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Abstract: Focusing on networked control systems with state delay and packet dropout, a state feedback
control for a class of nonlinear networked control systems with system delays and packet dropout is
proposed. Then an observer is designed to estimate the system state. Finally, we achieve stabilization
of this class of systems through a dynamic output feedback without augmentation of the state space
model. From an appropriate Lyapunov-Krasovskii function, sufficient conditions which guarantee the
convergence of the state variables and state estimation errors to the origin are deduced and expressed
in terms of simple LMIs. Usability and simplicity are the advantages of this approach. A numerical
example is given to illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Networked control systems (NCS) are systems with the feed-
back loop closed through a real time communications network
Zhao et al. (2011).

Low cost, system flexibility, simple installation, less cabling
system, easier expansion and remote control are some of the
main advantages of NCS over classical control systems. These
advantages have given NCS great practical interest and allowed
their use in various industrial environments such as unmanned
aerial vehicles and automated highway systems (Seiler and
Sengupta (2005, 2001)), networks with mobile sensors (Ogren
et al. (2004)), haptic collaboration in Internet (Hespanh et al.
(2000); Hikichi et al. (2002); Shirmohammadi and Woo (2004))
and remote surgical interventions (Meng et al. (2004)).

However, some factors as bandwidth constraints, packet de-
lays, and packet dropping effects may often degrade the per-
formances of a NCS or even cause instability of the feedback
control loops. In order to prevent such problems, modelling,
stability analysis, and control design of NCS have drawn con-
siderable attention in recent years (e.g. Gao and Chen (2007,
2008); Mao and Jiang (2007); Mendez-Monroy and Benitez-
Perez (2009); Zhang et al. (2001); W.A. Zhang (2007); Gupta
and M.-Y. Chow (2010) and the references therein).

Li et al. derived sufficient conditions for stability based on lin-
ear matrix inequality (LMI) in Li et al. (2006), by choosing the
proper Lyapunov-Krasovskii functionals and using a descriptor
model transformation of the system. By considering all the
possibilities of delays, an augmented state space model of the
closed-loop system, which characterizes all the delay cases, was
obtained in Tang and Ding (2012).

A control scheme which is constituted by a control prediction
generator and a network delay compensator was proposed in
Xia et al. (2006). In Xiong and Lam (2006), J. L. Xiong and J.
Lam modeled the closed-loop system as new Markovian jump
linear system with an extended state space, by considering the
time varying state delay and the constant time delay in the mode
signal.

A sufficient condition for exponential mean-square stability
of the NCS was obtained in Li et al. (2011), by designing
an observer and an augmented model for NCSs, based on
Lyapunov stability theory with LMIs techniques.

The problem of the robust memoryless H∞ controllers for
uncertain NCSs with the effects of both networked-induced
delay and data dropout was considered in Yue et al. (2005).
A class of discrete-time networked nonlinear systems with
mixed random delays and packet dropouts was introduced in
Yang et al. (2011), and the filtering problem was investigated.
Sufficient conditions for the existence of an admissible filter
were established, which ensured the asymptotical stability as
well as a prescribed H∞ performance.

Most papers in the literature deal only with one of the two
major problems in NCS, packet dropout or transmission (in-
put/output) delays, while ignoring the other. The few papers
that address this issue concern mainly linear NCS (in addition
of (Yue et al. (2005); Yang et al. (2011)), we may refer the
reader to Sun and Jiang (2013), Xia et al. (2006) and Yu et al.
(2005)).

In this paper, first, we give a bounded state feedback controller
for the stabilization of a class of nonlinear NCS with state delay
and data packet dropout. Second, an observer is designed to
estimate the system state. Third, stabilization of this class of
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systems through an output feedback is achieved without aug-
menting the state space model which could increase computa-
tional complexity, especially for large systems. From an appro-
priate Lyapunov-Krasovskii function, sufficient conditions that
guarantee the convergence of the state variables and state esti-
mation errors to the origin are deduced and expressed in terms
of simple LMIs. Usability and simplicity are the advantages of
this method.

The paper is organized as follows: the problem formulation and
modeling are presented in section 2. Section 3 deals with state
feedback stabilization. In section 4, we introduce the observer
to estimate the system state. Section 5 is devoted to the dynamic
output feedback stabilization. A numerical example is given to
illustrate the effectiveness of the proposed design approach in
Section 6 and concluding remarks are given in section 7.

2. PROBLEM FORMULATION

The dynamic output feedback networked control system is
considered as shown in Fig.1.

Fig. 1. Structure of dynamic output feedback NCS

Consider a discrete nonlinear time-invariant delay system in the
following state space form:

xk+1 = Axk +Adxk−h +g(xk)uk, (1)

yk =Cxk, (2)

where xk ∈Rn, uk ∈Rm and yk ∈Rq denote the state, input and
output vectors respectively at time instant k. A, Ad and Cd are
constant matrices of appropriate dimensions. g(xk) is a nonlin-
ear map of appropriate dimension and h is a constant positive
number representing the delay. For simplicity of notations, we
replace g(xk) by gk in the rest of the paper.

The control of a networked control system means that commu-
nication will occur through the network from the sensor to the
controller and from the controller to the actuator. So delay may
occur in both communications; the controller signal (h1) and
the measurements output (h2). Suppose that h1 < h and h2 < h.

A buffer is added into the acceptance port of the actuator and
another one in the acceptance port of the observer so that the
output delay and the control delay are changed into a constant
delay. Without loss of generality we consider that the value of
this constant delay is equal to the state delay h.

The measurment data packet dropout from the sensor to the
controller is modelled as Bernoulli process λk with the prob-
ability distribution as follow:

Prob{λk = 1}= E{λk}= λ ,
Prob{λk = 0}= 1−E{λk}= 1−λ ,
Var{λk) = E{(λk −λ )2}= λ (1−λ ) = λ̄ , (3)

where λk = 1 means that the packet transmission will be
successful, λk = 0 means that the packet will be lost, the positive
constant 0 < λ < 1 is the probability of successful packet
transmission, and λ̄ is the variance of λk.

Since the system state is not measurable, we will use an ob-
server to estimate these state variables through the measured
system output. If the transmission of system output to the ob-
server through network is successful, then the data y(k) will
be used by the observer. Or, if the output data is lost then the
most recent delayed data y(k−h) will be used. Thus, the system
output can be rewritten

yc(k) = λy(k)+(1−λ )y(k−h). (4)

Similarly as for the output data, the controller signal can also
be delayed or lost through network, and then we have

u(k) = uk(xk,xk−h) = ηuc(k)+(1−η)ucd(k−h), (5)

uc(k) and ucd will be detailed later (in Theorem 1). So, the
control data transfer from the controller to the actuator is
also modelled as Bernoulli process ηk with the probability
distribution as follow:

Prob{ηk = 1}= E{ηk}= η ,

Prob{ηk = 0}= 1−E{ηk}= 1−η ,

Var{ηk}= E{(ηk −η)2}= η(1−η) = η̄ , (6)

where ηk = 1 when the packet is transferred successfully (in
real time), ηk = 0 when the packet is lost, the known positive
constant 0 < η < 1 is the probability of packet successful
transmission, and η̄ is the variance of ηk.

As a result, we obtain the following networked control system:

xk+1=Axk+Adxk−h+g(xk)ηuc(k)+g(xk)(1−η)ucd(k−h),(7)

yc(k) = λCxk +(1−λ )Cxk−h. (8)

This approach takes account of both of the main problems
in NCS, namely, data packet dropout and system delays. Our
approach considers that the data signal may arrive in real time,
or, if it is lost or delayed, the last signal that arrived will be
placed in the acceptance buffer in order to have a signal with
constant delay for all measurements and control signals.

3. STATE FEEDBACK STABILIZATION

Before proceeding, let us define the sets

Ω = {xk ∈ Rn : xT
k
(
AT PA−P+Q+AT P

× AdM−1AT
d PA

)
xk = 0, k = 0,1, . . .},

S1 = {xk ∈ Rn : gT
k PAxk = 0, k = 0,1, . . .},

S2 = {xk ∈ Rn : gT
k PAdxk−h = 0, k = h,h + 1, . . .},

H={xk ∈Rn : AT
d PAxk−(Q−AT

d PAd)xk−h = 0, k= h,h+1, . . .}.
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Theorem 1. Suppose that there exists an
n × n positive-definite matrix P and an
n×n nonnegative-definite matrix Q, such that

H1)
[

P−AT PA−Q AT PAd
AT

d PA M

]
≥ 0,

where
M = Q−AT

d PAd > 0.

If Ω∩S1∩S2∩H = {0}, then the nonlinear discrete-time delay
system (7) is globally asymptotically stabilized by the bounded
state feedback (5), where

uc(k) =−α1
[
I+gT

k Pgk
]−1 gT

k PAxk

1+∥gT
k PAxk∥

,

ucd(k−h) =−α2
[
I+gT

k Pgk
]−1 gT

k PAdxk−h

1+∥gT
k PAdxk−h∥

,

(for any 0< α1<1 and 0< α2<1).

Proof.

Set

γ1 =
α1 ∗η

1+∥gT
k PAxk∥

,

γ2 =
α2 ∗ (1−η)

1+∥gT
k PAdxk−h∥

,

then, the control bounded state feedback can also be written

uk = u(k) =−γ1K1xk − γ2K2xk−h. (9)

To show the stability of the closed-loop system (7)-(9), we
consider the following Lyapunov-Krasovskii function

Vk = xT
k Pxk +

k−1

∑
i=k−h

xT
i Qxi. (10)

Notice that, since P is positive definite and Q nonnegative
definite, Vk is then positive definite.

The difference of this Lyapunov function along the trajectory
of the closed-loop (7)-(9) is given by

∆Vk = xT
k+1Pxk+1 + xT

k Qxk − xT
k Pxk − xT

k−hQxk−h. (11)

Using (7) and (9) and after some matrix manipulations, we get

∆Vk = xT
k [A

T PA−P+Q]xk +2xT
k AT P[Ad − γ2gkK2]xk−h

− xk−hMxk−h −2γ1xT
k AT PgkK1xk + γ2

1 xT
k APgkK1xk

−2γ1xT
k−hAT

d PgkK1xk + γ1γ2xT
k−hAT

d PgkK1xk

−2γ2xT
k−hAT

d PgkK2xk−h + γ2
2 xT

k−hAdPgkK2xk−h −uT
k uk, (12)

with M = Q−AT
d PAd .

Adding and subtracting xT
k AT PÂM−1ÂT PAxk to and from the

inequality (12), we have

∆Vk = xT
k [A

T PA−P+Q+AT PÂM−1ÂT PA]xk−2γ1xT
k AT PgkK1xk

+ γ2
1 xT

k APgkK1xk −2γ1xT
k−hAT

d PgkK1xk + γ1γ2xT
k−hAT

d PgkK1xk

−2γ2xT
k−hAT

d PgkK2xk−h + γ2
2 xT

k−hAdPgkK2xk−h −uT
k uk

+2xT
k AT PÂxk−h − xk−hMxk−h − xT

k AT PÂM−1ÂT PAxk, (13)

where Â = Ad − γ2gkK2. Furthermore

∆Vk = xT
k [A

T PA−P+Q+AT PÂM−1ÂT PA]xk−2γ1xT
k AT PgkK1xk

+ γ2
1 xT

k APgkK1xk −2γ1xT
k−hAT

d PgkK1xk + γ1γ2xT
k−hAT

d PgkK1xk

−2γ2xT
k−hAT

d PgkK2xk−h + γ2
2 xT

k−hAdPgkK2xk−h −uT
k uk

− [M− 1
2 ÂT PAxk −M

1
2 xk−h]

T [M− 1
2 ÂT PAxk −M

1
2 xk−h]. (14)

Since 0 < η < 1, 0 < α1 < 1 and 0 < α2 < 1, we have

2γ1 > γ2
1 , 2γ1 > γ1γ2 and 2γ2 > γ2

2 .

Then, from equation (14), we obtain the following inequality

∆Vk ≤ xT
k [A

T PA−P+Q+AT PÂM−1ÂT PA]xk. (15)

A sufficient condition to have ∆Vk ≤ 0 is

AT PA−P+Q+AT PÂM−1ÂT PA ≤ 0. (16)

Let us compute Â.

Â = Ad − γ2gkK2,

Â = Ad − γ2gk(I +gT
k Pgk)

−1gT
k PAd ,

Â =
(
I − γ2gk(I +gT

k Pgk)
−1gT

k P
)

Ad ,

Â = P−1 (P−Pγ2gk(I +gT
k Pgk)

−1gT
k P

)
Ad .

Since P−Pγ2gk(I +gT
k Pgk)

−1gT
k P ≤ P we conclude that

AT PA−P+Q+AT PÂM−1ÂT PA

≤ AT PA−P+Q+AT PAdM−1AT
d PA. (17)

So, if H1) is verified, then
∆Vk =Vk+1 −Vk ≤ 0.

This prove that the closed loop (7)-(5) is Lyapunov stable. To
show the asymptotic stability of the origin, it suffices to show
that the largest subset of ∆Vk = 0 invariant under closed-loop
dynamics is {0}.
Setting ∆Vk = 0, it follows from (14) that

xT
k [A

TPA−P+Q+ÂTPAdM−1AT
dPÂ]xk =0, (18)

gT
k PAxk = 0, (19)

gT
k PAdxk−h = 0, (20)

M−1/2AT
d PÂxk−M1/2xk−h = 0, (21)

u(k) = 0. (22)
Using (22), equations (18), (19), (20) and (21) becomes

xT
k [A

TPA−P+Q+ATPAdM−1AT
dPA]xk =0, (23)

gT
k PAxk = 0, (24)

gT
k PAdxk−h = 0, (25)
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AT
d PAxk− (Q−AT

d PAd)xk−h = 0. (26)

Thus, we can conclude from the assumption
Ω∩S1∩S2∩H = {0}

that
∆V (xk) = 0,

for
k = 0,1, . . .

implies
xk ≡ 0.

The asymptotic stability is, then, proved because all the condi-
tions of LaSalle’s invariance principle are verified.

Therefore, the origin is an asymptotically stable equilibrium of
the closed-loop system (7)-(9) since V (xk)→ ∞ as ∥xk∥→ ∞.

4. OBSERVER DESIGN

In this section a simple and a useful observer design, without
state augmentation, for a nonlinear discrete-time networked
control delay system will be given.
Theorem 2. Suppose that the function gk is globally Lipschitz
on Rn×n with a Lipschitz constant β , i. e.

∥g(x1
k)−g(x2

k)∥ ≤ β∥x1
k − x2

k∥.

If there exists an n× n positive-definite matrix S, and an n× n
nonnegative-definite matrix F , such the following LMI holds

H1)

 Π1 Π2 −λCT LT S 0
∗ Π3 (1−λ)CTLTS (1−λ )CT LT S
∗ ∗ S 0
∗ ∗ ∗ S

≥ 0,

where

Π1 = S−AT SA−F + I +λAT SLC+λCT LT SA,

Π2 = AT SAd − (1−λ )AT SLC−λCTLTSAd ,

Π3=F−2AT
d SAd+2(1−λ)AT

d SLC+2(1−λ )CT LT SAd .

then, the following observer

ξk+1=Aξk+Adξk−h+g(ξk)u(k)
+L[yc(k)−λCξk − (1−λ )Cξk−h] (27)

is an asymptotic observer for the system (7)-(8).

Proof. Let

ek = xk −ξk, (28)

then,

ek+1 = (A−λLC)ek +(Ad − (1−λ )LC)ek−h

+[g(xk)−g(ξk)]u(k). (29)

Let Â = A−λLC, A = Ad − (1−λ )LC and ϕ = g(xk)−g(ξk).

The Lyapunov-Krasovskii function is given by

Wk = eT
k Sek +

k−1

∑
i=k−h

eT
i Fei, (30)

then,

∆Wk =Wk+1 −Wk,

= eT
k+1Sek+1+eT

k Fek−eT
k Sek−eT

k−hFek−h, (31)
or, equivalently

∆Wk =eT
k
[
ÂTSÂ−S+F

]
ek+eT

k−h[Ã
T SÃ−F ]ek−h

+u(k)T ϕ T Sϕu(k)+ eT
k ÂT Sϕu(k)+u(k)T ϕ T SÂek

+ eT
k ÂT SÃek−h +eT

k−hÃ
TSÂek

+eT
k−hÃ

T Sϕu(k)+u(k)T ϕSTÃek−h, (32)
then,

∆Wk = eT
k
[
ÂT SÂ−S+F

]
ek +u(k)T ϕ T Sϕu(k)

+2eT
k ÂTSϕu(k)−eT

k−hM1ek−h+2eT
k ÂTSÃek−h

+2u(k)T ϕ T SÃek−h, (33)

with M1 = F − ÃT SÃ.

Since 2zT Dy ≤ zT Dz+ yT Dy, we have

∆Wk ≤ eT
k
[
ÂT SÂ−S+F

]
ek +u(k)T ϕ T Sϕu(k)

+2eT
k ÂTSϕu(k)−eT

k−hM1ek−h+2eT
k ÂTSÃek−h

+u(k)T ϕ T Sϕu(k)+ eT
k−hÃT SÃek−h, (34)

then,

∆Wk ≤ eT
k
[
ÂT SÂ−S+F

]
ek

+u(k)T (ϕ T Sϕ +ϕ T Sϕ)u(k)+2eT
k ÂT Sϕu(k)

−eT
k−h(M1−ÃTSÃ)ek−h+2eT

k ÂTSÃek−h, (35)
or,

∆Wk ≤ eT
k
[
ÂT SÂ−S+F

]
ek +2u(k)T ϕ T Sϕu(k)

+2eT
k ÂTSϕu(k)−eT

k−hNek−h+2eT
k ÂTSÃek−h, (36)

with N = M1− ÃT SÃ = F −2ÃT SÃ.

Adding and subtracting eT
k ÂT SÃN−1ÃT SÂek, we have

∆Wk ≤ eT
k
[
ÂTSÂ−S+F+ÂTSÃN−1ÃT SÂ

]
ek

+2u(k)T ϕ T Sϕu(k)+2eT
k ÂT Sϕu(k)

− [N−1/2ÃT SÂek −N1/2ek−h]
T

× [N−1/2ÃT SÂek −N1/2ek−h]. (37)
This, in turn, implies

∆Wk ≤ eT
k
[
ÂTSÂ−S+F+ÂTSÃN−1ÃT SÂ

]
ek

+2u(k)T ϕ T Sϕu(k)+2eT
k ÂT Sϕu(k). (38)

Using the hypothesis H2), we have

∆Wk ≤−eT
k ek+2u(k)Tϕ TSϕu(k)+2eT

k ÂTSϕu(k), (39)
or,

∆Wk <−eT
k ek +2u(k)T [g(xk)−g(ξk)]

T S[g(xk)−g(ξk)]u(k)

+2eT
k ÂT S [g(xk)−g(ξk)]u(k. (40)

From the Lipschitz condition of g(.) and the boundness of the
state feedback u(k) (u(k)< α = α1 +α2), we deduce that

∆Wk <−∥ek∥2(1−2α2β 2∥S∥−2αβ∥(A−λLC)S∥), (41)
where β is the Lipschitz constant associated with g(.).

Obviously it is possible to choose α >0 sufficient small so that
for some θ , 0<θ <1

∆Wk =Wk+1 −Wk <−θeT
k Sek, (42)

then, we ensure the global asymptotic stability of the system
(29). We can conclude also that
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∥ek∥ ≤ σ , for k = 1,2,3, . . .and σ > 0. (43)

5. DYNAMIC OUTPUT FEEDBACK

Theorem 3. Under Assumptions H1) and Ω∩ S ∩H = {0}, a
discrete-time MIMO nonlinear system (7)-(8) can be globally
asymptotically stabilized by the dynamic compensator (27)
with the control input defined as in (5)

u(k) = uk(ξk,ξk−h), (44)
for a sufficient small α > 0 (α = α1 +α2). g(ξ ) is globally
Lipschitz and L is such that H2) is verified.

Proof. By theorem 1, for a given definite positive matrix B, the
following inequality

∥Aξk +Adξk−h +g(ξk)u(k)∥2
B ≤ ∥ξk∥2

B, k=1,2,3,. . . (45)
is satisfied.

Without loss of generality, let B = I in (45). We deduce from
(27), (29) and (45) that

∥ξk+1∥ ≤ ∥Aξk +Adξk−h +g(ξk)u(k)∥+∥LCdek−h∥
≤ |ξk∥+σ ≤ . . .

≤ |ξ0∥+σ . (46)
Inequalities (43) and (46) allow us to conclude that all trajecto-
ries of the closed loop system (27)-(29) are bounded.

Now, we consider that (ek,ξk) is a trajectory of system (27)-(29)
with the initial value (e0,ξ0).

Let mo denotes its ω-limit set. It is clear that mo is nonempty,
compact, and invariant because (ek,ξk) is bounded for k =
1,2,3, . . .. In addition, we conclude from theorem 2 that
limk→∞ e(k) = 0.

Then, any point in mo must be of the form (0,ξk). Let (0, ξ̄ ) ∈
mo and (0, ξ̄k) be the corresponding trajectory.This trajectory is
described by the equation

ξ̄k+1 = Aξ̄k +Ad ξ̄k−h +g(ξ̄k)uk. (47)
We already proved that this trajectory is globally asymptoti-
cally stable at ξ = 0. This means that the global asymptotic
behavior of the closed-loop system (27)-(29) at (e,ξ ) = (0,0)
is determined by the flow on the invariant manifold governed
by system (47) (Carr (1981)). Since this last system is globally
asymptotically stable, so is the closed-loop system (27)-(29)
Remark 1. Compared with other approaches in the literature:
1- The approach proposed in this paper has the advantage of
taking into account the two major problems in the NCS, namely
data packet dropout as well as system delays, from both the
sensor-to-controller and the controller-to-actuator.
2- We did not augment the state space to obtain an augmented
delay-free system. This will increase computational complex-
ity, especially for large systems .

6. NUMERICAL EXAMPLE

In this section, a numerical example is presented, to illustrate
how the methods developed so far can be used to solve the
problems of stabilization, observer design and dynamic output
feedback stabilization of nonlinear NCS.

Consider the system (7)-(8) with the following matrices

A =

[
0.73624 0.0452
0.0915 0.4462

]
, Ad =

[
0.2456 0.0151
0.0305 0.1487

]
,

g(xk) =

(
g1(xk)
g2(xk)

)
,

where

g1(xk)=
x1(k)

1+x2
1(k)+ x2

2(k)
, g2(xk)=

x2(k)
1+x2

1(k)+ x2
2(k)

,

and
C = [1 0] ,

with

x0 =

(
−3.5
2.8

)
, ξ0 =

(
2.5
−2.3

)
and h = 4.

The unforced dynamics of this system is not asymptotically
stable but only Lyapunov stable. So, the whole system need to
be asymptotically stabilized.

Resolution of the LMI H1) gives:

P =

[
614.0062 −48.2905
−48.2905 456.6416

]
,Q =

[
162.4833 −41.6186
−41.6186 212.3097

]
.

And resolution of H2) gives the following results:

S =

[
2.2751 −0.0006
−0.0006 2.2766

]
,F =

[
1.8578 −0.0200
−0.0200 1.6645

]
,

which allows to compute L :

L =

(
0.0248
0.0186

)
.

Applying the control law (44) with the observer (27), with
λ = 0.5 and η = 0.5, we ensure, as shown in Figures 2-5,
the decrease of the Lyapunov-Krasovskii functions (10) and
(30), and that (x,e) = (0,0) is a global asymptotically stable
equilibrium of (7)-(8)-(29) .

5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

K

V(x
(k)

)

Fig. 2. V (xk) with respect to sampling time k.

5 10 15 20 25 30 35 40 45 50

−5

0

5

10

K

W(
ξ(k

))

Fig. 3. W (ek) with respect to sampling time k.

Numerical example illustrate how the developed approach is
simple to implement and the practical applicability of the LMI
conditions H1) and H2) in the stabilization of a class of a NCS.
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Fig. 4. x1(k) and ξ1(k) with respect to sampling time k.
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Fig. 5. x2(k) and ξ2(k) with respect to sampling time k.

7. CONCLUSION

In this paper, we studied the stabilization of a class of nonlinear
NCS with state delay and packet dropout. A state feedback
that guarantees the convergence of the state variables to the
origin was presented. Then, we introduced an observer that
estimates the state variables of this class of systems. Finally,
a dynamic output feedback which stabilizes this class of non-
linear NCS was achieved. LMI sufficient conditions to charac-
terize the state feedback controller, the observer and dynamic
output feedback have been developed. Finally, we illustrated
the approach developed so far using a numerical example. Our
approach consider the two main problems in NCS, namely, data
dropout and system delays. The advantages of this method are
simplicity and usability.
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