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Abstract: Transient temperature response measurements of semiconductor devices such as high-
powered Light-Emitting-Diodes (LEDs) can be used to detect possible thermal defects. The thermal
transient responses of these LEDs appear to be stiff which can be represented by a model with both
fast and slow dynamics. It is shown how direct continuous-time model estimation methods, such as the
Simplified Refined Instrumental Variable method for Continuous systems (SRIVC), can directly identify
with high accuracy a model with both small and large time-constants that can reproduce the thermal
effects of the LEDs while conventional discrete-time model identification fails in this stiff response
situation.
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1. INTRODUCTION

Systems with both fast and slow dynamics, represented by time-
constants that vary over several orders of magnitude are called
stiff systems. Identification of such systems requires special
care. Indeed, several challenges arise related to the fact that to
capture simultaneously both fast and slow dynamics, the system
is necessarily sampled very fast and this can result in numerical
accuracy issues for the parameter estimation. These factors
make in particular the problem very difficult for traditional
discrete-time (DT) model identification methods. In contrast
to DT model estimation, direct continuous-time (CT) model
identification algorithms work well with rapidly sampled data.
This is one of the many advantages of identifying CT models
directly from sampled data (see e.g. [Garnier and Wang, 2008,
Garnier and Young, 2014]). The last decade has witnessed a
resurgence of interest in direct CT modelling from sampled
data. This is evidenced, for example, by the recent addition
of direct CT model identification methods in the latest version
of the well known Matlab System Identification (SID) toolbox
[Ljung and Singh, 2012].

Direct CT model identification methods can deal very well
with stiff systems using data collected at a fast sampling rate.
This is the typical situation of thermal transient responses of
semiconductor devices, where temperature dynamics might be
characterized by a combination of extremely small time con-
stants due to several miniature thermal connection and larger
time constants due to large heat sinks. A good example and of
importance in modern lighting systems is the thermal response
of high-powered Light-Emitting-Diodes (LEDs). These semi-
conductors are used in applications as diverse as aviation and

automotive lighting, advertising, general lighting, and traffic
signals. LEDs exhibit a stiff behavior with both fast and slow
dynamics due to the presence of distinct physical phenomena
as illustrated in [Miller et al., 2013]. The paper highlights how
the optimal instrumental variable method for continuous-time
model identification (SRIVC) can directly identify with high
accuracy a model with small and large time-constants that can
reproduce the thermal effects of the LEDs while traditional DT
model identification methods fail in this stiff response situation.

The remainder of the paper is organized in the following way.
The model of the semiconductor device and the formulation of
the parameter estimation problem with the aim of highlighting
the difficulties that appear in this rapidly sampled situation are
presented in Section 2. An outline of the SRIVC method is
recalled in Section 3 where the crucial implementation aspects
are detailled . Section 4 presents the identification results of the
high-powered LED thermal step response. Finally, Section 5
gives concluding remarks.

2. MODEL OF THE SEMICONDUCTOR DEVICE, DATA
SET AND PROBLEM STATEMENT

In this paper, we consider the modelling of a high-powered
Cree XLamp XP-E LED based on experimental thermal step
response data [Miller et al., 2013].

2.1 Experimental Setup

The junction temperature of the device was measured indirectly
as recommended in the Electronic Industries Association spec-
ification EIA/JEDEC JESD51-1. In the specification, junction
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temperature is assumed to be proportional to forward voltage.
The scaling between junction temperature and forward voltage,
or K-factor, was determined by first driving the forward voltage
above the diode cut-in voltage using a measurement current low
enough so as not to induce significant self-heating. The K-factor
was then be found by adjusting the temperature of the device
and measuring the forward voltage. For these experiments, the
LED was driven by a Vektrex SpikeSafe current source, volt-
ages were measured with an Agilent 34411A digital multimeter,
and temperature was controlled by a prototype Vektrex thermal
platform controller.

A 600 mA step was applied to the LED and a total of about
20 seconds of the step response was measured at a very high
sampling frequency of 50 kHz. The measured steady-state
change in forward voltage was approximately 2.6 V. A plot of
the measured voltage after conversion to temperature for t ∈
[0, 1.76s] can be seen in Figure 1. The step response is plotted in
both a linear and logarithmic time scale to reveal the separation
between fast and slow thermal phenomena, illustrating the stiff
behavior of the system. The full details of the experiment are
given in Miller et al. [2013].
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Fig. 1. Step response used for identifying the LED dynamics
plotted in both a linear and logarithmic time scale.

2.2 Model of the high-powered LED

From the step response plotted in Figure 1, the LED can be
described by a Laplace transfer function of the form

G(s) =
n∑
i=1

Ki

(1 + τis)
=
∑n−1
i=0 bn−is

i∑n
i=0 an−is

i
, a0 = 1 (1)

where s is the Laplace variable. It is assumed that the poles are
distinct real and that the system is stable{

Im(τi) = 0
τi > 0

(2)

2.3 Fast sampled data situation

The developments of data acquisition equipment have open up
the possibility to sample very fast. This is required in the case of
stiff systems where a very small sampling period is needed in

order to capture the fast dynamics resulting in a fast sampled
data situation. Another consequence of the small sampling
period selection is the fact that the number of data available
is usually very large, typically several thousand of samples to
be processed by the estimation scheme. Unfortunately, in the
case of DT models, fast sampled data often gives rise to an ill-
conditioned parameter estimation problem. The small sampling
period leads to clustering of the poles of the equivalent zero-
order or first-order hold DT model around the point (1, 0)
in the complex plane, requiring high precision requirements
on the coefficients of the DT transfer function to accurately
describe both fast and slow dynamics. The high precision
requirement of the coefficients is the cause of the numerical
issues encountered in DT model identification techniques. And
this can deleteriously affect the quality of the estimated model,
as we see in the application section.

2.4 Problem statement

The identification problem can be stated as follows: identify
first the best model structure (find the order n) from the step
response data set; then estimate the parameters (ai and bi)
that characterize this chosen model structure and deduce
the time-constants of the stiff system described by (1) from
N fast sampled step measurements of the input and output
ZN = {u(tk); y(tk)}Nk=1.

The problem of identifying the CT models from sampled data
can be solved in different ways. One possible way is known
as the indirect approach. It estimates the CT model parameters
by first fitting a DT model to the data and then converting this
model to a CT model. Another approach, known as the direct
method, estimate the CT model parameters from the discrete-
time data without an intermediate step. The input/output time-
derivatives can be estimated using low-pass filtering. A sum-
mary of one of the most efficient methods is outlined next.

3. OUTLINE OF THE REFINED IV METHOD FOR CT
MODELS

The identification problem can be solved via nonlinear opti-
mization techniques. To avoid the numerical difficulties (such
as local minima) related to the use of such techniques, a differ-
ent strategy based on the instrumental variable (IV) approach
is selected. IV methods of parameter estimation have a long
history in the statistical and control engineering literature (see
e.g. [Söderström and Stoica, 1983, Young, 2011]). Interest in
IV methods has been growing in recent years. Some very recent
papers include [Wang et al., 2009, Laurain et al., 2010, 2011,
Gilson et al., 2011, Han and de Callafon, 2011] and [Young,
2011, Söderström, 2012]. In this section we first recall the
main conditions for obtaining optimal (consistent and minimum
variance) IV parameter estimates. The SRIVC algorithm which
has proven to be one of the most efficient methods for day-to-
day use is reviewed in Sub-section 3.3.

3.1 Data-generating system

It is assumed that the input u(t) and the noise-free output x(t)
are related by the following transfer function (TF) form

x(t) = Go(p)u(t) =
Bo(p)
Ao(p)

u(t) (3)
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with
Bo(p) =bo0p

nb + bo1p
nb−1 + · · ·+ bonb , (3a)

Ao(p) =pna + ao1p
na−1 + · · ·+ aona , na ≥ nb (3b)

where p is the differential operator, i.e., pix(t) = dix(t)
dti ;Bo(p)

and Ao(p) are assumed to be coprime; and the system is
asymptotically stable.

It is further assumed that the deterministic output x(t) is cor-
rupted by an additive, coloured measurement noise ξ(t), so that
the complete equation for the data-generating system, denoted
by S, can be written in the form,

S : y(t) = Go(p)u(t) +Ho(p)eo(t) (4)
whereHo(p) is assumed to be stable and stably invertible, while
eo(t) is a zero-mean, stationary CT white noise process.

Of course, in most practical situations, the input and output sig-
nals u(t) and y(t) are sampled at a constant sampling interval
Ts. The sampled signals are denoted by u(tk) and y(tk) and the
output observation equation then takes the form,

y(tk) = x(tk) + v(tk) k = 1, · · · , N (5)
where x(tk) is the sampled value of the unobserved, noise-free
output x(t) and v(tk) is a zero-mean stationary colored DT
measurement noise.

3.2 Optimal IV estimators

Consider the general class of IV estimators

ρ̂ = solρ
1
N

N∑
k=1

ζf (tk)
[
y
(na)
f (tk)−ϕTf (tk)ρ

]
= 0 (6)

where the parameter vector ρ includes the dynamic plant model
parameters stacked columnwise as,

ρ = [a1 · · · ana b0 · · · bnb ]
T ∈ Rna+nb+1 (7)

and ζf (tk) ∈ Rna+nb+1 is the filtered version of the instru-
mental vector ζ(tk)

ζf (tk) = F (p)ζ(tk) (8)

while the na-th order time-derivative of the output y(na)(tk)
and regression vector ϕ(tk) are also prefiltered by the same
filter F (p) with

ϕT (tk) =
[
−y(na−1)(tk) · · · − y(tk) u(nb)(tk) · · ·u(tk)

]
(9)

It has been shown that a minimum variance estimator is
achieved under the following conditions [Young and Jakeman,
1980] (see also Söderström and Stoica [1983]):ζ

opt
f (tk) = F opt(p)ϕ̊(tk)

F opt(p) =
1

Ho(p)Ao(p)
(10)

where ϕ̊(tk) is the noise-free version of the regression vector
ϕ(tk) defined as

ϕ̊(tk) =
[
−x(na−1)(tk) · · · − x(tk) u(nb)(tk) · · · u(tk)

]T
(11)

It can be noted that both the optimal prefilter and instruments in
(10) require the knowledge of the true plant and noise models.
This is a usual dilemma encountered in the problem of accuracy
optimization. One particularly successful implementation of
the optimal IV is known as the refined Instrumental Variable
method where an adaptive procedure for the estimation of

the system model parameters is used. This refined IV method
uses an iterative procedure, in which, at each iteration, an
auxiliary model is used to generate the instrumental variables
and prefilter based on the parameters obtained at the previous
iteration.

Refined IV method for Continuous-time systems (RIVC) was
first developed in 1980 by Young and Jakeman [1980] and
has been used successfully for many years, demonstrating the
advantages that this stochastic formulation of the CT estimation
problem provides in practical applications (see, e.g., some
recent such examples in Garnier et al. [2007, 2008], Garnier
and Young [2014]).

3.3 SRIVC Method for COE Models

When the measurement noise in (5) is assumed to be white, the
model set to be estimated takes the form of a continuous-time
output error (COE) model structure

Mcoe

{
x(t) = G(p,ρ)u(t)
y(tk) = x(tk) + e(tk)

(12)

where e(tk) is a zero-mean white DT measurement noise while
the model is formulated in continuous-time terms

G : G(p,ρ) =
B(p,ρ)
A(p,ρ)

=
b0p

nb + b1p
nb−1 + · · ·+ bnb

pna + a1pna−1 · · ·+ ana
(13)

and ρ is defined in (7). In this COE model setting, the optimal
filter defined in (10) reduces to

F opt(p) =
1

Ao(p)
(14)

The SRIVC parameter estimates are obtained, at iteration j,
from:

ρ̂j =

[
N∑
k=1

ζf (tk, ρ̂
j−1)ϕTf (tk, ρ̂

j−1)

]−1

[
N∑
k=1

ζf (tk, ρ̂
j−1)y(na)

f (tk, ρ̂
j−1)

]
(15)

with 

ζf (tk, ρ̂
j−1) = F (p, ρ̂j−1)ˆ̊ϕ(tk, ρ̂

j−1)
ϕTf (tk, ρ̂

j−1) = F (p, ρ̂j−1)ϕT (tk)
y
(na)
f (tk, ρ̂

j−1) = F (p, ρ̂j−1)y(na)(tk)

F (p, ρ̂j−1) =
1

A(p, ρ̂j−1)

(16)

and where ϕT (tk) is defined in (9) and ˆ̊ϕ(tk, ρ̂
j−1) is an esti-

mate of the noise-free regression vector defined in (11) where
the unobserved noise-free output is replaced by an estimate
obtained from an auxiliary model based on the parameters esti-
mated at the previous iteration

x̂(tk, ρ̂
j−1) = G(p, ρ̂j−1)u(tk) (17)

Note that the SRIVC method will deliver optimal parameter
estimates when the additive noise is purely white in form. If the
noise happens to be coloured, the inherent instrumental vari-
able aspects of the algorithm ensure that the SRIVC parameter
estimates are asymptotically unbiased. However, the SRIVC es-
timates are not, in this situation, statistically efficient (minimum
variance) because the prefilters are not designed to account for
the colour in the noise process and a more sophisticated refined
IV-based method is required [Young et al., 2008].
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3.4 Implementation issues

Initialisation of the iterative search. The initial selection of
A(p, ρ̂0) does not have to be particularly accurate provided the
prefilter F (p, ρ̂0) based on it does not seriously attenuate any
signals within the passband of the system being modelled. It
can be based on various approaches

(1) The selection of the single breakpoint frequency parame-
ter λ of the filter,

F (p) =
λna

(p+ λ)na
(18)

which is chosen so that it is equal to, or larger than, the
bandwidth of the system to be identified.

(2) The incorporation of an algorithm for DT model estima-
tion, such as the DT version of SRIVC using a coarser
sampling interval if necessary, from which the CT model
polynomial can be inferred.

(3) The specification of an a priori polynomial A(p, ρ̂0)
based on prior studies.

Of these, 2) is more automatic but not so robust because of the
problems that can arise in estimating a DT model parameter
from rapidly sampled data and so is not appropriate here. While
1) is simple and, based on practical experience, is the best
method for rapidly sampled data and therefore will be used in
the considered application.

Digital implementation of the continuous-time filtering opera-
tions. It is worth noticing that the computation of the SRIVC
parameter estimates at iteration j given in (15) requires the
value of prefiltered signals at the time-instants tk, k = 1, . . . , N
in both regression and instrument vectors, expressed below
under their developed forms

ϕTf (tk, ρ̂
j−1) = [−y(na−1)

f (tk, ρ̂
j−1) · · · − yf (tk, ρ̂

j−1)

u
(nb)
f (tk, ρ̂

j−1) · · · uf (tk, ρ̂
j−1)] (19)

ζTf (tk, ρ̂
j−1) = [−x̂(na−1)

f (tk, ρ̂
j−1) · · · − x̂f (tk, ρ̂

j−1)

u
(nb)
f (tk, ρ̂

j−1) · · · uf (tk, ρ̂
j−1)] (20)

The digital implementation issues of the CT filtering operations
are well-known in CT model identification but they should be
treated in an appropriate way since errors generated by the
digital implementation can have severe influence on the qual-
ity of the estimated model. When the filter input inter-sample
behaviour is known (e.g. piecewise constant or piecewise li-
near) or takes a particular form (e.g. steady-state response to a
sinusoid or sum of sinusoid), an exact solution to the filtering
operation at specified time-instants can be obtained by using
an appropriate digital simulation method. The digital imple-
mentation method has to be selected carefully according to the
filter input intersample behaviour. However, if the latter is not
known, the filtered output obtained via digital simulation will
then only be an approximation of the closed form solution.

Let ξ(t) be an unknown continuous-time signal whose band-
width is below the Nyquist frequency, and Fc(s) is a given
continuous-time filter. The problem is, given sampled data
ξ(tk) where tk = kTs, compute

ξf (tk) = [Fc ∗ ξ](tk) (21)
where the notation [Fc ∗ ξ] is used to denote the convolution.

One solution is to use Shannon reconstruction to compute ξ(t)
from ξ(tk). The signal [Fc ∗ ξ](tk) can then be obtained via

filtering and sampling. Practically, the Shannon reconstruction
can be approximated by some higher order hold circuits. As-
sume that the CT filter Fc(s) is given under state space form:{

ẋ(t) = Acx(t) +Bcu(t)
y(t) = Ccx(t)

(22)

The simplest case is when the filter input is piecewise constant
corresponding to a zero-order hold (ZOH). The equivalent ZOH
DT state-space model takes the form{

x(tk+1) = Adx(tk) +Bdu(tk)
y(tk) = Cdx(tk)

(23)

where
Ad = eAcTs , Bd = A−1

c (Ad − I)Bc, Cd = Cc (24)
When the input u(t) is linear during each sampling interval, as
it is when driven by a first-order hold, that is

u(t) = u(tk) + (t− tk)
u(tk+1)− u(tk)

tk+1 − tk
for tk ≤ t < tk+1

(25)
we can also obtain an exact relationship. The simplest way to
achieve this link is to reason as follows: if u(t) is piecewise li-
near, then its time-derivative u̇(t) is piecewise constant. There-
fore, it is easy to form a state representation for the integrated
filter

1
s
Fc(s) (26)

and run it with u̇(t). The equivalent DT state-space model of
the CT filter Fc(s) when the input is piecewise linear is thenx(tk+1) = Adx(tk) +Bd

u(tk+1)− u(tk)
tk+1 − tk

y(tk) = Cdx(tk)
(27)

If the true filter input is neither piecewise constant nor piece-
wise linear, the expressions are not exactly valid. The dis-
cretization techniques described above are implemented in the
Matlab lsim routine. The latter is utilized to implement the CT
filtering operations in the SRIVC algorithm, available in the
CONTSID 1 toolbox (Garnier et al. [2008]).

4. APPLICATION TO THE LED STEP RESPONSE

The following CT model structure is assumedx(t) =
n∑
i=1

Ki

1 + τip
u(t) =

∑n−1
i=0 bn−ip

i∑n
i=0 an−ip

i
, a0 = 1

y(tk) = x(tk) + e(tk)
Different model orders for n between 4 and 7 were tested.
Each model structure was estimated and the coefficient of
determination R2

T was computed as

R2
T = 1− σ2

ê

σ2
y

(28)

σ2
ê is the variance of the estimated noise ê(tk) and σ2

y is the
variance of the measured output y(tk). In other words, R2

T
measures how much the noisy output variance is explained by
the estimated model. However, it is well known that this mea-
sure, on its own, is not sufficient to avoid over-parametrisation
and identify a parsimonious model, so that other model order
identification statistics are required. In this regard, the Young
Information Coefficient (YIC) (see e.g. [Young, 2011]) is useful
because it exploits the covariance matrix estimates provided by
1 see www.cran.uhp-nancy.fr/contsid/
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the SRIVC method. A large negative value for YIC provides
an indication of the best parsimonious models. The R2

T and
YIC statistics for n between 4 and 7 are given in Table 1.
From this table, it is difficult to make a clear cut choice since
the fit is extremely good for the 4 models (R2

T > 0.99, i.e.,
99% of the output variance is explained by the models) with
relatively large negative YIC values. However, the selection
becomes easier when we compare the model responses plotted
in a logarithmic (base 10) scale (see Figure 2). From this figure,
it is clear that both 4th and 5th order models do not identify so
well the smallest time-constants of the system. Both 6th and 7th
order model responses are almost identical and so we select for
parsimonious reason the 6th order model in the following.

model order n YIC R2
T

4 –16.00 0.9984

5 –14.13 0.9997

6 –12.53 0.9997

7 –10.35 0.9997

Table 1. SRIVC model order determination.
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Fig. 2. Simulated SRIVC model step responses together with
the measured thermal step response of the LED.

The 6th-order transfer function model takes the formx(t) =
b1p

5 + b2p
4 + b3p

3 + b4p
2 + b5p+ b6

p6 + a1p5 + a2p4 + a3p3 + a4p2 + a5p+ a6
u(t)

y(tk) = x(tk) + e(tk)
The measured step response can also be written

y(tk) =
6∑
i=1

Ri

(
1− e−

tk
τi

)
+ e(tk) (29)

where τi are the time-constants of the response, and Ri the
contribution of each-time constant to the total response. The
pairs (τi;Ri) form the so-called time-constant spectrum.

The rapidly sampled step response data from 0 to 1.76 seconds
(98000 data points) (see Figure 1) was used to compute directly
a CT model by using the srivc routine from the CONTSID
toolbox. The latter was initiated by choosing the single break-
point frequency parameter as λ = 30000 rad/s (see (18)).
The sampled step response data was also used to estimate a
CT COE model by using the coe routine in the CONTSID

toolbox (which implements a Levenberg-Marquardt algorithm
via sensitivity functions). The recent tfest routine (see [Ljung
and Singh, 2012]) for direct CT model identification available
in the latest release (version 8.3 coming out with Matlab 2013b)
of the System Identification toolbox was also tested to model
the LED. Both coe and tfest routines were initialized in the
same way than the srivc routine (the initialization method was
specified as ’svf’ with the same the cut-off frequency, see the
help of tfestoptions). Finally, the prediction error estimate of
a DT output error (DT OE) model was also computed by using
the oe routine from the latest version 8.3 of the SID toolbox. In
contrast to the IV-based SRIVC method, these algorithms rely
on a numerical search procedure with a risk of getting stuck in
local minima (see e.g. Ljung [2003]).
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The measured thermal step response of the LED together with
the simulated CT and DT model responses in a logarithmic
time scale are plotted in Figure 5.
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It can be noticed that the SRIVC model output is the only one
that can reproduce the thermal effects of the LED with high
accuracy while the nonlinear optimization-based methods (for
both CT and DT models) all fail to capture the LED dynamics.
Indeed, the CT TFEST and COE methods converge clearly to
a local minimum, while the DT OE model fails to capture the
fast time-constant in this rapid sampling situation.
The time-constant spectrum obtained from the estimated
SRIVC model is plotted in Figure 3. For comparison purpose,
the spectrum obtained by the realization-based procedure pre-
sented in Miller et al. [2013] is displayed in Figure 4. The model
in that latter case is a 5-th order model only but it is interesting
to note that the range of the time-constants is similar and that
both approaches can identify the very small time-constant.
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Fig. 5. Simulated SRIVC and OE model step responses together
with the measured thermal step response of the LED.

Comments

• The authors acknowledge that other researchers have been
able to obtain excellent fits by using other dedicated
but rather more sophisticated estimation approaches (see
Miller et al. [2013]). We are only able to state that the
SRIVC method appears to give directly a very good fit
with this rapidly sampled data.
• The poles of the model G(p,ρ) in (13) were not restricted

to be real-valued as done in [Miller et al., 2013]. However,
the SRIVC method does give real-valued poles due to the
excellent fitting of the step response data.

5. CONCLUSIONS

The iterative instrumental variable-based SRIVC method for
direct continuous-time model identification was applied to the
thermal stiff response of a high-powered LED. It is shown
that models with six time constants can reproduce the thermal
effects of the LED with high accuracy while the usual discrete-
time and continuous-time model estimation schemes based on
nonlinear optimization fail to deliver good models for this
rapidly sampling situation imposed by the stiff behavior of the
system. These results highlight the advantage of the iterative IV-
based method which constitutes a quick and reliable approach
to continuous-time model identification for day-to-day use.
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