
Alternative Stability Conditions
for Switched Discrete Time Linear Systems

Nikolaos Athanasopoulos⋆ Mircea Lazar

Department of Electrical Engineering, Eindhoven University of Technology,
The Netherlands, e-Mail: {n.athanasopoulos,m.lazar}@tue.nl

Abstract: Alternative necessary and sufficient conditions for absolute exponential stability are pre-
sented, for switched discrete–time linear systems. To reach these results, we exploit concepts from set
theory and in specific the forward reachability set mappings. The developed theorem can be utilized to
construct iterative numerical procedures for verifying stability. Two examples illustrate the effectiveness
of the proposed methodology.
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1. INTRODUCTION

Discrete–time linear switched systems [Liberzon and Morse,
1999, Shorten et al., 2007, Lin and Antsaklis, 2009, Sun, 2010]
are abundant in control applications. Consider for example
closed–loop linear systems under multiple linear state feedback
controllers that satisfy different performance criteria, which
is the typical case in process control, automotive industry,
and power systems. Furthermore, the corresponding stability
analysis problem is by far non–trivial, as demonstrated by
[Blondel and Tsitsiklis, 2000].

The dynamics of switched linear systems is set-valued, giving
rise to two different notions of stability, namely the corre-
sponding absolute (strong) and weak notion. From the control
theory perspective, absolute stability is stability under arbitrary
switching. On the other hand, when the switching is not arbi-
trary and the switching signal is considered to be a decision
variable, the weak stability property coincides with the stabiliz-
ability property. In this article, we focus on the absolute stability
property.

Most available analysis methods correspond to the absolute
stability property. They can be grouped in the ones that con-
sider the construction of a Lyapunov function [Brayton and
Tong, 1979, Molchanov and Pyatnitskii, 1986, Blanchini, 1994,
Polański, 2000, Yfoulis and Shorten, 2004, Lazar, 2010, Sun,
2010] and the approximation of the joint spectral radius and
extremal norms [Barabanov, 1988, Gurvits, 1995, Gripenberg,
1996, Barabanov, 2005, Theys, 2005, Jungers, 2009, Chang
and Blondel, 2011]. Also, it is worth to consider the survey
article [Margaliot, 2006]. A novel Lyapunov–type approach
to stability analysis is presented in the recent work [Lazar
et al., 2013], where non–conservatism of set–induced finite–
time Lyapunov functions was established for homogeneous dif-
ference equations. The weak stability property is also studied in
numerous works, see for example [Shorten et al., 2007, Section
5], [Lin and Antsaklis, 2009, Section III] and the references
therein. The recent contribution [Fiacchini and Jungers, 2013],
establishes necessary and sufficient stabilizability conditions,
⋆ Supported by the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant
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when the switching signal is a decision variable, using set–
induced Lyapunov–type functions. The weak instability prop-
erty can been studied utilizing Lyapunov theory and set theory,
by modifying appropriately the result in [Blanchini, 1994] and
[Blanchini and Miani, 2008]. For the continuous–time case,
marginal instability has been studied in [Polanski, 2000, Sun,
2008, Chitour et al., 2012].

In this article we exploit tools from set theory, using the forward
dynamics of the system and its operation on sets. Alternative
necessary and sufficient conditions for global absolute expo-
nential stability are established, in the form of set inclusions.
More specifically, we show that absolute stability is ensured if
and only if for an arbitrary convex and compact set that includes
the origin in its interior, there exists an integer k such that the
k-step forward reachability map lies in the interior of that set.
It is worth noticing that these theoretical results are derived
directly by exploiting the radial convexity of the sets involved
and the homogeneity of the dynamics, without having to resort
to a set-induced Lyapunov function framework. By exploiting
the relation between the stability of switched linear systems
and linear systems under polytopic uncertainties, three corol-
lary results are established, which offer a numerically tractable
method to verify absolute stability. The required operations
for verification of stability, when choosing proper C-polytopic
sets, involve matrix multiplications with vectors, computation
of convex hulls of a finite number of vertices and verification of
set inclusion between polytopic C-sets, which is equivalent to
verifying a set of linear algebraic relations. Consequently, from
a computational point of view, the results offer an alternative
to the well known algorithm established in [Blanchini, 1994],
which makes use of the preimage map intersected with a proper
C–set, leading to the construction of a contractive set and a
corresponding set–induced polyhedral Lyapunov function. In
specific, while the computations in [Blanchini, 1994] utilize
the half-space polytopic description, in this article the vertex
description is used. Finally, the proposed stability conditions
can be extended to dynamics described by homogeneous of
order one set–valued maps, in a similar fashion to the one
presented in [Lazar et al., 2013].

In Section 2, the necessary notation and definitions are given.
The main results follow in Section 3. Two numerical examples
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illustrating the established results are presented in Section 4,
while the conclusions are drawn in Section 5.

2. PRELIMINARIES

Let R, R+, and N denote the field of real numbers, the set of
non-negative reals and the set of nonnegative integers, respec-
tively. For every c ∈ R and Π ⊆ R we define Π≥c := {k ∈ Π :
k ≥ c}, and similarly Π≤c, RΠ := Π and NΠ := N ∩ Π. The
vector with all elements equal to one is denoted by 1n ∈ R

n,
while the zero vector is denoted by 0n ∈ R

n.

A compact set is a closed and bounded set. A C–set S ⊂ R
n is a

compact, convex set which contains the origin. A proper C–set
S ⊂ R

n is a C–set which contains the origin in its interior. A set
S ⊂ R

n is a radially convex set [Rubinov and Yagubov, 1986]
with respect to a vector y ∈ R

n if x ∈ S implies α(x− y) ∈ S,
for all α ∈ R[0,1]. For simplicity, radially convex sets with
respect to the zero vector are called radially convex sets. Notice
that radially convex sets can be unbounded, or they can have
the origin on their boundary. Given a set S ⊂ R

n and a real
matrix A ∈ R

n×n (A is a number for n = 1), the set AS is
defined by AS := {x ∈ R

n : (∃y ∈ S : x = Ay)}. An
arbitrary norm in R

n is denoted by ‖ · ‖. The unit ball of an
arbitrary norm is denoted by B := {x ∈ R

n : ‖x‖ ≤ 1}. The
convex hull of a set {Xi}i∈N[1,M]

, Xi ∈ R
n×m, will be denoted

by conv({Xi}i∈N[1,M]
). The boundary and the interior of a set

S ⊂ R
n are denoted by ∂S and interior(S) respectively.

A polytope is the bounded intersection of a finite number
of closed half–spaces. Proper C–polytopic sets are described
by vertex or half–space representations [Ziegler, 2007]. The
vertex representation of an arbitrary proper C–polytopic set S
corresponds to

S := conv({vi}i∈N[1,q]
), (1)

for some q ∈ N≥n+1. The matrix V := [v1, v2, . . . , vq] ∈
R

n×q has as columns the vertices of S and is of full row–rank.

A mapping, possibly set–valued, g(·) : Rn ⇉ R
m, is called

a positively homogeneous mapping of order one, or simply, a
homogeneous map, if for any pair (α, x) ∈ R+ × R

n, it holds
that g(αx) = αg(x).

Let A := {Ai}i∈N[1,N ]
be a set of matrices. Then, it holds that

A1 := A. Moreover, for any l ∈ N≥2,

Al :=

{

l
∏

i=1

Aji : (j1, . . . , jl) ∈ N
l
[1,N ]

}

(2)

denotes the set which contains all possible products of the
elements of the set A of length l.

We consider the discrete-time autonomous linear inclusions

xt+1 ∈ Axt, (3)

where xt ∈ R
n is the state vector and t ∈ N is the time variable.

Let Φ(·) : Rn ⇉ R
n, where

Φ(x) := Ax.

Given an integer k, the k-th iterated mapping Φk(·) : Rn ⇉

R
n, is defined as follows. For k = 0, it holds that Φ0(x) := x.

For k = 1, it holds that Φ1(x) := Φ(x). For k ∈ N≥2, it follows
that Φk(x) := Φ(Φk−1(x)).

Definition 1. The system (3) is called globally absolutely/
strongly exponentially stable (GAES) if and only if there exists

a pair (Γ, ε) ∈ R≥1 × R[0,1) such that for all x0 ∈ R
n it holds

that
‖xt‖ ≤ Γεt‖x0‖, ∀t ∈ N. (4)

Remark 1. In the recent work [Lazar et al., 2013, Corollary
V.3], it was shown that for dynamics described by single–
valued homogeneous maps, and thus, for switched linear sys-
tems with state–dependent switching as well, asymptotic sta-
bility is equivalent to exponential stability. Moreover, local
exponential stability implies global exponential stability. An
extension of the results in [Lazar et al., 2013] to dynamics
described by arbitrary switching between a finite number of
single–valued homogeneous maps is possible, i.e., by imposing
the corresponding conditions in the absolute sense. As such,
the subsequent results that concern global absolute exponential
stability are not restrictive, compared to the results concerning
global absolute asymptotic stability.

Given a set of matrices A ⊂ R
n×n, the set AS is defined by

AS := {x ∈ R
n : (∃(y,A) ∈ S ×A : x = Ay)}.

The set–valued map Φ(·) : Rn ⇉ R
n is defined by

Φ(S) := AS, (5)
for any S ⊂ R

n. Given an integer k, the set–valued k–th
iterated map is defined as follows. For k = 0, it holds that

Φ
0
(S) := S. For k = 1, it holds that Φ

1
(S) := Φ(S). For

k ∈ N≥2, it follows that Φ
k
(S) := Φ(Φ

k−1
(S)). The zero

singleton set {0n} is the unique fixed point of any positive k–th

iteration, i.e., Φ
k
({0n}) = {0n} for all k ∈ N≥1.

3. MAIN RESULTS

The following facts will be used to derive the main theoretical
results of the article.
Fact 1. For any pair (ρ, k) ∈ R[0,1) × N≥1, there exists a pair
(M,λ) ∈ R≥1 × R[ρ,1) such that

ρ⌊
i
k
⌋ ≤ Mλi, ∀i ∈ N. (6)

Proof Relation (6) is satisfied with M := ρ
−k+1

k , λ := ρ
1
k . �

Fact 2. For any proper C-set S ⊂ R
n, there exists a pair

(c1, c2) ∈ R>0 × R(0,c1] such that
c2B ⊆ S ⊆ c1B. (7)

Proof Relation (7) is satisfied with
c1 := max

x∈S
‖x‖, c2 := min

x∈∂S
‖x‖.�

Fact 3. Let S ⊂ R
n be a radially convex set. Then, the set

Φ
i
(S) is a radially convex set, for all i ∈ N.

Proof Suppose that Φ(S) is not radially convex. Then, there
exists a pair (y, α) ∈ Φ(S) × R[0,1] such that αy /∈ Φ(S). By
definition, there exists a vector x ∈ S such that y ∈ Φ(x). Then,
since α ∈ R[0,1] and S is radially convex,αx ∈ S. Since Φ(·) is
homogeneous, it holds that Φ(αx) = αΦ(x), or αy ∈ Φ(αx).
Thus, there exists a y∗ ∈ Φ(S) such that y∗ = αy, which
is a contradiction to the hypothesis that Φ(S) is not radially

convex. Next, suppose that Φ
l
(S) is a radially convex set. Then

Φ
l+1

(S) = Φ(Φ
l
(S)), is also radially convex. Consequently,

Φ
i
(S) is radially convex, for all i ∈ N.

The first main result, regarding the global absolute exponential
stability property is presented next.
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Theorem 1. The system (3) is globally absolutely exponentially
stable if and only if for every proper C–set S ⊂ R

n, there exists
a pair (k, ρ) ∈ N≥1 × R[0,1) such that

Φ
k
(S) ⊆ ρS. (8)

Proof Suppose that (8) holds. For any N ∈ N≥1, it holds that

Φ
Nk

(S) = Φ
(N−1)k

(Φ
k
(S)) ⊆ Φ

(N−1)k
(ρS)

= ρΦ
(N−1)k

(S) ⊆ . . . ⊆ ρNS.

For any i ∈ N, there exists a pair (N, j) ∈ N × N[0,k−1] such

that i := kN + j. Then, Φ
i
(S) = Φ

kN+j
(S) ⊆ ρNΦ

j
(S).

The set S is a bounded set and the map Φ(·) is bounded in any
bounded set in R

n. Thus, Φ(S) is bounded. Consequently, there
exists a number c3 ∈ R≥1 such that

Φ
j
(S) ⊆ c3S, ∀j ∈ N[1,k−1].

Thus, Φ
i
(S) ⊆ ρNc3S, and taking into account Fact 1, there

exists a pair (M,λ) ∈ R≥1 × R[ρ,1) such that

Φ
i
(S) ⊆ Mλic3S, ∀i ∈ N. (9)

From Fact 2, there exist positive numbers c1, c2 ∈ R+ such

that (7) holds. For any x0 ∈ ∂S, xi ∈ Φ
i
(S), and from (9), it

holds that xi ∈ Mλic3c1B, or, equivalently,‖xi‖ ≤ Mλic3c1,
∀i ∈ N. For any x0 ∈ ∂S, ‖x0‖ ≥ c2, or, 1 ≤ c−1

2 ‖x0‖. Thus,

‖xi‖ ≤ Mλic3c1c
−1
2 ‖x0‖, ∀i ∈ N, (10)

for any x0 ∈ ∂S. Since S is a proper C–set, for any x0 ∈ R
n,

there exists a pair (α, x⋆
0) ∈ R+ × ∂S such that x0 = αx⋆

0.
Then, for all i ∈ N and for each solution xi ∈ R

n, there exists
a vector x⋆

i ∈ Φi(x⋆
0) such that xi = αx⋆

i , because Φi(·) is
homogeneous of order one, for all i ∈ N. Thus, for any x ∈ S,

‖xi‖ = ‖αx⋆
i ‖ ≤ αMλc3c1c

−1
2 ‖x⋆

0‖

= Mλic3c1c
−1
2 ‖αx⋆

0‖ = Mλic3c1c
−1
2 ‖x0‖.

Thus, relation (4) is satisfied with Γ := Mc3c1c
−1
2 , ε := λ, and

the system (3) is GAES.

Conversely, suppose that the system (3) is GAES. Then, there
exists a pair (Γ, ε) ∈ R≥1 × R[0,1) such that ‖xi‖ ≤ Γεi‖x0‖,
for all x0 ∈ R

n, for all xi ∈ Φi(x0), for all i ∈ N. From Fact 2,
for any proper C–set S ⊂ R

n, there exists a positive number c1
such that ‖x0‖ ≤ c1, for any x0 ∈ S. Then, for all x0 ∈ S it
follows that

‖xi‖ ≤ Γεi‖x0‖ ≤ Γεic1.

If there exists a finite integer k ∈ N≥1, such that x0 ∈ S implies
xk ∈ ρS, for some ρ ∈ R(0,1), then relation (8) can be verified.
This is true if xk ∈ ρc2B, or, ‖xk‖ ≤ ρc2. Thus, it has to
be verified that there exists a k such that ‖xk‖ ≤ Γεkc1 ≤

ρc2, or 1 , k log ε ≤ log( ρc2Γc1
), or, k ≥

⌈

log
ρc2
Γc1

log ε

⌉

. Such a

finite integer always exists for the quintuple (ρ, c2,Γ, c1, ε) ∈
R(0,1) × R(0,c1] × R≥1 × R+ × R(0,1). Thus, for every proper
C–set S, there exists a pair (k, ρ) ∈ N≥1 × R(0,1) such that
relation (8) holds. �
Remark 2. It is worth observing that only the homogeneity
property and the boundedness of the mapping Φ(·) are used in
both the necessary and sufficient part of the proof of Theorem 1.
Consequently, the result is valid for the more general class of
homogeneous inclusions of order one. This remark comes in
accordance with the theoretical results reported in [Lazar et al.,
1 For the logarithm function log in this article, consider a basis b ∈ R≥1.

2013] which provided a converse theorem of existence of finite–
time sublinear Lyapunov functions for stable homogeneous
difference equations.

Proposition 1. Consider a proper C-set S ⊂ R
n and a pair

(k, λ) ∈ N≥1 × R(0,1) such that relation Φ
k
(S) ⊆ S holds.

Then, for any proper C-set M ⊂ R
n, there exists a pair

(k̂, ρ̂) ∈ N≥1 × R(0,1) such that Φ
k̂
(M) ⊆ ρ̂M.

Proof Since S, M are proper C-sets, by setting α1 :=
maxα{α ∈ R+ : αS ⊆ M} and α2 := maxα{α ∈ R+ :
αM ⊆ α1S}, relation

α2M ⊆ α1S ⊆ M (11)

holds. Then,

Φ
k
(α2M) ⊆ Φ

k
(α1S) = α1Φ

k
(S) ⊆ α1ρS ⊆ ρM.

Applying the set map Φ(·) kN times, for N ∈ N≥1, it follows

that Φ
Nk

(α2M) ⊆ ρNM, or, Φ
Nk

(M) ⊆ ρN

α2
M. There exists

a pair (k̂, ρ̂) ∈ N≥1 × R[0,1) such that Φ
k̂
(M) ⊆ ρ̂M holds if

k̂ = kN,
ρN

α2
≤ ρ̂,

or, equivalently, if

k̂ ≥

⌈

log ρ̂α2

log ρ

⌉

k.

Such an integer k̂ always exists for the quadruple (ρ̂, α2, ρ, k) ∈
R(0,1) × R(0,1] × R(0,1) × N≥1. The proof is complete. �

Proposition 1 establishes that it is sufficient to verify for a
single, arbitrary, proper C-set the set inclusion (8) in order to
verify global absolute exponential stability of (3).

On the other hand, it is well known, see e.g. [Lin and Antsak-
lis, 2009, Proposition 1], that the absolute asymptotic stability
property of the system (3) coincides with the absolute asymp-
totic stability property of the system

xt+1 ∈ conv({Ai}i∈N[1,N ]
)xt. (12)

Let the set–valued map Φc(·) : R
n ⇉ R

n, induced by the
system (12), be defined by Φc(S) := conv({Ai}i∈N[1,N ]

)S.

Fact 4. Given a proper C–set S ⊂ R
n and a set of matrices

A := {Ai}i∈N[1,N ]
, the following relation holds

conv({Ai}i∈N[1,N ]
)S = conv({AiS}i∈N[1,N ]

). (13)

Proof For any x ∈ conv({Ai}i∈N[1,N ]
)S, there exists a vector

y ∈ S and scalars λi ∈ R+, i ∈ N[1,N ], such that x =
∑N

i=1 Aiλiy and
∑N

i=1 λi = 1. Setting yi := Aiy, i ∈ N[1,N ],

it holds that yi ∈ AiS. Thus, since x =
∑N

i=1 λiyi, it
follows that x ∈ conv({AiS}i∈N[1,N ]

). Since x is arbitrary,
conv({Ai}i∈N[1,N ]

)S = conv({AiS}i∈N[1,N ]
). �

The next result follows immediately from Theorem 1 and
Proposition 1.

Corollary 1. Let S ⊂ R
n be an arbitrary, proper C-set. Then,

the system (3) is GAES if and only if there exists a pair (k, ρ) ∈
N≥1 × R[0,1) such that

Φ
k

c (S) ⊆ ρS. (14)

The value of Corollary 1 and Fact 4 lies in the fact that the

sets Φ
i

c(S), i ∈ N[1,k] are C-sets and can be easily computed,
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for example when S is a proper C-polytopic set. Moreover, it
is worth observing that all subsequent results that concern the
verification of absolute stability of system (3) apply also to the
equivalent linear system under polytopic uncertainties (12).

Remark 3. The main result in [Bauer et al., 1993] for absolute
stability, also reported in [Lin and Antsaklis, 2009, Lemma 1]
and generalized for any norm in [Lazar et al., 2013, Corollary
V.7], can be recovered directly from Corollary 1, by choosing
S := B∞, where B∞ is the unit ball of the infinity norm,
according to the following result.

Lemma 1. Let A ⊂ R
n be a finite set of matrices. Then,

‖Ak‖∞ := max
A∈Ak

‖A‖∞ = max
i∈N[1,q]

‖zi‖∞, (15)

where zi, i ∈ N[1,q], are the q vertices of the set conv(AkB∞).

Proof For any single matrix A ∈ R
n×n, it holds by definition

of the induced norm that

‖A‖∞ = max
i∈N[1,n]

n
∑

j=1

|[A]ij |. (16)

Consider the vectors ei ∈ R
n, i ∈ N[1,2n] which are all the

possible realizations of the vectors which have their elements
equal to +1 or −1. It is straightforward to see that B∞ =
conv({ei}i∈N[1,2n]

). From (16) it follows that

‖A‖∞ = max
i∈N[1,n]

max
l∈N[1,2n]

n
∑

j=1

[A]ij [el]j =

= max
l∈N[1,2n]

‖Ael‖∞ = max
l∈N[1,2n]

‖yl‖∞, (17)

where the vectors yl, l ∈ N[1,2n] constitute the (possibly
redundant) set of the vertices of the set AB∞. Let {Ai}i∈N

[1,Nk]

denote the elements of the set Ak . Consequently,

‖Ak‖∞ = max
A∈Ak

‖A‖∞ = max
i∈N

[1,Nk]

max
l∈N[1,2n]

‖yil‖∞, (18)

where yil , l ∈ N[1,2n] denote the vertices of each set AiB∞, for
all i ∈ N[1,Nk]. The result then follows directly. �

Two alternative necessary and sufficient conditions for global
absolute exponential stability, based on Corollary 1, and which
can lead to a more efficient numerical verification of GAES, are
stated below.

Corollary 2. Consider an arbitrary proper C-set S ⊂ R
n. Then,

the system (3) is GAES if and only if there exists a triplet
(j, i, ρ⋆) ∈ N≥1 × N[0,j−1] × R[0,1) such that

Φ
j

c(S) ⊆ ρ⋆Φ
i

c(S). (19)

Proof The necessity part follows directly from Corollary 1.
Conversely, suppose there exists a triplet (j, i, ρ⋆) ∈ N≥1 ×
N[0,j−1]×R[0,1) such that (19) holds. Since the set S is bounded
and the mapping Φ(·) is bounded for any bounded set in R

n, it
follows from (19) that there exists a positive number M ∈ R>0

such that Φ
j

c(S) ⊆ ρ⋆Φ
i

c(S) ⊆ ρ⋆MS. Then, there exists an

integer r ∈ N≥1 such that Φ
rj

c (S) ⊆ . . . ⊆ ρ⋆rMS and,
moreover, ρ⋆rM ∈ R[0,1). Thus, relation (14) of Corollary 1
holds with ρ := ρ⋆rM and k = rj and the system (3) is GAES.
�

Next, we focus on the particular family of proper C-polytopic
sets, in order to present a consequent stability verification
result.

Corollary 3. Let S ⊂ R
n be an arbitrary proper C-polytopic

set. The system (3) is GAES if and only if there exists a pair
(k, ρ) ∈ N≥1 × R[0,1) such that

Φ
k

c (S) ⊆ ρ conv(
k−1
⋃

i=0

Φ
i

c(S)). (20)

Proof The necessity part follows directly from Corollary 1.
Conversely, suppose that there exists a pair (k, ρ) ∈ N≥1 ×

R(0,1) such that (20) holds. Let S⋆ := conv(∪k−1
i=0 Φ

i

c(S)).
Then, it holds that

Φ
1

c(S
⋆) = Φ

1

c(conv(∪
k−1
i=0 Φ

i

c(S)))

= Φ
1

c(∪
k−1
i=0 Φ

i

c(S))

= conv(∪k
i=1Φ

i

c(S))

⊆ conv(∪k−1
i=0 Φ

i

c(S) ∪ ρS⋆)

= conv(conv(∪k−1
i=0 Φ

i

c(S)) ∪ ρS⋆)

= conv(S⋆ ∪ ρS⋆) = S⋆.

Thus, the set S⋆ is positively invariant with respect to the
system (12), and moreover, the set αS⋆ is positively invariant,
for any α ∈ R>0 [Blanchini and Miani, 2008]. Next, we show
that every vertex of the set S⋆ enters ρS⋆ in a finite number
of steps. To this end, for any vertex y ∈ S⋆, there exists an

integer i ∈ N[0,k−1] such that y ∈ Φ
i

c(S). Moreover, there
exists an integer j⋆ ∈ N[1,k−i] such that Φj

c(y) ∈ ρS⋆, for
all j ∈ N≥j⋆ , because ρS⋆ is positively invariant and relation
(20) holds. Next, we show that any initial condition that lies
in S⋆ is transferred to ρS⋆ in a finite number of steps. To this
end, since S⋆ is a proper C-polytopic set, for any x0 ∈ S⋆,
by Caratheodory’s theorem there exist scalars λi ∈ R>0,
i ∈ N[1,n+1] and vertices yi0, i ∈ N[1,n+1] such that x0 =
∑n+1

i=1 λiy
i
0, and moreover,

∑n+1
i=1 λi = 1. Then, Φk

c (x0) =

Φk
c (
∑n+1

i=1 λiy
i
0) =

∑n+1
i=1 λiΦ

k
c (y

i
0) =

∑n+1
i=1 λiy

i
k, and since

yik ∈ ρS⋆, for all i ∈ N[1,n+1], for all yik ∈ Φk
c (y

i
0) it holds that

Φk
c (x0) ⊆ ρS⋆. Consequently, it holds that Φ

k

c (S
⋆) ⊆ ρS⋆,

and by Corollary 1, the system (3) is GAES. �

Fig. 1. Example 1. Elements of the set sequence

{Φ
i
(S)}i∈N[0,52]

. The sets Φ
8

c(S),Φ
13

c (S), are shown in

blue, the sets S,Φ
52

c (S) are shown in yellow and the set

Φ
7

c(S) is shown in red color.
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Taking into account Corollary 1, Corollary 2 and Corollary 3,
an iterative procedure can be established to characterize a
switched linear system (3) with GAES. Since any proper C–
set can be used as an initial condition of the algorithm, a simple
proper C-polytopic set S (1) can be chosen. For example, for
high-dimensional systems, it is preferable to choose a set S
which belongs to the 1–norm polytopic family of sets, whose
number of vertices scales linearly with respect to the state space
dimensions (for more details see [Athanasopoulos and Lazar,
2013]). In this case, computing the set Φc(S) is equivalent to
computing the vertices {vi,j}(i,j)∈N[1,N ]×N[1,q]

, where vi,j :=

Aiv
j , for all (i, j) ∈ N[1,N ] × N[1,q]. Then,

Φc(S) := conv({vi,j}(i,j)∈N[1,N ]×N[1,q]
).

Removal of the redundant vertices in order to obtain a minimal
vertex representation of Φc(S) is possible by application of any
standard vertex elimination algorithm [Ziegler, 2007]. Since
Φc(S) is a C–polytopic set when S is a proper C–polytopic set,

it follows that all sets Φ
i

c(S), i ∈ N are C–polytopic sets. Then,
the related set inclusions are equivalent to verifying a set of
linear algebraic conditions, obtained by application of the dual
generalized Farkas’ Lemma.
Remark 4. Theorem 1, and consequently, Corollary 1, Corol-
lary 2 and Corollary 3, offer an alternative method to verify
GAES from the well known algorithm established in [Blan-
chini, 1994], which makes use of the preimage map intersected
with a proper C–set. It is worth noting that while the com-
putations in [Blanchini, 1994] utilize the half–space polytopic
description, in this article the vertex description is used.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Φ
52
(S)

S

Fig. 2. Example 1, the sets S (yellow) and Φ
52
(S) (light

yellow). Corollary 1 is satisfied for k = 52.

4. NUMERICAL EXAMPLES

Example 1. We consider a second order switched discrete–time
system (3) with A := {Ai}i∈N[1,4]

, where

A1 =

[

1.0 2.5
−0.3 0.9

]

, A2 =

[

1.0 0.2
−0.45 0.85

]

,

A3 =

[

0.78 0.3
−0.45 −0.85

]

, A4 =

[

−0.78 0.3
−0.15 −0.5

]

.

The proper C–set S was set to be the unit sublevel set of the
infinity norm, i.e.,

B∞ = {x ∈ R
2 : ‖x‖∞ ≤ 1}.

Utilizing Corollary 1, relation (14) is satisfied for k = 52. The
conditions (19) of Corollary 2 are satisfied for j = 13 and i =

8, while the condition (20) of Corollary 3 is satisfied for k = 7.
A graphical depiction of the aforementioned set inclusions is
in Figures 2,3 and 4 respectively, while the evolution of the set

iterations Φ
i
(S), i ∈ N[0,52] is shown in Figure 1.

It is worth comparing the computational requirements of the
method proposed in this article with the result mentioned in
Remark 3. For this example, the corresponding stability con-
dition ‖A‖∞ < 1, for all A ∈ Ai, would be verified for the
first time for i = 52. This would require the computation of the
infinity norm for all elements of the set A52. The cardinality of
this set is 452 ∼= 2× 1031. Furthermore, applying the algorithm
in [Blanchini, 1994], as mentioned in Remark 4, an invariant
set was computed in 12 iterations, verifying global Lyapunov
stability for the system.

−1.5 0 1.5
−2

0

2

[x]1

[x
] 2

Φ
13
(S)

Φ
8
(S)

Fig. 3. Example 1, the sets Φ
13
(S) (blue) and Φ

8
(S) (light

blue). Corollary 2 is satisfied with j = 13, i = 8.

−1.5 0 1.5
−2

0

2

[x]1

[x
] 2

Φ
7
(S)

conv(
⋃6

i=0 Φ
i

c(S))

Fig. 4. Example 1, the sets conv(
⋃6

i=0 Φ
i

c(S)) (red) and Φ
7
(S)

(light red). Corollary 3 is satisfied for k = 7.

Example 2. We consider the stability analysis problem for a
second order system (3), where the set of matrices A ⊂ R

2×2

consists of the two matrices

A1 =

[

1 2.5 · 10−4

−5 · 10−4 9.9975 · 10−1

]

,

A2 =

[

1 2.5 · 10−4

−2.2425 · 10−3 9.9975 · 10−1

]

.

The example is taken from [Blanchini and Miani, 2008, Ex-
ample 5.23], where it was used to illustrate the complexity of
the stability analysis problem for switched discrete-time linear
systems. Using the necessary and sufficient conditions from
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Corollary 3 and setting S := B∞, relation (20) is satisfied
for k = 5998 and ρ = 0.9998. In Figure 5 the set S⋆ :=

conv(
⋃k−1

i=1 Φ
i

c(S)) is depicted in blue color, the set Φ
k

c (S) is
depicted in red color, while the set S is shown in black.

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

[x]1

[x
] 2

S

Φ
k

c (S)

S⋆

Fig. 5. Example 2. The set S⋆ := conv(
⋃k−1

i=1 Φ
i

c(S)) (blue),

the set Φ
k

c (S) (red), the set S (black), and a solution of the
switched system (3) starting from the boundary of S⋆ (thin
black line).

5. CONCLUSIONS

An alternative set of necessary and sufficient conditions for
absolute exponential stability was established for switched lin-
ear systems, using tools from set theory. Three consequent
results that concern equivalent stability conditions were pro-
posed, which can be utilized to verify stability. The developed
methodology was illustrated on several examples, including a
benchmark from the literature.
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