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Abstract: This paper considers the question of landing an Unmanned Aerial Vehicles (UAV)
using a single monocular camera as the primary exteroceptive sensing modality. The proposed
control law is based on tracking a single point feature, representing the desired landing point
on a ground plane, along with optical flow computed over the full image. The bearing of the
desired landing point is used as a driving term to force convergence, while the optical flow is
used to provide a damping force that guarantees both obstacle avoidance as well as damping the
convergence of the vehicle to the ground plane ensuring a soft touchdown. A detailed analysis
of the system closed-loop dynamics is undertaken and the response of the system is verified in
simulation.
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1. INTRODUCTION

Autonomous aerial vehicles (UAVs) are a transformative
technology in modern society, providing unparalleled ca-
pability to undertake difficult, dangerous and dull surveil-
lance and monitoring tasks crucial to maintenance of in-
frastructure, agricultural operations and disaster recovery,
to name just a handful of application domains. To perform
a fully autonomous flight, an UAV requires the ability
to take-off, navigate to, and accomplish a given task,
and finally return to base and land. Many tasks require
the vehicle to land, or at least approach and touch, its
destination, and complex or long-lasting missions might
require intermediate landing and taking-off operations
(e.g. battery/fuel refill). Such manoeuvres generally need
to be undertaken in unsurveyed, cluttered environments,
and often where GPS signals are unreliable or unavail-
able. This is especially the case for Vertical Take-Off and
Landing (VTOL) vehicles, such as helicopters and multi-
rotor systems, that are likely to be used in tandem with
ground based vehicles and other technologies, as in Michael
et al. (2012), in extended disaster recovery or other types
of missions. Classical landing control strategies require
estimation of the full state of the vehicle, along with a
model of the landing environment (see for example Flores
and Milam (2006); Geyer and Johnson (2006); Meister
et al. (2009); Andert et al. (2011)). If only a camera is
available for state estimation then the vehicle pose must
be estimated by using visual data (Lee et al., 2012; Davison
et al., 2011; Kaiser et al., 2010; Courbon et al., 2010;

Milford et al., 2011; Blösch et al., 2010). An alternative
approach is to use the natural properties of optical flow
to provide a strong visual cue for obstacle avoidance and
landing regulation (Srinivasan et al., 2000; Koenderink and
van Doorn, 1987; Hérissé et al., 2008; Chahl et al., 2004;
Srinivasan et al., 2000; Ruffier and Franceschini, 2004).
Optical flow is also a powerful cue for terrain following
(Humbert et al., 2005; Ruffier and Franceschini, 2005) and
obstacle avoidance (Geyer and Johnson, 2006; Green and
Oh, 2008; Beyeler et al., 2009). A good review of prior work
in robotics applications that exploit optical flow is given
by McCarthy et al. (2012). A key advantage of control
strategies that are based on optical flow is that they also
deal well with dynamic environments such as a moving
landing surface (Hérissé et al., 2010, 2012) in contrast
to approaches that require modeling of the environmental
motion (Marconi et al., 2002). A disadvantage of control
algorithms based on optical flow and visual data in general
is the complexity of providing rigourous stability analysis
of the closed loop system, especially in the case where the
system has non-trivial dynamics, as is the case with flying
vehicles.

In this paper, we propose a landing control algorithm
for a VTOL UAV based on visual data obtained from a
monocular camera coupled with the usual suite of sensors
present in a standard Inertial Measurement Unit (IMU)
that is common on all modern UAVs. We provide a
detailed analysis of the closed-loop response of the system
and prove asymptotic stability of the pose to the desired
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landing point, corresponding to a smooth touch down.
We first consider the case where there are no obstacles
and propose a reformulation of the controller formerly
developed by Hérissé et al. (2010, 2012) to include a
target landing point. The proposed control consists of a
driving term that acts as a constant force driving the
vehicle in the direction of the observed target point, based
on the bearing measurement of the target, coupled with
a damping proportional to optical flow measured over
the whole ground plane. The natural tradeoff between
velocity and distance inherent in optical flow ensures a
stable soft touchdown of the closed-loop system. We then
consider obstacles present in the flying space by including
additional damping terms associated with divergence of
the optical flow derived from the obstacle. To simplify
the mathematical formulation of the problem, the ground
plane is assumed to be flat and obstacles are modeled as
spheres in space. The goal of this paper is to provide a
detailed theoretic analysis of the system response rather
than tackle some of the practical issues of implementation.
To this end the visual target observation and optical flow
measurements are abstracted and written in terms of the
vehicle state for the purposes of the analysis. Simulations
of the closed-loop dynamics are provided to demonstrate
the performance of the proposed algorithm.

The content is organized as follows: Section 2 describes the
landing task; the differential equations representing the
motion model for small-scale VTOLs and the modelling
of the environment. Section 3 proposes a control law
for the landing task in obstacle-free environments and
provides a detailed stability analysis. Section 4 considers
the case where there are obstacles in space and provides
an analysis for the proposed control. Section 5 reports
on some simulation results for both obstacle-free and
cluttered environments. The paper concludes with some
final comments in Section 6.

2. SYSTEM AND ENVIRONMENT MODELLING

In this section we introduce the model used throughout
the document to describe the vehicle dynamics and the
environment.

Consider a Vertical-Take-Off-and-Landing (VTOL) UAV
vehicle equipped with an Inertial Measurement Unit
(IMU) and suitable filtering algorithms to provide reliable
estimates of attitude and rotational velocities, as well as
a camera, an exteroceptive passive sensor whose output is
rich in information. We assume that the vehicle is equipped
with vision processing capability to identify a point-feature
target and compute optical flow over the full image (Horn
and Schunck, 1981).

A complete model of a VTOL aircraft includes gyroscopic
and aerodynamics effects, as well as aerodynamic dis-
turbances. In order to simplify the analysis, we neglect
all second order terms (Mahony and Hamel, 2004). The
neglected aerodynamics forces are dissipative and do not
significantly effect the closed-loop response. Rotational
dynamics of small-size VTOL vehicles are usually faster
than translational ones, leading to a hierarchical control
design methodology. The natural time-scale separation
between the translational dynamics (slow time-scale) and
the orientation dynamics (fast time-scale) allows one to de-

sign decoupled position and orientation controllers (Khalil,
2002; Hérissé et al., 2012). The high-gain attitude control
effectively dominates the attitude dynamics of the vehicle
and allows one to consider a pure translational model

ξ̇ = v
mv̇ = mge3 − TRe3 ,

(1)

in which ξ and v represent the UAV position and velocity
respectively, both expressed in an inertial frame with
the third direction aligned with the gravitational field,
m represents the mass of the VTOL-UAV (supposed
constant), g is the magnitude of the gravity force acting
on the vehicle and e3 is the third canonical basis vector.
The variable T represents the thrust magnitude and R
is the rotation matrix representing the orientation of the
body-fixed frame with respect to the inertial frame. The
high-gain attitude control assumption means that the
rotation R can be viewed as a control input and we write
u = −TRe3 to represent the resulting control input to the
translational dynamics of the system

ξ̇ = v
mv̇ = mge3 + u .

(2)

In order to develop the dynamics equation of image points,
in the following we suppose that the frame representing
the position and orientation of the camera in the world
frame is rigidly attached to the body-fixed frame, such
that the linear transformation relating them degenerates
to the identity matrix and their dynamics are the same.
Projections of world points on the image surface are points,
usually called point features or features, whose dynamics
depend on the geometry of the image surface and on the
physical parameters of the camera. A common choice in
the aerial robotics field is to model the dynamics of the
point features by using the spherical projection model for
a calibrated camera as shown by Ma et al. (2004). Consider
a reference frame attached to the camera. If P̄ is a generic
point in the 3-D space, we denote with P the vector
connecting the centre of the camera reference frame to
the point P̄ and with p the unit vector representing the
direction of P , i.e. its projection on a sphere of unit radius,
that represents the spherical image surface. The expression
of the vector p and its derivative are

p =
P

|P |
, ṗ = − πp

|P |
v, (3)

where 1

πp = (I3 − pp>) (4)

is the projector in the space tangent to the spherical image
surface at point p, having the following properties

p>πp = πp p = 0 and π2
p = πp (5)

We will assume that the desired landing point P̄L is
contained locally in a planar surface whose normal η is
known or can be estimated from image features (see, for
instance, Ma et al. (2004)). In general, the normal direction
cannot be easily determined unless a good knowledge of
the environment is available. There are, however, certain
special cases where it is relatively straightforward to
extract it, such as the situation where the target lies on a
flat ground. In this case η is obviously the gravitational
direction e3 and can be directly provided by the IMU
sensor.

1 The symbol I3 represents the identity matrix of dimension 3 by 3.
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A soft landing manoeuvre consists in progressively re-
ducing the distance between the vehicle and the desired
landing point, ensuring it reaches the zero value with zero
speed. The environment enforces a physical constraint on
the vehicle height: it has to be all time strictly positive.
Indeed, the desired landing point will always lie on the
boundary of the admissible region of the space, an assev-
eration that requires careful consideration in the stability
analysis.

We approximate the cluttered environment by a collection
of fixed spherical objects. For a given obstacle, let P̄o
denote the closest point on the surface of the obstacle
to the camera. Let Po be the vector from camera to P̄o
and define do = |Po| to be the distance from camera
to the obstacle. The vector po denotes the projection of
Po onto the spherical image surface, po = Po/do. Note
that po is orthogonal to the tangent plane of the spherical
obstacle. We assume that the de-rotated optical flow Φ is
computed at all points in the image. The divergence of the
optical flow is a scalar field that can be computed from the
optical field using either differentials of the flow or a vector
convolution. Locally around po in the image the divergence
of the optical flow is related to the scaled rate of change
of distance (Coombs et al., 1998)

divΦ(po) = −2
ḋo
do
. (6)

In the sequel we will use the term ḋo/do directly in
the control rather than the flow divergence. In the same
manner, denoting the flow over the projection of the
ground plane spherical image by D ⊂ S2 one can show
that

v

h
= Λ

∫
D

Φ(p)dp

for a matrix Λ > 0 that can be computed from knowledge
of the size of D (Hérissé et al., 2012) and where h is the
distance from the camera to the landing surface plane in
the normal direction η. We will again use the expression
v/h in the control analysis rather than writing the depen-
dence on the optical flow field directly. A key aspect of the
optical flow measurements is that the resulting measure-
ments always depend inversely on distance to the observed
object as well as depending linearly on the camera velocity.
This singularity in the velocity leads to much of the nice
properties of optical flow as a cue for obstacle avoidance,
but also causes significant complications in the analysis.

We will also use an integral over time of the flow divergence
in the sequel

γ̄o(t) : = −1

2

∫ t

0

divΦ(po) dτ

=

∫ t

0

ḋo(τ)

do(τ)
dτ = ln

(
do(t)

do(0)

)
(7)

This quantity provides a rough measurement of the actual
distance to the object that will be exploited for obstacle
avoidance. To this aim, we will use

γo =

{
γ̄o γ̄o < 0
0 otherwise

, (8)

and produce a repulsive force only when do(t) < do(0).
We will assume further that an obstacle-free path to the
landing point exists and that the landing point is visible

at all times. Clearly this assumption will fail in highly
cluttered environments, and hybrid control laws involving
either a switching mechanism between different target
points or the addition of feedforward driving terms can
be considered to overcome this difficulty. This issue is
beyond the scope of the present paper which focuses on
the core nonlinear aspects of the problem. Real obstacles
are not spherical either, and practical implementation
of the proposed control laws will have to incorporate
complementary mechanisms that minimize the effects of
this approximation.

3. LANDING IN OBSTACLE-FREE ENVIRONMENTS

In this section, we consider the task of landing on a speci-
fied target in an obstacle-free environment. The proposed
solution is a variant of the controllers formerly developed
by Hérissé et al. (2010, 2012), which are proportional-
integral nonlinear controllers based on optical flow data
only. Using the fact that the landing point is specified,
we avoid using the time-integration of the optical flow
measurements in the control law (for stability purposes)
by substituting this integral with the bearing ξ/|ξ| to the
landing point. Avoiding numerical integration is partic-
ularly useful in real applications for which optical flow
measurement noise is not negligible, e.g. when the limited
field of view does not allow for proper averaging of the
measurements and yields the divergence of the integral.

Note that, given any desired landing point, one can use a
simple change of coordinates and rewrite the system as if
the landing point was the origin of the 3-D space. We will
accordingly assume from now on that the desired landing
point is P̄L = (0, 0, 0)>, which allow us to directly write
the bearing as ξ/|ξ|.
Theorem 1. Consider the system (2) subjected to the
control input

uL = −mge3 −mk
(
v

h
+

ξ

|ξ|

)
(9)

then, for any initial condition such that h(0) > 0 and for
some k > 0 the following assertions hold

(1) h(t)>0 ,∀t (implying that the dynamics of the closed-
loop system are well defined ∀t);

(2) h(t) and ḣ(t) converge to zero asymptotically;
(3) v(t) converges to zero asymptotically;
(4) ξ(t) converges to zero asymptotically;
(5) the control law (9) is bounded ∀t.

The proof of the theorem is given in Appendix A.II.

It is worth noticing that, if we assume that the normal
direction to the plane is known, the proposed control
input can be computed by using IMU data, Optical Flow
measurement and the image of the desired landing point.

4. LANDING AMONG OBSTACLES

Navigation and control of vehicles in cluttered environ-
ments is a central topic in the area of field robotics. Several
solutions have been developed in the literature to cope
with this problem. The most familiar approach is arguably
the so-called artificial potential fields from Khatib (1986)
where the key idea consists in building artificial repulsive
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force fields that depend linearly on the inverse of the
distance to the sensed obstacles. A key disadvantage of
this approach is the possible presence of local minima that
prevent the robot from reaching the goal (Adeli et al.,
2011) and the need to build an accurate local map of
the environment from sensor data (Borenstein and Koren,
1989). The latter point is particularly challenging in the
case of an aerial robotic vehicle equipped with a sensor
suite comprising only an inertial measurement unit and a
camera.

An alternative solution is to exploit optical flow as a
vision cue for obstacle avoidance (Nelson and Alloimonos,
1989; Ancona and Poggio, 1993; Coombs et al., 1998).
The approach taken in this paper is to modify the control
strategy presented in Section 3 by adding a term that is
associated with divergent optical flow to ensure obstacle
avoidance.

Consider a collection of n spherical objects as discussed in
Section 2. Let P̄i denote the closest point on the surface of
the obstacle to the camera, di = |Pi| and pi = Pi/di. Recall
the control input uL of relation (9) that was proposed for
the landing problem free of obstacles, and consider the
following modified control

u = uL + uD, with uD =

n∑
i=1

kD
ḋi
di
pi (10)

where the term (ḋi/di)pi can be calculated in practice
based from the measurement of the divergence of the
optical flow (6). The time-derivative ḋi = −v>pi of the
distance di to the obstacle is the projection of the vehicle’s
velocity vector along the direction pi, and it is negative as
the vehicle approaches the obstacle. Consider the standard
storage function (also exploited in the proof of Th. 1, see
eq. (A.8)),

L = k|ξ|+ |v|
2

2
,

whose time-derivative along any solution to the closed-loop
system is

L̇ = −k |v|
2

h
− kD

n∑
i=1

(p>i v)2

di
≤ 0,

and which points out the fact that uD is a dissipative term.
Although contact with an obstacle cannot be ruled out,
the rate of dissipation being inversely proportional to the
distance to the obstacle, it is reasonable to expect that
there will be no collision, i.e. that contact will occur with
zero velocity. Now, it is also desirable that the dissipation
induced by the divergence of optical flow does not trap
the robot near an obstacle and prevents it from moving
around the obstacle and from converging to the target. To
this aim we propose a slight modification of the previous
control law which consists in working out a small repulsive
field around each obstacle. Let us introduce the following
local potential function associated with the object with
index i

φi(di)=

{
kR(di(t) (γi(t)− 1) + di(0)) , di < di(0)

0, di ≥ di(0)
(11)

where kR is a small positive gain (kR � k), and γi is given

by (8). Note that dφi(di)
ddi

= kRγi, then the repulsive force
associated with this potential is given by

Fi(di) = kRγipi . (12)
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Fig. 1. Trajectories in the 3-D space (x-y-h), obstacle-
free environment. Initial conditions: v1(0)=(0, 0, 0)>,
drawn in black, or v2(0)=(−1, 0,−1)>, drawn in red.

Since γi is negative near the obstacle, this force, even if it
is small, tends to drive the vehicle away from the obstacle.
For n visible obstacles in the environment, an obstacle-
avoidance control input is obtained by summing up all
repulsive forces

uR = kR

n∑
i=1

γi pi. (13)

Although undesired equilibria near the obstacles exist, we
prove that these equilibria are unstable. More precisely, we
show the following result.

Theorem 2. Consider the system (2) to which the control
input

u = uL + uD + uR. (14)

is applied. Assume that the environment is populated by
n (n ≥ 1) spherical obstacles and assume also that there
is no contact between the obstacles and the landing plane.
Then, for any initial conditions such that h(0) > 0, there
exists a small gain kR such that the following assertions
hold true

(1) h(t)>0 ,∀t (implying that the dynamics of the closed-
loop system are well defined ∀t).

(2) The set of equilibria

Eu =

{
(ξ∗, 0) s.t. k

ξ∗

|ξ∗|
= kR

n∑
i=1

pi(ξ
∗)γi(ξ

∗)

}
;

associated with the obstacles is unstable.

The proof is given in Appendix A.III.

5. SIMULATION RESULTS

In this section we show simulation results that illustrate
the performance of the landing controller (9) and of its
extension in the cluttered environment case (13). The
measurements of the optical flow and of the bearing
direction to the obstacles are intentionally corrupted by
an additive Gaussian noise to show the robustness of the
control scheme. We report two sets of simulation results:
for an obstacle-free environment and for a cluttered one.

The first set of simulations concerns the application of
control law (9) when the vehicle navigates in an ob-
stacle free environment. Two different initial velocities,
v1(0) = (0, 0, 0)> and v2(0) = (−1, 0, 1)>, associated with
different initial positions that span the (x, h)-plane are
chosen. Initial conditions with zero velocity v1(0) yield
straight line trajectories, drawn in black in Fig. 1. When
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Fig. 2. Trajectories in the 3-D space (x-y-h) for different
initial conditions. Comparison in the use of obstacle
avoidance control.

the vehicle starts with non-zero velocity v2(0) it is initially
driven away and heads towards the ground. In a short
transient it recovers the convergence towards the landing
point (drawn in red in Fig. 1). The damping phenomena
which prevents the vehicle from colliding with the ground
is more accentuated when the vehicle starts at very low
height, h. This is due to the dissipative term v

h which is
all the much stronger that h is small and |v| is large. The
control gain was k = 1.

The second set of simulations considers the landing in a
cluttered environment case and is reported in Fig. 2. The
addition of the repulsive field (13) or damping control (10)
to the landing control (9) modifies all system’s trajectories.
To show the effect of each contribution, we distinguish
three cases: i) uL+uD (green lines), ii) uL+uR (red lines),
iii) uL+uD+uR (black lines). The control gains are k = 1
and kD = 1, and kR = 0.1, the latter is chosen according
to the condition kR � k discussed in Appendix A.III.
Green and black lines (generated respectively by uL + uD
and uL +uD +uR) are often superimposed, revealing that
most of the obstacle avoidance action in (14) is due to uD.

6. CONCLUSIONS AND FUTURE WORKS

This paper addresses the problem of landing a VTOL-UAV
in obstacle-free or cluttered environments. The proposed
control law exploits measurements issued from a camera
attached to the vehicle and from an IMU, a common
sensory suite for an unmanned aerial vehicle. The simu-
lation results show the effectiveness of the control law in
all environments. Spherical objects, placed at a non-zero
height from the ground, are considered. Addressing the
case of non-spherical objects would involve estimating the
normal to their surface and would be a useful extension to-
wards a real-world implementation of the proposed control
strategies. Some further work is also needed for the case of
cluttered environments, to extend the results of Theorem 2
to all possible cases. Clearly, a sound evaluation of what
is needed to test these strategies in various environmental
conditions and to improve them so as make them fully
operational in practical situations requires experimenting
on real small-scale UAVs.
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Blösch, M., Weiss, S., Scaramuzza, D., and Siegwart, R.
(2010). Vision based mav navigation in unknown and
unstructured environments. In Proceedings of IEEE
International Conference on Robotics and Automation,
21–28.

Borenstein, J. and Koren, Y. (1989). Real-time obstacle
avoidance for fast mobile robots. IEEE Transactions on
Systems, Man and Cybernetics, 19(5), 1179–1187.

Chahl, J.S., Srinivasan, M.V., and Zhang, S.W. (2004).
Landing strategies in honeybees and applications to
uninhabited airborne vehicles. International Journal of
Robotics Research, 101–110.

Coombs, D., Herman, M., Hong, T., and Nashman, M.
(1998). Real-time obstacle avoidance using central flow
divergence and peripheral flow. IEEE Transactions on
Robotics and Automation, 14(1), 49–59.

Courbon, J., Mezouar, Y., Guenard, N., and Martinet,
P. (2010). Vision-based navigation of unmanned aerial
vehicles. IEEE Transactions on aerospace and electronic
systems, 18, 789–7997.

Davison, A.J., Molton, I.D.R.N.D., and Stasse, O. (2011).
Monoslam: Real-time single camera slam. IEEE Trans-
actions on pattern analysis and machine intelligence,
29(6), 1052–1067.

Flores, M.E. and Milam, M.B. (2006). Trajectory gen-
eration for differentially flat systems via nurbs basis
functions with obstacle avoidance. In Proceeding of
American Control Conference (ACC), 5769–5775.

Geyer, M.S. and Johnson, E.N. (2006). 3d obstacle
avoidance in adversarial environments for unmanned
aerial vehicles. In AIAA Guidance, Navigation, and
Control Conference and Exhibit.

Green, W.E. and Oh, P.Y. (2008). Optic flow based colli-
sion avoidance. IEEE Robotics & Automation Magazine,
96–103.
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Appendix A

A.I Preliminary technical lemmas

All time-dependent functions involved in the statements of
these lemmas are assumed to be defined on [0,+∞) and
continuous. The state variable x belongs to Rn, with n a
positive integer. Also, o(t) denotes any bounded vector-
valued function whose norm tends to zero when t tends to
infinity.

Lemma 3. Consider the system

ẋ = −k(t)x+ p(t) . (A.1)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)|
is bounded, then (any solution) x(t) (to this system)
converges to zero.

Proof. The lemma’s assessment is obvious after observing
that, by replacing the time index t by the new time-scale

index s(t) :=
∫ t
0
k(τ)dτ (note that s tends to infinity if

and only if t also tends to infinity), the considered system
rewrites as

d

ds
x = −x+ o(s)

with o(s) := p(t)
k(t) . This is a stable linear system perturbed

by a vanishing additive perturbation.

Lemma 4. Consider the system

ẋ = −k(t)( (1 + o(t))x+ p(t) ) . (A.2)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)| is
bounded, then |x(t)| is bounded.

Proof. Again the proof of this lemma is quite simple
after using the same change of time-scale index as for the
previous lemma. This yields

d

ds
x = −(1 + ō(s))x− p̄(s) ,

with ō(s) = o(t) and p̄(s) = p(t). Since (1 + ō(s)) tends to
1, this is basically a stable linear system perturbed by a
bounded additive perturbation.

Lemma 5. Consider the system

ẋ = −k(t)( (1 + o(t))x+ p(t) ) , (A.3)

If k(t) is positive (∀t) and tends to infinity, and if |p(t)|,
|ṗ(t)|, and k(t)o(t) are bounded. Then, (x(t) + p(t)) con-
verges to zero as t goes to infinity.

Proof. Define y := x+ p, then

ẏ =−k(t)([1 + o(t)]x+ p) + ṗ

=−k(t)[1 + o(t)]y + k(t)o(t)p+ ṗ .

and a direct application of Lemma 3 yields the desired
result.

Lemma 6. Consider two positive functions α(t) and β(t)
such that

lim
t→∞

t∫
0

α(s) ds = +∞ , lim
t→∞

β(t) = 1 ,
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then

lim
t→∞

t∫
0

α(s)β(s) ds = +∞.

Proof. There exists a time t∗ such that β(t) > β0 > 0,
∀ t > t∗. Therefore, when t > t∗ one has

t∫
0

α(s)β(s) ds >

t∗∫
0

α(s)β(s) ds + β0

t∫
t∗

α(s) ds ,

with the last term in the right-hand side of the inequality
converging, by assumption, to infinity.

A.II Proof of Theorem 1

Given the control (9) applied to the system (2), the
equation of the closed-loop system is

ξ̈ = −k

(
ξ̇

h
+

ξ

|ξ|

)
= −k

(
ξ̇

h
+ α

ξ

h

)
, (A.4)

with

α(t) =
h(t)

|ξ(t)|
, α(t) ∈ (0, 1], ∀t. (A.5)

Proof of item 1: The vehicle is initially above the target,
i.e. h(0) > 0. Given an (any) initial condition (ξ(0), v(0)),
as long as h(t) does not reach zero, the solution to the
above equation is well defined and unique. Let us first show
that h(t) cannot reach zero in finite time. By definition h
is the third component of ξ. Therefore, in view of (A.4),
the time-evolution of h is given by

ḧ = −k

(
ḣ

h
+ α

)
. (A.6)

Integration of both sides of this equality yields

ḣ(t) = ḣ(0)− k ln

(
h(t)

h(0)

)
− k

t∫
0

α(s) ds . (A.7)

This relation is valid as long as h(t) 6= 0. Now, consider
the following positive storage function

L = k |ξ|+ |v|
2

2
, (A.8)

whose time-derivative along a solution to System (A.4) is

L̇ = −k |v|
2

h
≤ 0 . (A.9)

One deduces from the previous two relations that |ξ| (≥ h)

and |v| (≥ |ḣ|) are uniformly bounded with respect to the
initial condition, as long as the solution to the system is
defined, i.e. as long as h remains positive. If we assume
that h reaches zero at the finite time-instant Ts > 0, then

the term ln

(
h(t)

h(0)

)
appearing in the equality (A.7) tends

to infinity when t tends to Ts, whereas all other terms
involved in this equality remain bounded. This assumption
thus yields a contradiction. Therefore h is never equal to
zero, and the solution to System (A.4) is well defined and
unique for t ∈ [0,∞).

Proof of item 2: Using the following change of variables

z(t) = h(t) exp

(
ḣ

k

)
, (A.10)

one gets ż(t) = −α(t) z(t), a first order differential equa-
tion whose solution is

z(t) = z(0) exp

− t∫
0

α(τ)dτ

 . (A.11)

In order to study the evolution of (h, ḣ), we can consider
two different cases, depending on the sign of the initial
vertical velocity.

Case 1: ḣ(0) < 0. Let us show that ḣ(t) < 0, ∀t.
We make a proof by contradiction and assume that there
exists t∗ such that ḣ(t∗) = 0 and ḧ(t∗) ≥ 0. Then,

according to (A.6), ḧ(t∗) < 0. A clear contradiction.

Case 2: ḣ(0) ≥ 0. If ḣ(t) were always positive, or equal
to zero, then, according to (A.10), z(t) would be non-
decreasing. This contradicts relation (A.11) which implies
that z(t) is strictly decreasing. Therefore there exists a

time instant T such that ḣ(T ) < 0, and we are brought
back to Case 1 with T taken as the new origin of time.

By considering these two cases, we have shown that ḣ(t) is
strictly negative after a finite time. Let us now show that
h(t) and ḣ(t) converge to zero. Since h(t) is positive and
decreases after a finite time-instant, it converges to some
limit hm which is either positive or equal to zero. Recall
that the boundedness of ξ has already been proven so that
ξM := supt∈[0,+∞)|ξ(t)| is a positive finite number. Let us

assume that hm is positive, then α(t) >
hm
ξM

= αm > 0,

∀t. Relation (A.11) then implies

z(0) e−αmt > z(t) ≥ z(0) e−t ,

and thus the convergence of z(t) to zero. This in turn im-

plies the convergence of h(t) to zero, since |ḣ(t)| (≤ |v(t)|)
is bounded. From this contradiction, one deduces that
hm = 0 and thus that h(t) converges to zero.

Finally, using the fact that kα(t) is bounded and that
k/h(t) tends to infinity, the application of Lemma 3 to the

equation (A.6) establishes the convergence of ḣ(t) to zero.

Proof of item 3: We first show that the ratio |v|h is bounded.
To this aim let us consider the equation governing the
evolution of this ratio, as deduced from (A.4),

d

dt

(
|v|
h

)
= −k

h

([
1 +

ḣ

k

]
|v|
h

+ cos(β)

)
, (A.12)

with β the angle between v and ξ, so that cos(β) = vT ξ
|v||ξ| .

Using the fact that k/h tends to infinity and that ḣ/k
tends to zero, the boundedness of |v|/h is simply obtained
by applying Lemma 4 to this equation. From there, the
convergence of v to zero just follows from the convergence,
previously proven, of h to zero.

Proof of item 4: Since

d

dt

(
ξ

|ξ|

)
=

(
I − ξξ>

|ξ|2

)
v

|ξ|
,

and since |v||ξ| (≤ |v|h ) tends to zero, the time-derivative of
ξ
|ξ| tends to zero, and is thus bounded. Consider now the

dynamics of the ratio between ξ̇(t) and h(t)
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d

dt

(
ξ̇

h

)
= −k

h

([
1 +

ḣ

k

]
ξ̇

h
+

ξ

|ξ|

)
, (A.13)

The application of Lemma 5 to this equation yields(
ξ̇

h
+

ξ

|ξ|

)
(t) = o(t) . (A.14)

Pre-multiplying both members of the above equality by
h ξ>, one obtains the equation

d

dt
|ξ|2 + ᾱ(t)|ξ|2 = 0

with

ᾱ(t) := 2α(t)

(
1− ξ(t)>

|ξ(t)|
o(t)

)
,

whose solution must satisfy

|ξ(t)|2 = |ξ(0)|2 exp

− t∫
0

ᾱ(s) ds

 . (A.15)

Since h and ḣ converge to zero, one deduces from (A.7)
that the integral of α tends to +∞. Therefore, by applica-
tion of Lemma 6, the integral of ᾱ also tends to +∞. The
convergence of ξ to zero then follows from the previous
equality.

Proof of item 5: The boundedness of the control uL
given by (9) simply follows from the previously proven
boundedness of v/h.

A.III Proof of Theorem 2

Consider the system (2) subjected to the control input (14)
and use the following storage function:

Lo = L+

n∑
i=1

φi, (A.16)

whose time derivative

L̇o = −k |v|
2

h
− kD

n∑
i=1

ḋ2i
di
, (A.17)

implies that Lo is bounded and, therefore, that |v|, |ξ| and∑n
i=1 φi are bounded.

Proof of item 1:

By proceeding analogously to the proof of theorem 1 (A.II,
Item 1), it is straightforward to verify that Ts = ∞ and
h(t) > 0, ∀t.
Proof of item 2:

The system is well defined and L0 is decreasing. The
zeroing of L̇o = 0 implies that the velocity vector
is identically equal to zero and that the equilibrium
(ξ, v) = (ξ∗, 0) 6= (0, 0) is a solution of the implicit equa-

tion ξ̈∗ = 0. Therefore

k
ξ∗

|ξ∗|
= kR

n∑
i=1

γi(ξ
∗)pi(ξ

∗) . (A.18)

To prove the instability of the set Eu we only need to show
that the closed-loop linearised system at an equilibrium
point (ξ, v) = (ξ∗, 0) ∈ Eu is unstable. The equation of
the closed-loop system is:

ξ̈ = −k

(
ξ̇

h
+

ξ

|ξ|

)
+ kD

n∑
i=1

Dipi + kR

n∑
i=1

γipi . (A.19)

Setting πξ∗ =
(
I3 − ξ∗

|ξ∗|
ξ∗>

|ξ∗|

)
, the corresponding linearised

system is χ̇ = Aχ, with χ = (ξ, v), and

A=

 03 I3

−k
πξ∗
|ξ ∗ |

−
n∑
i=1

kR

(
πpiγi

di
+
pip

>
i

di

)
−
I3

h
− ko

n∑
i=1

pip
>
i

di


where pi, γi and di are evaluated at ξ∗. In view of
eq. (A.18) it follows that:∣∣∣∣∣

n∑
i=1

γipi

∣∣∣∣∣ =
k

kR

By choosing kR small enough (with respect to k) the sum
in the left-hand side of this equality can be rendered very
large. Now, using the fact that the obstacles are scattered
in the environment, it is simple to prove that making this
sum tend to infinity is possible only if all γi’s but one,
say γj , remain bounded, so that

n∑
i=1

γi(ξ
∗)pi(ξ

∗) ≈ γj(ξ∗)pj(ξ∗) (A.20)

Without loss of generality the index j can be omitted from
now on, and the above approximation taken as an equality.
Define p = pj , γ = γj , and d = dj . We now examine the
eigenvalues of the matrix A.

To prove the instability of the matrix A, i.e. the positivity
of at least one of its eigenvalues, it suffices to consider the
first submatrix of the second block row

B = −k πξ
∗

|ξ∗|
− kR

(
πp(ξ∗)γ(ξ∗)

d(ξ∗)
+
p(ξ∗)p(ξ∗)>

d(ξ∗)

)
, (A.21)

and show that this matrix is itself unstable.
Note that ξ∗

|ξ∗| = ±p(ξ∗). Using the fact that there exists a

rotation matrix Q such that p(ξ∗) = Qe3, eq. (A.21) can
be written as

B = Q

(
−
(

k

|ξ∗|
+
kRγ(ξ∗)

d(ξ∗)

)
πe3 −

kR
d(ξ∗)

e3e
>
3

)
Q>.

At the equilibrium it follows from (A.18) and (A.20) that
γ = − k

kR
. Therefore, one gets

B = Q

(
−k
(

1

|ξ∗|
− 1

d(ξ∗)

)
πe3 −

kR
d(ξ∗)

e3e
>
3

)
Q>,

(A.22)
whose eigenvalues are{

−k
(

1

|ξ∗|
− 1

d

)
,−k

(
1

|ξ∗|
− 1

d

)
,−kR

d

}
. (A.23)

Since d(ξ∗) < |ξ∗|, the first two eigenvalues are positive
and hence the matrix B (and therefore A) is unstable.
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