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Abstract: One of the challenges of working with multi-agent systems is the limited energy of the
agents, especially when the agents are flying vehicles with limited batteries to save weight. The
main contribution of this paper is to formulate the energy-efficient coverage problem as an optimal
control problem. The optimal control problem will be related to Lloyd’s algorithm. The solution to the
optimal control problem is spatially distributed over Delaunay graphs and provides an energy-efficient
local controller to maximize the coverage. As a second contribution, by imposing constraints on the
parameters of the optimal control problem we guarantee that the agents maintain their energy during
the coverage task. As expected, weighting the speed of the agents against the coverage objective will
decrease energy consumption in the multi-agent system. Several examples demonstrate the performance
of the energy-efficient approach.

1. INTRODUCTION

In the last two decades, multi-agent robotic systems have at-
tracted the attention of researchers from different disciplines.
Advancements in the field of wireless networks, consistent
progress in production of high speed processors, and achieve-
ments in manufacturing miniature mobile robots with mani-
fold sensing capabilities have fueled this attraction. It is be-
lieved that groups of cooperative autonomous mobile robots
have the potential to take over challenging and often dangerous
tasks such as surveillance, search and rescue operations, plane-
tary exploration, and disposal of hazardous waste (see Murray
[2007] and the references therein). In this paper, we focus on the
problem of deploying a multi-agent system over an area in order
to achieve optimal coverage (see Cortés et al. [2004], Sayyaadi
and Moarref [2011], and the references therein).

One of the challenges in working with multi-agent systems is
their relatively small operating time. Mobile robots (agents)
are usually small and also use small actuators. Therefore, con-
sidering the weight and size of their frame, actuators, and
sensors, they cannot carry heavy batteries. For instance, the
flight time of a regular quadrotor (which is a popular vehicle
for making robotic swarms) ranges from a few minutes to
twenty minutes (Roberts et al. [2007], Hoffmann et al. [2007]).
Energy-aware control strategies can have a great impact on the
performance of multi-agent systems. However, energy-efficient
coverage algorithms have not received many research contri-
butions. In Mei et al. [2006], rectangle scan-lines are used as
coverage routes to propose a speed-management method which
maximizes the traveling distance of the robots under energy and
time constraints. In Kwok and Martı́nez [2007, 2010], general-
ized Voronoi partitions (namely multiplicatively-weighted and
power-weighted Voronoi diagrams) and the modified Lloyd’s
algorithm are used to solve a deployment problem in power-
constrained sensor networks. It is shown that this choice of
Voronoi regions can have an effect on restricting the speed of
the agents in order to save energy (depending on the initial
locations of the agents). Song et al. [2013] propose iterative

algorithms to reduce the movement step sizes in Lloyd’s algo-
rithm and reduce sensor traveling distances. Yan and Mostofi
[2012] propose an algorithm to co-optimize communication
and motion strategies in a network of mobile robots. In Ghaf-
farkhah and Mostofi [2012], mixed-integer linear programs are
used to design periodic trajectories and power policies for the
mobile agents that minimize the total energy (the summation of
motion and communication energy) consumption of the mobile
agents.

In contrast to the previous work in the literature, the main con-
tribution of this paper is to formulate the coverage problem as
an optimal control problem. The optimal control problem will
be related to Lloyd’s algorithm. The solution to the optimal con-
trol problem is spatially distributed over Delaunay graphs and
provides an energy-efficient local controller. LaSalle invariance
principle is used to prove that the energy-efficient controller
locally maximizes the coverage. As a second contribution, by
imposing constraints on the parameters of the optimal control
problem we guarantee that the agents maintain their energy
during the coverage task.

The outline of the paper is as follows. Preliminary information
and definitions on Voronoi partitions and coverage control
are presented in Section 2. Section 3 presents an optimal
control interpretation of the coverage problem and proposes a
decentralized optimal solution. Simulation results are presented
and discussed in Section 4. Concluding remarks are stated in
Section 5.

2. PRELIMINARIES

In this section, we present preliminary notions and definitions
on Voronoi partitioning and coverage problem. They are col-
lected from Cortés et al. [2004, 2005].

2.1 Voronoi partitions and Delaunay graphs

A partition of a set Q ⊂ Rd is a subdivision of Q into compo-
nents that overlap only on sets of measure zero (with respect

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6038



to Lebesgue measure). Given a set Q and n distinct points
P = {p1, ..., pn} ⊂ Qn, the Voronoi partition of Q with gen-
erators P, is defined by V (P) = {Vi(P)|i ∈ {1, ...,n}}, where
Vi(P) = {q ∈ Q|‖q− pi‖ ≤ ‖q− p j‖, ∀p j ∈ P}. The set of all
points closer to a point pi ∈ P than to any other point in P, is the
interior of a (not necessarily bounded) convex polytope Vi(P)
called the Voronoi cell of pi. The Voronoi partition in which
each generator is located at the center of mass (centroid) of its
own Voronoi cell is called a Centroidal Voronoi configuration.
Two Voronoi cells that share a (d − 1)-dimensional facet are
called Voronoi neighbors. The set of indices of the Voronoi
neighbors of pi is denoted by N(i). Clearly, j ∈N(i) if and only
if i ∈ N( j).

A graph G is defined by the pair G({p1, ..., pn},εG) where
{p1, ..., pn} represents the vertices of the graph and εG denotes
the set of edges in G. A proximity graph is a graph in which the
existence of an edge between two distinct vertices is a function
of their relative position. The notion of Voronoi partition is re-
lated to a special type of proximity graphs called the Delaunay
graph. In a Delaunay graph GD, two vertices are connected by
an edge if their corresponding Voronoi cells are neighbors.

Given a set Y , consider a mapping T which maps n distinct
points in Rd to n points in Y , i.e. T : (Rd)n→Y n. The mapping
T is said to be spatially distributed over a proximity graph G if
its jth component Tj can be computed only with the knowledge
of the vertex p j and its neighboring vertices.

2.2 Coverage control

In the coverage (or deployment) problem, the goal is to deploy
robotic agents over an area such that coverage is maximized.
Consider a convex area Q ⊂ Rd and n distinct points xi ∈ Q,
i ∈ {1, . . . ,n}, representing the location of the agents. Due to
noise and signal attenuation, coverage at a point q∈Q degrades
with the square of the distance between q and the agent that
provides coverage at q. Let a performance function be defined
as f (xi(q),q) = ‖xi(q)− q‖2 where i(q) : Q→ {1, . . . ,n} indi-
cates the agent that provides coverage at q. Furthermore, let the
bounded density function φ : Q→ R+ denote the priority (im-
portance) of coverage at a point q ∈ Q. A candidate Lyapunov
function V (x), where x = [xT

1 , ...,x
T
n ]

T , is defined as

V (x) =
∫

Q
f (xi(q),q)φ(q)dq,

and provides a measure of how poor the coverage is over
Q. Therefore, in order to maximize coverage one needs to
minimize V (x). Since f (xi(q),q) is non-decreasing, in order
to minimize V , it is intuitive to assign the task of providing
coverage at a point q∈Q to the agent that is closest to q. Hence,
using the notion of Voronoi partitions, V (x) is rewritten as

V (x) =
n

∑
i=1

∫
Vi

f (xi,q)φ(q)dq =
n

∑
i=1

∫
Vi

‖xi−q‖2
φ(q)dq, (1)

where Vi is the Voronoi cell corresponding to the ith agent.
Differentiating V with respect to x j, we get

∂V
∂x j

= 2
∫

V j

(x j−q)T
φ(q)dq

= 2
(∫

V j

φ(q)dq
)(

x j−
∫

V j
qφ(q)dq∫

V j
φ(q)dq

)T

. (2)

The first term on the right-hand-side of (2) represents the mass
of the jth Voronoi cell

MV j =
∫

V j

φ(q)dq,

and the second term on the right-hand-side of (2) represents the
center of mass of the jth Voronoi cell

CMV j =

∫
V j

qφ(q)dq∫
V j

φ(q)dq
=

∫
V j

qφ(q)dq

MV j

.

Equation (2) is now rewritten as
∂V
∂x j

= 2MV j(x j−CMV j)
T .

Therefore, any set of points x j = CMV j , j ∈ {1, . . . ,n}, (any
Centroidal Voronoi configuration) is a local minimum of V .
Since there is no explicit formula for finding Centroidal
Voronoi configurations, Lloyd’s iterative algorithm (see Du
et al. [1999]) is widely used to find Centroidal Voronoi con-
figurations. In Lloyd’s algorithm, at any given time, each agent
computes the center of mass of its own Voronoi cell and moves
towards it. Assuming agents with first order dynamics, the con-
trol input u j ∈ Rd , j ∈ {1, . . . ,n}, is defined as

ẋ j = u j, (3)
u j = k j

(
CMV j − x j

)
, (4)

where k j > 0. Control input (4) is a descent algorithm that
makes V a Lyapunov function because

V̇ =
n

∑
j=1

∂V
∂x j

ẋ j =−2
n

∑
j=1

k jMV j‖x j−CMV j‖
2 ≤ 0.

Using LaSalle invariance principle (see Khalil [1995]), it can
be proved that the multi-agent system (3) with control input (4)
converges to a Centroidal Voronoi configuration and provides
a locally optimal coverage over the region (see Cortés et al.
[2004] for more details).
Remark 1. The coverage problem described in this section only
optimizes the final position of the agents and does not consider
the control effort used in the process. Therefore, control in-
put (4) may produce inefficiently large inputs that waste energy.
In contrast, Section 3 formulates the coverage problem as an
optimal control problem. The optimal control problem will
be related to Lloyd’s algorithm. The solution to the optimal
control problem is spatially distributed over Delaunay graphs
and provides an energy-efficient local controller to maximize
the coverage. By weighting the speed of the agents against
the coverage objective we decrease energy consumption in the
multi-agent system.

3. MAIN RESULTS

According to Lloyd’s algorithm, the control strategy in which
each agent moves towards the centroid of its Voronoi cell
locally solves the coverage problem. Therefore, we use the
weighted distance between an agent and the centroid of its
corresponding Voronoi cell as a coverage criterion defined as

MVi‖xi−CMVi‖= (
∫

Vi

φ(q)dq)‖xi−
∫

Vi
qφ(q)dq∫

Vi
φ(q)dq

‖

= ‖
∫

Vi

(xi−q)φ(q)dq‖. (5)

The smaller the coverage criterion is, the better coverage is
achieved over Vi. By multiplying the distance ‖xi−CMVi‖ by
the mass MVi in the coverage criterion, we distinguish between
Voronoi cells based on the priority and importance of the areas
they are covering. In other words, if two agents are at the
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same distance from the centroid of their corresponding Voronoi
cells, the coverage criterion is larger for the agent that covers
areas with more priority. Using the coverage criterion (5),
we propose an optimal control interpretation of the coverage
control problem. We show that by decreasing the ratio of
the weight on the coverage criterion to the weight on energy
consumption, we can achieve a locally optimal coverage using
less energy.
Theorem 1. Consider the following optimal control problem
for a multi-agent system with bounded Voronoi cells Vi

inf
ui, i∈{1,...,n}

∫
∞

0

n

∑
i=1

(
si‖
∫

Vi

(xi−q)φ(q)dq‖2 + riui
T ui

)
dτ

subject to ẋi = ui, (6)

with si ≥ 0, i ∈ {1, ...,n}, and ri > 0, i ∈ {1, ...,n}. The optimal
solution that is spatially distributed over Delaunay graphs is

ui =−
√

si/ri

∫
Vi

(xi−q)φ(q)dq. (7)

Moreover, if siri = 1, ∀ i ∈ {1, ...,n}, the resulting value func-
tion is

V (x) =
n

∑
i=1

∫
Vi

‖xi−q‖2
φ(q)dq, (8)

and the multi-agent system converges to a Centroidal Voronoi
configuration.

Proof. The Hamilton-Jacobi-Bellman equation for (6) is

inf
ui, i∈{1,...,n}

H(L(x,u),
∂V
∂x

) = 0, (9)

where

L =
n

∑
i=1

(
si‖
∫

Vi

(xi−q)φ(q)dq‖2 + riui
T ui

)
, (10)

∂V
∂x

=

[
∂V
∂x1

, ...,
∂V
∂xn

]
,

and

H = L+
∂V
∂x

ẋ (11a)

=
n

∑
i=1

(
si‖
∫

Vi

(xi−q)φ(q)dq‖2 + riui
T ui +

∂V
∂xi

ui

)
. (11b)

Differentiating H with respect to ui, we get a necessary condi-
tion for optimality

∂H
∂ui

= 2riuT
i +

∂V
∂xi

= 0⇒ ∂V
∂xi

=−2riuT
i . (12)

Replacing (12) in (9) and (11b), we can write
n

∑
i=1

(
si‖
∫

Vi

(xi−q)φ(q)dq‖2− riui
T ui

)
= 0. (13)

Equation (13) has infinitely many solutions for ui. For the
following solution

ui =−
√

si/ri

∫
Vi

(xi−q)φ(q)dq, ∀ i ∈ {1, ...,n}, (14)

the ith agent needs to know only the relative positions of
its Voronoi neighbors N(i) (to be able to compute its own
Voronoi cell) and the density function over its own Voronoi cell.
Therefore, the control algorithm (14) is spatially distributed
over Delaunay graphs. Integrating (12) yields

V =−2r1

∫
uT

1 dx1 + f1(x j 6=1),

...

V =−2rn

∫
uT

n dxn + fn(x j 6=n).

Therefore,

V =−2
n

∑
i=1

ri

∫
uT

i dxi. (15)

Hence, the Value function corresponding to (14) is computed as

V = 2
n

∑
i=1

√
siri

∫ ∫
Vi

(xi−q)T
φ(q)dq dxi. (16)

Based on the conservation of mass law in Cortés et al. [2005]
(a generalization of Leibniz integral rule), we can write

∂

∂xi

∫
Vi

‖xi−q‖2
φ(q)dq =

∫
Vi

∂

∂xi
‖xi−q‖2

φ(q)dq

+
∫

∂Vi

‖xi− γ‖2
φ(γ)nT (γ)

∂γ

∂xi
dγ,

(17)

where ∂Vi is the boundary of Vi, γ : S×Qn → Q with S ⊂ R
is a parameterization of ∂Vi, and n(γ) denotes the unit outward
normal to ∂Vi. Solving for the first integral on the right hand
side, equation (17) can be simplified to∫

Vi

∂

∂xi
‖xi−q‖2

φ(q)dq =
∂

∂xi

∫
Vi

‖xi−q‖2
φ(q)dq

−
∫

∂Vi

‖xi− γ‖2
φ(γ)nT (γ)

∂γ

∂xi
dγ

⇔
∫

Vi

2(xi−q)T
φ(q)dq =

∂

∂xi

∫
Vi

‖xi−q‖2
φ(q)dq

−
∫

∂Vi

‖xi− γ‖2
φ(γ)nT (γ)

∂γ

∂xi
dγ.

(18)
Replacing (18) in (16), we get

V =
n

∑
i=1

√
siri

(∫
Vi

‖xi−q‖2
φ(q)dq

−
∫ (∫

∂Vi

‖xi− γ‖2
φ(γ)nT (γ)

∂γ

∂xi
dγ

)
dxi

)
=

n

∑
i=1

√
siri

(∫
Vi

‖xi−q‖2
φ(q)dq

−
∫ (

∑
j∈N(i)

∫
Vi∩V j

‖xi− γi j‖2
φ(γi j)nT (γi j)

∂γi j

∂xi
dγi j

)
dxi

)
.

(19)

Since ‖xi− γi j‖= ‖x j− γ ji‖,
∂γi j
∂xi

=
∂γ ji
∂x j

, and n(γi j) =−n(γ ji),
the following equation holds for any i, j ∈ {1, . . . ,n},∫

Vi∩V j

‖xi− γi j‖2
φ(γi j)nT (γi j)

∂γi j

∂xi
dγi j =

−
∫

V j∩Vi

‖x j− γ ji‖2
φ(γ ji)nT (γ ji)

∂γ ji

∂x j
dγ ji. (20)

Based on (20) and assuming siri = 1, ∀i ∈ {1, ...,n}, the term

−
n

∑
i=1

√
siri

∫ (
∑

j∈N(i)

∫
Vi∩V j

‖xi− γi j‖2
φ(γi j)nT (γi j)

∂γi j

∂xi
dγi j

)
dxi
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in (19) vanishes and V is simplified to

V =
n

∑
i=1

∫
Vi

‖xi−q‖2
φ(q)dq. (21)

The value function (21) is positive. Based on (9) and (11a), with
ui defined in (14), we have V̇ = −L. Therefore, equations (10)
and (14) yield

V̇ =−L =−2
n

∑
i=1

(
si‖
∫

Vi

(xi−q)φ(q)dq‖2
)
≤ 0. (22)

Hence, using LaSalle invariance principle (see Khalil [1995]),
we can conclude that the multi-agent system converges to the
largest invariant subset of a set S ⊂ Q with the property V̇ = 0.
But according to (22), V̇ = 0 only when∫

Vi

(xi−q)φ(q)dq=MVi(xi−CMVi)= 0, ∀ i∈{1, . . . ,n}, (23)

which is the set of Centroidal Voronoi configurations. In other
words, the set S is equal to the set of Centroidal Voronoi
configurations. According to (14) and (23), the control input is
equal to zero at Centroidal Voronoi configurations. Therefore,
the set S is an invariant set and based on LaSalle invariance
principle (see Khalil [1995]), the multi-agent system converges
to one of the Centroidal Voronoi configurations. 2

Remark 2. The first term in the running cost of the optimization
problem (6) is the coverage criterion for the ith agent defined
in (5). Note that the coverage criterion for the ith agent is equal
to zero if the agent is located at the centroid of its corresponding
Voronoi cell. The second term in the running cost represents the
speed of each agent.
Remark 3. The control input ui is derived according to (13) to
cancel the coverage criterion. Therefore, the coverage criterion
is the force that generates ui and pushes the ith agent towards the
centroid of its Voronoi cell (see (14)). The coverage criterion is
proportional to the distance between the agent and its centroid.
Hence, an agent moves faster (slower) when it is far from
(close to) its corresponding centroid. Amplifying this force,
by increasing si/ri, increases the agent’s speed towards the
centroid. On the other hand, decreasing the value of si/ri
reduces the speed of the agent. Since energy consumption is
directly related to speed, by choosing smaller (larger) values
for si/ri, the multi-agent system uses less (more) energy.

Similar to Kwok and Martı́nez [2007, 2010] we assume that
energy consumption increases with the square of the speed.
The following proposition imposes a constraint on si/ri, ∀ i ∈
{1, ...,n}, to guarantee that the multi-agent system performs the
coverage control task in a given time without consuming all its
energy.
Proposition 1. Suppose that the energy consumption rate for
the ith agent is Ėi = −‖ui‖2 and that each agent moves ac-
cording to control law (14). Also assume that each agent starts
with an initial energy Ei(0) and that the agents have at most T
seconds to move in a region Q and enhance the coverage. The
following rule for si/ri, i∈ {1, ...,n}, guarantees that the agents
do not run out of energy during the deployment

si

ri
<

Ei(0)
T (DQMQ)2 , (24)

where DQ is the diameter of the circumcircle of Q (i.e. the
circle which passes through all the vertices of Q), and MQ =∫

Q φ(q)dq is the mass of Q.

Proof. Inequality (24) yields

si

ri
T (DQMQ)

2 < Ei(0). (25)

Since ‖xi − q‖ < DQ and
∫

Vi
φ(q)dq = MVi < MQ, ∀ i ∈

{1, . . . ,n}, the following inequalities are valid

‖
∫

Vi

(xi−q)φ(q)dq‖ ≤
∫

Vi

‖xi−q‖φ(q)dq < DQMQ,

and ∫ T

0
‖
∫

Vi

(xi−q)φ(q)dq‖2dt < T (DQMQ)
2.

Therefore, inequality (25) yields
si

ri

∫ T

0
‖
∫

Vi

(xi−q)φ(q)dq‖2dt < Ei(0) = Ei(T )−
∫ T

0
Ėi(t)dt.

(26)
Since Ėi =−‖ui‖2, inequality (26) and control input (14) yield

si

ri

∫ T

0
‖
∫

Vi

(xi−q)φ(q)dq‖2dt < Ei(T )+

si

ri

∫ T

0
‖
∫

Vi

(xi−q)φ(q)dq‖2dt.

Therefore, Ei(T )> 0. In other words, the agents do not run out
of energy during the deployment. 2

In order to implement Proposition 1, the agents need to have an
estimate of the size of the area they are deployed on (namely,
DQ and MQ). Although this information is considered as global
data, in some applications, the agents can be provided with
them prior to deployment. Based on the results of Proposition 1,
the ratio si/ri is directly proportional to the available energy and
inversely proportional to the convergence time.

4. SIMULATION RESULTS

In this section, we use simulations to demonstrate the perfor-
mance of control law (14) for coverage control in three different
scenarios. During the deployment tasks, the multi-agent system
evolves inside a closed convex polygon Q ⊂ R2 with density
φ(q) at a point q ∈ Q. In our presentation, the vertices of Q are
at [(1,0),(5,0),(8,7),(6,8),(0,7)] and the density function is
assumed to be uniform (i.e. φ(q) = 1, ∀q ∈ Q). We consider
a multi-agent network that is comprised of seven autonomous
agents. The agents are modeled as dimensionless points and
their locations are determined by the first-order dynamical sys-
tem (3) and local controller (14). The agents are assumed to be
equipped with sensors that allow them to locate their immediate
Voronoi neighbors and acquire information about their own
Voronoi cell (here, the density function). Each agent relies only
on these local data to move towards its next target according
to (14).

Through the simulations, we study the effect of weighting the
speed of the agents against the coverage criterion on energy
consumption. Table 1 shows the value of si/ri, ∀i ∈ {1, ...,7},
and the convergence time in each of the three scenarios. Simula-
tion results are summarized in Fig. 1, where each row is devoted
to a different scenario.

The first column of Fig. 1 illustrates the evolution of the
multi-agent network in each simulation. The initial positions
of the agents are located inside the circle with center at (3,2)
and radius 1.5. In all the simulations, the agents start from
identical initial locations and then scatter over Q to maximize
the coverage. The red lines mark the trace of the agents during
the coverage control task. The final locations of the agents are

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6041



Table 1. Ratio of the weight on coverage criterion (si) and the weight on control input (ri) in different
simulations

si/ri, ∀i ∈ {1, ...,7} Convergence

Simulation Agent Number Time

Number 1 2 3 4 5 6 7 (s)

I 1 1 1 1 1 1 1 4.18

II 100 100 100 100 100 100 100 0.42

III 1 1 1 1 0.001 0.001 0.001 193.48
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Fig. 1. Coverage control over a region with uniform density. Rows 1 to 3 correspond to Simulation I to Simulation III, respectively
(cf. Table 1). The first column shows the final location of the agents as well as their trace. The second column shows the
consumed energy during the coverage control task for each agent. The third column shows the speed and the coverage
criterion, ‖

∫
Vi
(xi−q)φ(q)dq‖, for the 7th agent during each simulation. The value function is plotted on the fourth column.

shown with blue dots and their corresponding Voronoi regions
are plotted. As evident from the first column of Fig. 1, the multi-
agent system converges to a Centroidal Voronoi configuration,
which is in consistence with the results of Theorem 1.

In the first scenario, si/ri is equal to 1 for all the agents. In the
second scenario, si/ri is equal to 100 for each agent. Note that
in these two simulations, the agents take almost the same path
towards their destinations. However, as expected from (14),
the agents move and converge

√
100/

√
1 = 10 times faster in

Simulation II than in Simulation I. In Simulation III, agents
5, 6, and 7 are assumed to have very little energy. Therefore,
we decrease s j/r j, j ∈ {5,6,7}, in order to reduce their fuel
consumption. The price for saving energy is a longer conver-
gence time, as seen in Table 1. Here, some of the agents end
up at different locations than the previous cases (e.g. agent 1
goes to the location that was occupied by agent 4 in the pre-

vious simulations). However, the multi-agent system converges
to the same Centroidal Voronoi configuration (see Fig. 1(i)).
Note that in general, Centroidal Voronoi configurations are not
unique (Du et al. [1999]), and the system can converge to any
of them.

The second column of Fig. 1 shows the amount of en-
ergy consumed by each agent during the deployment task
(−
∫ T

0 Ėi(t)dt =
∫ T

0 ‖ui‖2dt). As expected, each agent expends
nearly 10 times more energy in Simulation II than in Simulation
I. In Simulation III, the speeds of agents 5, 6, and 7 are greatly
weighted against their coverage criteria. Hence, they expend
much less energy in this case (compare Fig. 1(j) and Fig. 1(b)).

The third column of Fig. 1 illustrates the speed and the cov-
erage criterion, ‖

∫
Vi
(xi − q)φ(q)dq‖, of the 7th agent in each

simulation. In Simulation I, the ratio s7/r7 = 1 and therefore
the two curves overlap. In Simulation II, the coverage criterion
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Fig. 2. Network configuration and value function after 1 second
of simulation. (a)-(c) show the location of the agents at
t = 1 (s) for Simulation I-III. (d) illustrates the value
function at t = 1 (s) for each of the simulations.

is weighted against the speed of the agent (i.e. s7/r7 = 100).
In other words, the agent’s priority is to decrease the coverage
criterion as fast as possible, at the cost of spending more energy.
This allows the speed of the 7th agent to get

√
s7/r7 = 10 times

greater than its coverage criterion (see Fig. 1(g)). In Simulation
III, s7/r7 = 0.001 which restricts the speed of the 7th agent and
allows the coverage criterion to be greater than the speed.

The change in the value function during each coverage control
task is plotted in the forth column of Fig. 1. Since the multi-
agent network converges to the same Centroidal Voronoi con-
figuration in all the cases, the value function decreases to the
same value 50.8 in all figures.

Fig. 2(a), Fig. 2(b), and Fig. 2(c) illustrate the configuration
of the network in the first, second, and third scenario after 1
second of simulation. Fig. 2(d) shows the value function for
each of the simulations at that time, i.e. V (x(1)). As expected,
in equal times, the networks in which the ratio of the weight
on coverage criterion to the weight on energy consumption is
larger, evolve faster and provide a better coverage. Of course,
the energy consumption in such networks is more than the
others.

5. CONCLUSIONS

In this paper, we presented an optimal control interpretation
of the coverage control problem. The solution to the optimal
control problem is spatially distributed over Delaunay graphs
and provides an energy-efficient local controller to maximize
the coverage. By imposing constraints on the parameters of
the optimal control problem we guaranteed that the agents
maintain their energy during the deployment task. It was shown
that weighting the control input against the coverage criterion
decreases energy consumption in the multi-agent system.
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