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Abstract: Stringent requirements on safety and availability of high-performance systems
necessitate reliable fault detection and isolation in the event of system failures. This paper
investigates active fault diagnosis of nonlinear systems with probabilistic, time-invariant
uncertainties of the parameters and initial conditions. A probabilistic model-based approach is
presented for the design of auxiliary input signals enhancing fault diagnosability by separation of
multiple nonlinear models pertaining to nominal and faulty system operations in the presence of
the probabilistic uncertainties. To obtain a computationally tractable formulation, polynomial
chaos expansions are used to propagate the probabilistic uncertainties through the system
models. The input design problem is formulated in terms of a metric that characterizes the
similarity of arbitrarily shaped distributions of the model outputs. An optimal input sequence is
generated while considering hard input and state constraints. The simulation results for active
diagnosis of multiple faults in a three-tank system indicate the capability of the presented
approach to improve fault detectability and isolability under probabilistic uncertainties of the
parameters and initial conditions.

1. INTRODUCTION

Fault diagnosis (FD) is crucial for the high-performance
operation of complex systems to meet stringent require-
ments on system availability and safety in the event of
component failures. System uncertainties (e.g., due to ex-
ogenous disturbances and measurement noise), along with
compensatory control actions, often impair reliable fault
diagnosis using the measurements acquired during normal
system operation (Campbell and Nikoukhah, 2004). Auxil-
iary input signals can be applied to the system to enhance
the detectability and isolability of faults in the system
outputs. The so-called active fault diagnosis involves de-
signing input signals that ensure the detection or isolation
of faults in the presence of uncertainties, while being least
intrusive to the system performance (Blanke et al., 2006).
Active FD is particularly useful when the reachable output
sets of the different faults and the nominal operation
overlap due to measurement or process uncertainties, or
when the control actions mask the influence of faults.

To this end, most active FD approaches exploit a robust
formulation for the input signal design while considering
deterministic bounded uncertainties. Typical approaches
consider linear or discrete-event systems and minimize the
energy of the input signal that can ensure the separation of
models pertaining to nominal and faulty system operations
(e.g., see (Sampath et al., 1998; Campbell and Nikoukhah,
2004; Blanke et al., 2006; Ashari et al., 2011), and the
references therein). A computationally efficient approach
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for designing separating inputs that lead to guaranteed
fault diagnosis under deterministic bounds on the dis-
turbances and measurement noise is proposed for linear
systems by Scott et al. (2013) using zonotopes. Active FD
for nonlinear systems with sufficiently small nonlinearities
is considered by Andjelkovic et al. (2008). A set-based
framework for nonlinear systems can provide robustness
certificates with respect to nonlinearities and bounded un-
certainties for given input signals (Streif et al., 2013), and
be used to design locally optimal input signals (Paulson
et al., 2014) that ensure fault diagnosis.

Alternatively, the active FD problem can be formulated in
a probabilistic framework to deal with systems whose un-
certainties are characterized in terms of probability distri-
bution functions (Zhang, 1989; Kerestecioglu, 1993). Such
a formulation enables taking probabilistic information into
account during input design. A probabilistic approach for
active FD of mixed discrete-continuous linear systems with
additive stochastic uncertainties is proposed by Blackmore
et al. (2008). The approach considers an upper bound on
the probability of model selection error as the optimization
criterion, which is subject to hard input constraints.

This paper addresses the problem of active fault diagnosis
for nonlinear systems with probabilistic, time-invariant
uncertainties on the parameters and initial conditions
(Section 2). A probabilistic approach is presented to design
an auxiliary input signal that separates multiple models,
which correspond to nominal and faulty system operations.
Generalized polynomial chaos (PC) theory (Wiener, 1938;
Xiu and Karniadakis, 2002) is employed as a computa-
tionally efficient spectral tool for uncertainty analysis and
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propagation of the probability density functions (Section
3). The PC framework enables replacing the implicit map-
pings between the uncertain variables/parameters and the
states (defined in terms of differential algebraic equations)
with explicit functions in the form of a series of orthogonal
polynomials, whose statistical moments can be readily
computed from the expansion coefficients (e.g., see (Fisher
and Bhattacharya, 2011; Fagiano and Khammash, 2012;
Mesbah et al., 2014), and citations therein for applications
of PC expansions). A nonlinear optimization formulation
for input design is presented in Section 4. The optimiza-
tion objective is expressed in terms of the Bhattacharyya
coefficient (Kailath, 1967), which provides a measure for
the similarity of the probability densities of the model
outputs. Hard input and state constraints are included
into the optimization formulation to reduce violations of
system operation requirements (e.g., safety considerations,
actuator saturation, etc.) during fault diagnosis. The input
signals generated in this manner are expected to be more
effective for model separation, and consequently fault diag-
nosis, than limited power input signals (Blackmore et al.,
2008). The proposed probabilistic active FD approach
is demonstrated using a three-tank system for multiple
fault scenarios under probabilistic parameter uncertainties
(Section 5).

2. PROBLEM FORMULATION

For an uncertain system subject to faults, consider
discrete-time nonlinear models

f [i] :

{
x

[i]
k+1 = g[i](x

[i]
k ,uk,θ

[i])

y
[i]
k = h[i](x

[i]
k ,uk,θ

[i])
i ∈ I := {0, . . . , nf}

(1)
where k ∈ N is the time index, nf is the number of faults,

the superscripts [i], i ∈ I, denote the nominal and fault
scenarios F := {f [0], f [1], . . . , f [nf ]}, the algebraic func-
tions g[i] and h[i] describe nonlinear system dynamics and

the model output, respectively, and x
[i]
k ∈ Rnx , θ[i] ∈ Rnθ ,

uk ∈ Rnu , and y
[i]
k ∈ Rny denote the system states, time-

invariant parameters, inputs, and outputs available for
fault diagnosis, respectively. In what follows, the nominal
and fault models (and their associated variables) are repre-
sented by the superscripts [0] and [i], i ∈ I \0, respectively.
Each fault model f [i] in (1) contains its own set of variables

x
[i]
k , y

[i]
k , and parameters θ[i], whereas the input uk is

the same for all models. To save space, the superscripts
[i] are dropped on the state variables, parameters, and
functions g[i] and h[i]. Note that this work assumes that
the (potential) system faults are known a priori and the
faulty system dynamics can be described by (1) (e.g.,
see (Mesbah et al., 2012) and the references therein for
performance diagnosis approaches that do not make this
assumption).

The method presented in this paper can deal with proba-
bilistic, time-invariant uncertainties on the parameters and
of the initial conditions. To simplify the presentation and
to conserve space, only uncertainties on the parameters
are presented. Probabilistic uncertain initial conditions
can be treated straightforwardly and in a similar man-
ner. The parameter vector θ in the multiple models in
(1) consists of independent distributed random variables

θj , with known probability density functions (PDFs) Fθj .
Over the support Ω, a probability triple (Ω,G,P) is defined
in terms of the σ-algebra G and the probability measure
P on (Ω,G). The parameters θj belong to the Hilbert
space L2(Ω,G,P) of all random variables, whose L2-norm
is finite (i.e., θj ∈ L2(Ω,G,P) ∀j ∈ {1, · · · , nθ}).
Model-based fault diagnosis consists of two tasks, namely
fault detection and fault isolation. In fault detection, the
task is to examine if the nominal scenario f [0] is consistent
with the system measurements. Fault isolation, on the
other hand, aims to determine which of the fault scenarios
f [i], i = 1, 2, . . . , nf can describe the measurements. The
goal is to achieve complete fault isolation, where only one
fault scenario is uniquely chosen.

The primary challenge in fault diagnosis is that faults
may not be detected and isolated under all operating
conditions due to measurement, process, and parameter
uncertainties, as well as the potential effect of feedback
control in masking the effects of faults. The diagnosability
problem results from the overlap of the reachable output
sets for the nominal and fault scenarios, which make the
scenarios in F undiagnosable. An approach to circumvent
this problem is to design input signals such that any
sequence of system measurements is consistent with only
one scenario f [i], i ∈ I.

Due to the parametric uncertainties in the nonlinear
systems considered in this paper, the outputs of the
multiple models in (1) are random variables. In this
situation, the active fault diagnosis problem is to design
an auxiliary input sequence that enables the separation of
the PDFs of the outputs (denoted by Fy[i]) pertaining to
the different scenarios in F .

Problem 1 (Active fault diagnosis under probabilistic
parametric uncertainties): Design an input sequence u ⊆ U
to separate the probability density functions Fy[i] ,∀i ∈ I
at a time instant nk, while nonlinear inequality constraints
on states x[i] corresponding to the scenarios f [i] are ful-
filled (i.e., H(x[i],u) ≤ 0,∀i ∈ I).

In Problem 1, the input and state constraints are denoted
by compact convex sets U and X , respectively. These
constraints can be specified so that the designed input se-
quence is minimally intrusive on the system performance,
so that the system safety is not jeopardized during fault
diagnosis.

The key issue in solving Problem 1 is the propagation of
probabilistic parametric uncertainties through the models
(1). The most common approaches for probabilistic anal-
ysis of uncertain systems are Monte Carlo and Markov
Chain Monte Carlo methods, which can be prohibitively
expensive. Next, polynomial chaos expansions are intro-
duced, which provide computationally efficient means for
the approximation of random variables that have finite
second-order moments.

3. POLYNOMIAL CHAOS EXPANSIONS

A general second-order random variable y(θ) ∈
L2(Ω,G,P) can be expressed in terms of a polynomial
chaos expansion as (Xiu and Karniadakis, 2002)
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y(θ) =

∞∑
i=0

aiΦi(θ) (2)

where ai denotes the expansion coefficients and Φi(θ)
denotes the PC basis functions of degree m with respect
to the random variables θ. The basis functions belong to
the Askey scheme of polynomials, which encompasses a
set of orthogonal polynomials in the Hilbert space defined
by the support of the random variables θ (Ghanem and
Spanos, 1991). Hence, the basis functions Φi comprise a
set of orthogonal polynomials in L2(Ω,G,P) that satisfy

E[Φi(θ)Φj(θ)] = E[Φi(θ)2]δij

where δij is the Kronecker delta and E[Φ(θ)] :=∫
Ω

Φ(θ)dFθ denotes expectation of a function Φ(θ). The
choice of the orthogonal polynomials is made such that
their weight function is the multivariate PDF of θ (Fθ). For
example, Hermite polynomials are utilized for Gaussian
random variables (Xiu and Karniadakis, 2002).

In practice, the PC expansion (2) is truncated after p
terms, which is determined by the dimension of θ and the

order of the orthogonal polynomials (i.e., p+1 = (nθ+m)!
nθ!m! ).

The truncated PC expansion takes the form

ŷ(θ) :=

p∑
i=0

aiΦi(θ) = a>Λ(θ) (3)

where a := [a0, · · · , ap]> and Λ(θ) :=
[Φ0(θ), · · · ,Φp(θ)]>.

Probabilistic collocation methods (e.g., see discussion and
citations in (Nagy and Braatz, 2007; Fagiano and Kham-
mash, 2012)) can be used to determine the coefficients a
in (3). Consider the residual

R(a,θ) = ŷ(θ)− y(θ)

for each system output, where y(θ) is computed using the
nonlinear model (1). The coefficients a can be computed
by requiring that the residual R be orthogonal to each
basis function Φi (e.g., (Tatang et al., 1997)),∫

Ω

R(a,θ)Φi(θ)dFθ = 0, i = 0, . . . , p. (4)

Equation (4) can be approximated using the Gaussian
quadrature method

l∑
j=0

vjFθ(θj)R(a,θj)Φi(θj) = 0, i = 0, . . . , p (5)

where vj are the weights of the Gaussian quadrature
approximation and θj are the samples of the parameter
vector θ drawn from the multivariate PDF Fθ. Since the
orthogonal polynomials Φi(θj) are non-zero terms, (5)
reduces to

Fθ(θj)R(a,θj) = 0, j = 0, . . . , l. (6)

Equation (6) implies that the expansion coefficients a can
be estimated through computing the residual R(a,θj) at
l collocation points (i.e., parameter vectors θj with a non-
zero probability Fθ(θj)). In this approach, the accuracy
of a polynomial chaos expansion is largely affected by
the selection of the collocation points. For orthogonal
polynomials of degree m, a common choice for collocation
points is the roots of polynomials with degree m + 1
(Tatang et al., 1997).

Once the coefficients of the PC expansion (3) are ob-
tained, the statistics of the random variable ŷ(θ) can
be determined efficiently by exploiting the orthogonality
property of the polynomials. Next, PC expansions are used
to present a tractable formulation for Problem 1.

4. ACTIVE FAULT DIAGNOSIS USING
POLYNOMIAL CHAOS EXPANSIONS

4.1 A Metric for Similarity of Two Distributions

The task of fault diagnosis under probabilistic uncertain-
ties involves separating the probability density functions
of random variables that pertain to the outputs of the
nominal operation and fault scenarios (cf. Problem 1). This
paper uses the probability of misclassification (aka the
Bayes error) in statistical hypothesis testing (Anderson,
2003) to define a measure for active fault diagnosis. The
Bayes error is directly related to the similarity of two
probability densities; the larger the Bayes error is, the
more similar the distributions are. The active FD problem
should therefore be formulated as the design of an input
signal that minimizes the Bayes errors associated with the
different scenarios in F .

A measure closely related to the Bayes error is the Bhat-
tacharyya coefficient (Kailath, 1967), which indicates the
degree of overlap between two distributions. Properties
of the Bhattacharyya coefficient such as its relation to
the Fisher information measure, as well as explicit forms
for various distributions are established (Kailath, 1967;
Djouadi et al., 1990). This paper considers the Bhat-
tacharyya coefficient defined by

B[i,j](θ) := B(Fy[i] ,Fy[j]) =

∫ √
Fy[i]Fy[j]dθ (7)

where Fy[i] and Fy[j] are the PDFs of the outputs cor-

responding to scenarios f [i] and f [j] in F , respectively.
To compute B[i,j], the probability densities can be ob-
tained by sampling. Hence, the histogram formulation is
employed to represent the PDFs Fy[i] and Fy[j] in (7) by

the discrete distributions F̂y[i] := {F̂y[i],u}u=1,...,o (with∑o
u=1 F̂y[i],u = 1) and F̂y[j] := {F̂y[j],u}u=1,...,o (with∑o
u=1 F̂y[j],u = 1), respectively, where o denotes the num-

ber of partitions in the histograms. The sample estimate
of the Bhattacharyya coefficient takes the form

B̂[i,j](θ) =

o∑
u=1

√
F̂y[i],uF̂y[j],u. (8)

This expression implies that the Bhattacharyya coefficient
will be larger when the distributions have a larger overlap
(if the distributions do not overlap, B̂[i,j] will be zero).
The choice of the number of partitions o in (8) is critical,
as too few partitions will lead to loss of accuracy due
to overestimating the overlap; and too many partitions
will result in partitions with no members despite being
surrounded by populated partitions.

The sample estimate of the Bhattacharyya coefficient is
used to define the metric for similarity of two distributions
as (Comaniciu et al., 2000)

∆[i,j](θ) =

√
1− B̂[i,j](θ). (9)
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This expression is also known as the Hellinger distance.
The use of (9) in this work is motivated by (i) its
near optimality due to its relation to the Bayes error,
(ii) having a metric structure, and (iii) being valid for
any arbitrary distributions. For further discussions on
similarity and other distance metrics for PDFs, see (Halder
and Bhattacharya, 2012).

4.2 Input Design

The metric ∆[i,j] is used to formulate the active fault
diagnosis problem. Expression (9) implies that smaller

overlaps between two distributions (smaller B̂[i,j]) will
lead to larger values of ∆[i,j], with ∆[i,j] = 1 indicating
complete separation of two distributions. Hence, the input
signal for fault diagnosis should be designed to maximize
the metric ∆[i,j] for any scenarios f [i] and f [j] in F .

PC expansions are used to propagate the parametric un-
certainties through the nonlinear multiple models (1). The
PC expansions enable efficient construction of the PDFs of
the outputs y[i] available for fault diagnosis. The probabil-
ity density functions Fy[i] can be approximated by Monte
Carlo simulations of the PC expansions, which signifi-
cantly accelerate Monte Carlo-based uncertainty analysis.
Alternatively, the PDFs can be constructed from the mo-
ments of PDFs, which are readily computed from the PC
coefficients a (e.g., see (Fisher and Bhattacharya, 2011;
Streif et al., 2014)).

This paper obtains the discrete approximations of the
probability density functions Fy[i] by Monte Carlo sim-
ulations of the PC expansions. Using the metric (9) as a
measure for the similarity of any arbitrary distributions,
the input design problem for diagnosis of multiple fault
scenarios under probabilistic uncertainties (Problem 1) is
formulated below.

Problem 2 (Auxiliary input design): Consider the time-
index set T = {0, 1, . . . , nk}. The optimal input sequence
u∗ := [u0, . . . ,unk ]> that facilitates the separation of the
scenarios f [i] ∈ F , ∀i ∈ I at time instant nk is defined by

u∗ := arg max
u∗

nf−1∑
i=0

nf∑
j=i+1

∆[i,j]
nk

(θ)

subject to: x̂
[i]
k = ā

[i]
k Λ̄(θ), ∀k ∈ T , ∀i ∈ I

Hnom(x̂
[i]
k ,uk) ≤ 0, ∀k ∈ T , ∀i ∈ I

uk ∈ U , ∀k ∈ T
(10)

where ā
[i]
k := {a[i]

k,q}q=1,...,nx denotes the vector of co-

efficients of the PC expansions of states x
[i]
k , Λ̄(θ) :=

{Λq(θ)}q=1,...,nx is defined as in (3), and Hnom represents
the nonlinear state inequality constraints, which are en-

forced about the nominal state trajectory (i.e., x̂
[i]
k (θnom)).

In (10), the similarity of all combinations of the PDFs
Fy[i] ,∀i ∈ I is evaluated only at time instant nk (∆[i,j] is
computed at nk). The hard input constraints and the state
inequality constraints are considered in the determination
of the designed input sequence u∗. The following algorithm
is used to solve (10).

Algorithm 1. (Active fault diagnosis using polynomial
chaos expansions):

Input: 1) Nominal and fault scenarios F
2) Initial states x

[i]
0

3) Uncertainty description of parameter vector θ
4) Time-index set T
5) Type and order p of orthogonal polynomials

6) Number of collocation points l
7) Histogram partitions o
8) Input and state constraints

At each optimization iteration in (10):

1) Use the input sequence u and x
[i]
0 to carry out l

simulations of the nonlinear multiple models (1)
using l collocation points of the parameter vector θ

2) Determine PC coefficients ā
[i]
k
,∀k ∈ T , ∀i ∈ I using (6)

3) Use the PC expansions to perform Monte Carlo simulations

to construct the discrete distributions F̂y[i] , ∀i ∈ I
4) Compute the metric (9) for all combinations of the

scenarios f [i] ∈ F , ∀i ∈ I
5) Solve the optimization problem (10) to obtain u∗. Each

optimization iteration entails repeated evaluation of

the PC expansions and the metric as in Steps 1 to 4.

The use of PC expansions in Algorithm 1 significantly
improves the computational efficiency of the input design
approach in the presence of probabilistic uncertainties, as
the Monte Carlo simulations in Step 3 are performed using
the PC expansions instead of the nonlinear models (1). The
basis functions Λ(θ) of the PC expansions are computed
off-line for the different samples of θ.

5. ACTIVE FAULT DIAGNOSIS OF A THREE-TANK
SYSTEM UNDER PROBABILISTIC UNCERTAINTIES

Consider the three-tank system shown in Fig. 1, which is
a well-known benchmark for fault detection and isolation
(Zhang et al., 2002). The tanks T1, T2, and T3 are
cylinders with identical cross-sectional area A. The three
tanks are connected with connection pipes, whose cross-
sectional area is denoted by Sp, and with u1 and u2

representing the liquid flow rates supplied to tanks T1 and
T2 (by pumps P1 and P2), respectively. The liquid levels
in the three tanks are denoted by x1, x2, and x3.

Using the mass conservation law in conjunction with the
Torricelli’s law, the liquid level dynamics in the three tanks
are described by

ẋ1 =
−c1Spsign(x1−x3)

√
2g|x1−x3|+u1

A

ẋ2 =
−c3Spsign(x2−x3)

√
2g|x2−x3|−c2Sp

√
2gx2−qf+u2

A

ẋ3 =
c1Spsign(x1−x3)

√
2g|x1−x3|−c3Spsign(x3−x2)

√
2g|x3−x2|

A
(11)

where qf is the outflow rate from tank T2 due to leakage
(qf = 0 during nominal operation), g denotes the grav-
itational acceleration, and c1, c2, and c3 are the nondi-
mensional outflow coefficients, which are considered to be
random variables distributed normally with mean µ and
variance σ2 (ci ∼ N (µ, σ2), i = 1, 2, 3). In (11), the system
states and inputs are x := [x1 x2 x3]> and u := [u1 u2]>,
respectively. The only system output available for fault
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c1 c3 c2 
x1 x3 x2 

qf 

u1 u2 

u�2 u�1 

A 

Sp 

T1 

P1 P2 

T3 T2 

Fig. 1. The three-tank system (Zhang et al., 2002).

diagnosis is the liquid level in tank T3 (i.e., y[i] = x
[i]
3 ,∀i ∈

I). To meet the system operation requirements, the states
and inputs are constrained as 0 ≤ xi ≤ 0.75 m, i = 1, 2, 3
and 0 ≤ uj ≤ 10−4 m3/s, j = 1, 2, respectively. The model
parameters are listed in Table 1.

Two fault scenarios are considered:

f [1]: Fault Scenario A: A multiplicative actuator fault
in pump P1 is defined by letting u1 = ū1 + (α− 1)ū1,
where ū1 is the liquid flow rate during nominal oper-
ation and α is an uncertain parameter characterizing
the magnitude of fault. The parameter α is defined
by α ∼ N (0.6, 4× 10−4).

f [2]: Fault Scenario B: Tank T2 has a circular leak with
uncertain radius r ∼ N (0.002, 10−6), which leads to
the outflow rate qf = c2πr

2
√

2gx2 in (11).

The set F consists of three operation scenarios, namely,
the nominal scenario f [0] and the nonlinear fault scenarios
f [1] and f [2].

Active fault diagnosis is performed to detect and isolate
the fault scenarios. Due to the probabilistic parametric

uncertainties in (11), the output y[i] = x
[i]
3 of the nonlinear

models pertaining to the scenarios f [i], i = 0, 1, 2 are
random variables. The active input design formulation (10)
is exploited to design the optimal input sequences u∗ that
separate the PDFs Fy[i] , i = 0, 1, 2 at time instant 3000 s
(nk = 60 in (10)).

Third-order expansions of Hermite polynomials are uti-
lized to propagate the parametric uncertainties through
the system model in each scenario. The Hermite polyno-
mial is specified by the normal distribution of the un-
certain parameters (Xiu and Karniadakis, 2002). In the
nominal scenario f [0], the PC expansions have 20 terms
(i.e, p = 19 in (3)). The PC expansions in the scenarios
f [1] and f [2], however, consist of 35 terms, as their re-
spective models have 4 uncertain parameters. Algorithm
1 is applied to solve (10), where the number of histogram
partitions and the number of collocation points used for
estimating the expansion coefficients are chosen as o = 80
and l = 60, respectively. The CPU time to solve the
optimization problem (10) is approximately 15 s on a
regular personal computer (Core i7, 2.90 GHz, 8.00 GB).

Fig. 2 shows the liquid level profiles in tank T3 for all
scenarios f [i], i = 0, 1, 2. The profiles indicate that the ac-

Table 1. Model parameters.
A = 0.0154 m2 c1 ∼ N (1.0, 0.0025)
Sp = 5× 10−5 m2 c2 ∼ N (0.8, 0.0025)
g = 9.81 m/s2 c3 ∼ N (1.0, 0.0025)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

Time (s)

x 3 (
m

)

 

 

Nominal Scenario
Fault Scenario A
Fault Scenario B
Nominal Scenario (PC)
Fault Scenario A (PC)
Fault Scenario B (PC)

Fig. 2. Comparison between the liquid level profiles in
Tank 3 for the nominal and fault scenarios. The
profiles are predicted by the nonlinear model and
the third-order PC expansions computed using the
nominal parameter values.

tuator fault in pump P1 and the leakage in tank T2 would
lead to a notable change in the liquid level in tank T3 (the
output available for fault diagnosis). Fig. 2 also suggests
that the third-order PC expansions, whose coefficients are
estimated using 60 collocation points, provide adequate
approximation of the liquid level profiles.

Estimated probability density functions of the liquid level
in tank T3 (Fy[i] , i = 0, 1, 2) for the nominal input se-
quences are shown in Fig. 3a. The PDFs are constructed
based on 10,000 simulations of the three-tank system in
the presence of parametric uncertainties. The faults cannot
be effectively detected and isolated under the nominal
operating conditions, due to overlap of the distributions
Fy[i] , which results from the probabilistic parametric un-
certainties. On the other hand, Fig. 3b indicates that
applying the optimal input sequences computed using (10)
to the three-tank system would lead to better separation
of the distributions and, therefore, enhanced fault diagnos-
ability. The optimal input sequences were obtained while
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(b) Optimal input sequences computed by (10)

Fig. 3. Probability density functions (based on 10,000
Monte Carlo simulations) of the liquid level in tank
T3 for the nominal and fault scenarios at 3000 s.
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considering input and state constraints on the nominal
system. However, Fig. 3b shows that the liquid level x3

may violate its upper bound (0 ≤ x3 ≤ 0.75) due to para-
metric uncertainties. Constraint violations under proba-
bilistic uncertainties can be mitigated by incorporating
chance constraints into Problem 2 (e.g., see (Mesbah et al.,
2014)). The simulation results indicate the capability of
the proposed active fault diagnosis approach to improve
fault detectability and isolability in the presence of prob-
abilistic uncertainties through the optimal design of input
sequences.

6. CONCLUSIONS

A probabilistic approach for active fault diagnosis of
nonlinear systems with probabilistic, time-invariant un-
certainties is presented. The approach uses polynomial
chaos expansions for uncertainty propagation, which leads
to a computationally tractable formulation. The Bhat-
tacharyya coefficient is used to define a metric that quan-
tifies the degree of overlap between output distributions
of random variables pertaining to multiple fault scenarios.
The auxiliary input design problem is formulated in terms
of a nonlinear optimization that considers hard input and
state constraints to promote safe system operation during
fault diagnosis.
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