, 1)B(0) Φ(2, 2)B(1) B(2) · · ·

...
...

...
. . .

Φ(n−2, 1)B(0) Φ(n−2, 2)B(1) Φ(n−2, 3)B(2) · · ·
Φ(n−1, 1)B(0) Φ(n−1, 2)B(1) Φ(n−1, 3)B(2) · · ·

· · · 0 0
· · · 0 0
· · · 0 0
. . .

...
...

· · · B(n−2) 0
· · · Φ(n−1, n−1)B(n−2) B(n−1)





























u(0)
u(1)
...

u(n− 2)
u(n− 1)













(20)

where I is the identity matrix of appropriate dimension.
This can be written as

q̂ = Ψq̂(0) + Υd+ Ξu (21)

Alternatively, we can write (19) as

q̂(i) = Ψiq̂(0) + Υidi + Ξiui for i = 1, . . . , n (22)

where

Ψi = Φ(i− 1, 0),

Υi = [Φ(i− 1, 1) Φ(i− 1, 2) · · · Φ(i − 1, i− 1) I]

Ξi = [Φ(i− 1, 1)B Φ(i− 1, 2)B · · · Φ(i − 1, i− 1)B B]

di =
[

dT (0) dT (1) · · · dT (i − 2) dT (i− 1)
]T

ui =
[

uT (0) uT (1) · · · uT (i − 2) uT (i− 1)
]T

3.2 Open-loop Optimal Control Problems

Problem 1 The problem is to choose the control u so as
to minimize the effect of a known disturbance d and initial
condition q̂(0) on the state q̂, or more particularly on the
state perturbation energies q̂T (i)Q(i)q̂(i). That is

umin = argmin
u

n
∑

i=1

q̂T (i)Q(i)q̂(i) (23)

subject to

q̂ = ˜̂q+ Ξu (24)

where ˜̂q = Ψq̂(0) + Υd and Q(i) = Q(i)T > 0 for all i.

This is a standard linear least squares problem that can be
solved easily [Boyd and Vandenberghe, 2004, for example].
We rewrite the problem as

umin = argmin
u

φ(u) (25)

where

φ(u) =
1

2
q̂TQq̂ (26)

where Q := diag (Q(1), . . . , Q(n)). The optimality neces-
sary condition ∂φ(u)/∂u = 0 gives

ΞTQ˜̂q+ u(ΞTQΞ) = 0. (27)

If Ξ has rank n, then

umin = −(ΞTQΞ)−1ΞTQ˜̂q (28)

is well-known as the solution.

Problem 2 Now we introduce a cost on the control, so the
problem is

umin = argmin
u

(

q̂TQq̂+ uTRu
)

(29)
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where R is a weighting matrix of appropriate dimensions.
The solution is easily found as

umin = −(ΞTQΞ+R)−1ΞTQ˜̂q (30)

where ˜̂q = Ψq̂(0) + Υd.

Problem 3 Consider now the problem of minimizing the
transient energy

umin = argmin
u

max
i=1,...,n

(

q̂T (i)Q(i)q̂(i)
)

(31)

subject to

q̂(i) = ˜̂q(i) + Ξiui for i = 1, . . . , n (32)

where ˜̂q(i) = Ψiq̂(0) + Υidi.

This is equivalent to the following problem

min
u∈R

rm

λ>0

λ (33)

subject to q̂T (i)Q(i)q̂(i) < λ, i = 1, . . . , n. (34)

The constraint q̂T (i)Q(i)q̂(i) < λ is equivalent to the LMI
[Maciejowski, 2002, p. 236]

[

λP (i) q̂(i))
q̂T (i) 1

]

(35)

P (i) = Q−1(i), provided Q(i) > 0. From (32) this gives
the set of LMIs

[

λP (i) (Ξiui + ˜̂q(i))

(Ξiui + ˜̂q(i))T 1

]

(36)

for i = 1, . . . , n. Such an LMI problem can be easily solved
using common packages such as SeDuMi [Sturm, 1999] or
the MATLAB Robust Control Toolbox.

If any Q(i) are rank deficient, they can be replaced by

Q̃(i) = Q(i) + εI where ε ≪ 1. Clearly, as ε → 0,

Q̃(i) → Q(i).

4. RESULTS

The values ηmid = 4 and ηmax = 15 are chosen as they give
a good balance between solving the boundary layer accu-
rately and not ‘wasting’ collocation points in unimportant
areas [Lu and Papadakis, 2014]. The accuracy increases
with N , a value of N = 150 is very accurate [Lu and
Papadakis, 2014], but makes the solution of Problem 3 very
difficult, so the final model is chosen with 25 Chebyshev
Gauss-Lobatto collocation points (N = 25). The finite
difference dicretization interval is selected as ∆x̄ = 0.01,
which gives an acceptable accuracy [Lu et al., 2014, Lu
and Papadakis, 2014].

The perturbation energy weighting matrices, Q(i) are
chosen according to a scheme suggested by Bewley and Liu
[1998]. The perturbations in the streamwise component are
dominant, hence the perturbation energies of v, w and p
are neglected.

The perturbation energy from the known initial condition
and the disturbance with no control applied is shown in
Figure 2. The maximum perturbation energy is 0.193132×
10−3.

The three problems of Section 3.2 are solved with the
N = 25 model. The result from the solution of Problem 1
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0
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1.5

2
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−4

q̂
′
(i
)Q

(i
)q̂

(i
)

i

Fig. 2. Uncontrolled perturbation energy

is shown in Figure 3. The maximum perturbation energy
is 32.0057× 10−6.

Problem 3 was solved using the LMI solver from the
MATLAB Robust Control Toolbox. It took several hours
to converge to a solution. The maximum perturbation
energy is 30.2579 × 10−6 which although is less than for
Problem 1, is not significantly less. The difficulty lay in
that the perturbations in v, w and p were not included in
the perturbation energy measure, hence all the Q(i) are
not full rank. Thus to solve Problem 3, Q(i) was replaced
by Q(i) + ǫI where ǫ = 10−8, this results in sub-optimal
solutions. This requires further investigation. The result
from the solution of Problem 3 is shown in Figure 3.
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Fig. 3. Perturbation energy for Problems 1 and 3 solutions

The optimal solution control energies, u(i)Tu(i), are
shown in Figure 4. Clearly, Problem 3 requires greater
control. To trade-off the control energy against the perfor-
mance, Problem 2 is solved for a range of control weight-
ings, R = αI, α = 10−6, 10−5, . . . , 1, the resulting range of
perturbation energies are shown in Figure 5 along with the
perturbation energy for Problem 1 (dashed line). Note that
the perturbation energy for α = 1 is almost coincident with
the open-loop response of Figure 2. The corresponding
maximum perturbation energies and maximum control
energies are shown in Table 1.
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Table 1. Maximum perturbation and control
energy for Problem 2 with range of weighting α

α maxi(q̂(i)
TQ(i)q̂(i)) maxi(u(i)

T
u(i))

10−6 33.701× 10−6 41.567
10−5 41.396× 10−6 8.153
10−4 58.108× 10−6 1.192
10−3 118.292 × 10−6 0.101
10−2 170.503 × 10−6 4.331 × 10−3

10−1 189.765 × 10−6 74.858× 10−6

1 192.778 × 10−6 0.808 × 10−6

5. CONCLUSIONS

The paper considers the limits of performance for the
control of boundary layer streaks by means of wall tran-
spiration. The optimal performance for a known initial
condition and disturbance can be calculated by solving
three open-loop optimal control problems. The maximum
energy perturbation can be minimized by solving a set of
LMIs (Problem 3). However this method is computation-
ally expensive. A less computationally expensive method
is to minimize the sum of the energy perturbations at each
discretization point in the streamwise direction (Problem
1). This results in a 5.8% increase in the resulting maxi-
mum energy perturbation over Problem 3, which although
significant, is not too great.

Model predictive (or receding horizon control) is a com-
mon strategy for implementing the solution of open-loop

control problems in a feedback manner so as to account
for the uncertainties in system and disturbances that are
inevitable in every real-world application. It is envisaged
that the open-loop optimal solutions proposed here could
be used as a basis for a model predictive approach, the
only difference being the terminal point is constant, that
means that the horizon approaches as the control steps
through in k.
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