
Using Ontologies for Solving Cross-Domain
Collaboration Issues

Matthieu Perin ∗ Laurent Wouters ∗

∗ CEA, LIST, Lab. of Model Driven Engineering for Embedded Systems,
F-91191 Gif-sur-Yvette, France

(e-mail: matthieu.perin@cea.fr, laurent.wouters@cea.fr).

Abstract: In a Model-Driven Engineering methodology, the design phase of a product involves
the creation of models in multiple domains. A current industrial issue is the integration
of domain-specific models in order to homogeneously design the product from the different
perspectives. For example, testing a product (e.g. a plane) based on its model is easier and
cheaper, but requires the domain-specific representations to be integrated. This paper proposes
to solve this integration issue through the use of OWL ontologies. It emphasizes the importance
of taking care of the behavioral semantics of the domain-specific models and provides a solution
based on the xOWL language, used for the expression of behaviors within ontologies. This
paper is supported by a case study, extracted from the industry, about the multiple domains of
expertise involved in the design of an aircraft’s cockpit.

1. INTRODUCTION

Domain-Specific Modeling Languages (DSMLs) are widely
used by experts to describe concepts, objects and even
behaviors during the early design phase of a product.
Due to historical choices, domain-specific languages are
generally well adapted for their own domain but lack
possibilities of exchange with other DSMLs (Venkatesh
et al. [2003]). As the complexity of design increases, some
issues of communication and collaboration across related
domains also appear more frequently. Previous works have
proposed methodologies and languages, sometimes based
on ontologies, to allow the translation of models from a
domain to another (Herdebolle [2008], Baudry et al. [2011]).

When faced with multiple domain-specific languages, the
heterogeneous modeling approaches in Figure 1 focus on
the integration of models expressed in the languages. This
integration can be difficult and has to be repeated each time
we need a global model integrating all the models expressed
in the different domain-specific languages. Instead, we can
focus on the integration of the languages themselves so
that all models would be expressed at the same time in
compatible languages. This approach called the syntactic
and semantic merge of the languages is summarized in
Figure 2. In a syntactic and semantic merge approach, it
is possible to express a single model that readily spans
all the domains addressed by the original DSMLs. A
consequence of a syntactic and semantic merge approach
is that it will avoid the issue of heterogeneous modeling
because there is only one kind of model, always expressed
in the syntactically and semantically merged modeling
language spanning multiple domains. In a sense, a syntactic
and semantic merge approach brings the heterogeneous
modeling issue at the language level in order to avoid it
afterwards at the level of the models.

The term “syntactic and semantic merge” hints at the fact
that the approach is really two-folds: First, all the models

produced by the experts must be linguistic instances of the
same modeling language. Otherwise, this is equivalent to
having heterogeneous models that need to be integrated.
This issue is called the syntactic merge of the DSMLs.
Second, the DSMLs must be semantically aligned so that
concepts in one can match concepts in another. This is
required as the DSMLs will have connections between each
other.

Theses solutions have proven to be useful despite the
behavioral side of DSMLs generally being comments. The
work presented here is based on an extension of the OWL
ontology language named xOWL (Wouters and Gervais
[2011]). It allows behavioral interactions between models
built with different DSMLs. The methodology is presented
in Figure 4.

This paper presents an example of behavioral interactions
between domain-specific models to solve a cross-domain
issue in the avionic domain. Section 2 first briefly presents

mappings / transformations / composition

DSML1 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML2 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML3 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

Artifact1 Artifact2 Artifact3

Linguistic instance-of

Fig. 1. Heterogeneous Modeling

Syntactic and Semantic Merge

DSML1 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML2 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML3 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

Artifact

Linguistic instance-of

Fig. 2. Syntactic and semantic merge of DSMLs

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 7837

the possible methodologies for this issue, as well as how it is
solved using the xOWL approach. Section 3 then presents is
application to a case study, extracted from the aeronautic
industry, about the multiple domains involved in the design
of an aircrafts cockpit. Section 4 finally concludes and gives
some perspectives on the present proposal.

2. METHODOLOGIES

As presented in the previous section, this paper focuses on
solving the cross-domain collaboration issue through the
integration of the Domain-Specific Modeling Languages
themselves, as opposed to the integration of the models
expressed in them. The expected benefits are 1) a gain
in formal correctness by focusing on the semantics of the
actual languages and 2) a trivial communication between
the domain-specific models, which will have to be repeated
throughout the design phase of a product.

2.1 Syntactic and Semantic Merge of DSMLs

The semantic alignment of the DSMLs is called the
semantic merge. It means that all the DSMLs share
common semantics ensuring the consistency of models
spanning multiple domains. A good starting point to
achieve this objective is to represent the DSMLs as
ontologies. This reduces the issue to the one of ontology
mapping.

The mapping of ontologies is defined in Kalfoglou and
Schorlemmer [2002] as “the task of relating the vocabulary
of two ontologies that share the same domain or discourse in
such a way that the mathematical structure of ontological
signatures [...] are respected.” The semantic merge of
DSMLs using ontology mappings then consists in expressing
the abstract syntaxes of the considered DSMLs in an
ontological language, for example OWL, and finding the
adequate transformations. An important point of ontology
mapping approaches is that the behavioral aspects of
the different DSMLs are ignored in that the complete
abstract syntaxes of the DSMLs are expressed using
an ontological language that only maps to declarative
semantics. Two broad classes of approaches address the
mapping of ontologies:

Ontology Merging, which consists in merging all the
considered ontologies into a single one Fernández-Breis
and Mart́ınez-Béjar [2002], Calvanese et al. [2001], Stumme
and Maedche [2001], Kalfoglou and Schorlemmer [2002],
Noy and Musen [2000], Doan et al. [2004]. The approaches
in this category perform a syntactic and semantic
merge by resulting in a single ontology representing the
integrated abstract syntaxes of all the considered DSMLs.
Semantic Bridges, which consists in the definition of
semantic mappings (or bridges) between the considered
ontologies Maedche et al. [2002], Kiryakov et al. [2001],
Mitra and Wiederhold [2002], Compatangelo and Meisel
[2002]. The approaches in this category only perform a
semantic merge because they only focus on the semantic
alignment of the DSMLs. In the Model-Driven Engineering
community, several works also have identified and addressed
the problem of the syntactic and/or semantic merge of
multiple DSMLs. The earliest work in this regard is the
introduction of Semantics Units in Chen et al. [2005]. In this

approach, the authors define the notation of Semantic Unit
as a gateway for the specification of formal declarative
and operational semantics for DSMLs. Semantics Units
are always mapped to the same semantic domain, thus
realizing their semantic merge. Given a set of DSLMs, the
approach consists in building a set of Semantic Units, which
semantics can be merged.

The approach introduced in Kappel et al. [2006], Kramler
et al. [2006] goes a bit further than the previous one.
With the same problem in mind, the authors also define a
mapping of the DSMLs’ abstract syntaxes onto ontologies
in a process called “ontology lifting”. The corresponding
ontologies are then bound to an upper ontology called
the “generic ontology” in this context. Hence, the semantic
merge of the DSMLs is achieved through the mapping
of their abstract syntaxes first onto ontologies for their
respective domain and then to a generic ontology, which
is given formal semantics through the ontology modeling
language (OWL for example).

The ontology mapping approaches enables the semantic
merge of the structural aspects of multiple DSMLs but do
not address the behavioral aspects. The metamodel-based
approaches presented here address the problem in the case
where the DSMLs’ abstract syntaxes are expressed in the
MOF or UML languages. Aside from the approach based
on Semantic Units, the others also rely on the translation
or the mapping of these abstract syntaxes to ontologies,
but somehow fail to use the ontology mapping techniques
from the Semantic Web community. These approaches all
have drawbacks that prevent them to be applicable in their
current form to the problem at hand.

To conclude, an approach for the semantic merge of multiple
DSMLs with both structural and behavioral aspects could
be achieved through the reuse of an ontology merging
approach extended for dealing with behaviors. The ontology
merging approach would readily take care of the syntactic
and semantic merge problems for the structural aspect.

2.2 DSMLs Integration with xOWL

We then aim at filling in the gap by extending the OWL
language for the expression of ontologies with constructs for
the expression of behaviors. Doing so we can 1) rely on the
existing Ontology Merging approaches and 2) address the
complete range of DSMLs with behavioral semantics. For
this purpose we propose the xOWL language introduced
in Wouters and Gervais [2011].

The OWL2 language’s abstract syntax defines what can be
expressed in an ontology, which is named by an IRI and
contains axioms. It is critical to understand that OWL2 is
only able to express these axioms, which states what is true
in the domain about the entities represented by their name
(IRI). These axioms are units of information within an
ontology. It is not possible in OWL2 to describe finer grain
information than axioms, even though axioms themselves
can be expressed in complex manners. The OWL2 language
proposes a wide range of axioms for expressing complex
hierarchies of classes and properties, as well as complex
classes using so-called class expressions.

The xOWL language extends OWL2 with an action
language designed for the expression of algorithms. For

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7838

this purpose it exposes classical imperative statements
such as branch instructions and loops, with the addition
of some functional features, lambda expressions in this
case.For example, the xOWL language is able to express
the algorithm for the simulation of state machines that will
be used in this paper.

The state machine used in this work are close to the
UML Ones (OMG [2004]), complete semantic will not be
presented here but a short presentation is given below. State
machine are based on States -including an initial one with
an incoming non-sourced transition- and Transitions that
can be fired when: their source state is active, their guard
-in brackets, using | as a logical or and & as a logical and-
are satisfied -equation evaluated to true- and the incoming
signal is present. The results of a transition firing are the
active state change -from source state to target state- and
the outputs -after the / symbol, separated with a coma-
application: assignations are taken into account -described
using the := symbol- and output signal are emitted. In the
figure 3, the initial states of state machines A and B are
respectively states 1 and A. To take transition from State
1 to state 2, the Signal sig1 must me present (emitted by
another state machine) and ,as no guard is present, the
outputs will be applied: Boolean variable A will be set to
true and signal Sig2 will be emitted, leading to the firing
of transition from state A to State B in state machine B.

Sig1 /A := true, Sig2

State 1

State A

State 2

State B

Sig2/ B:=true, clock := 0
[clock == 1]/
clock == 0,
 x = x + 1

Sig3 [B & x > 5]/
A := false, Sig2

[A]/Sig3

SM A
SM B

Fig. 3. Example of state machine A and B

xOWL Abstract Syntax

Semantic Domain

Semantic Mapping

OWL2
Action

Language

Description
Logics

Linguistic instance-of

Structural
Operational
Semantics

DSML1 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML2 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

DSML3 Abstract Syntax

Structural
Constructs

Behavioral
Constructs

Merged xOWL Ontologies

Structural
Constructs

Behavioral
Constructs

Ontology Mapping +
Behavior Mapping

Fig. 4. Semantic integration of DSMLs with xOWL

In the present approach, summarized in Figure 4, the
syntactic and semantic merge of the considered DSMLs
is achieved with the following steps. First, the software
engineers need to express the abstract syntaxes of all
the DSMLs as xOWL ontologies, including the behavioral
elements using the xOWL action language. Second, the
semantic merge of the structural features, i.e. pure OWL2,
of the ontologies is realized. This includes the structural
representation of conceptually behavior-related concept.
At this point, it is possible to rely on any of the ontogy
mapping approaches identified above. xOWL is agnostic
regarding the particular method that is used for this
purpose. Third, the semantic merge of the behavioral
features is realized. This is usually achieved through the
definition of new pieces of behavior that will make bridges
between the behaviors of the different domain. Fourth, the
syntactic merge of the DSMLs is achieved by considering
that the representation of all the abstract syntaxes as
xOWL ontologies, plus the bridges, define a coherent and
integrated abstract syntax of a single modeling language
that spans all the original domains.

In addition, this approach does not use ontologies only as
a representation of the abstract syntaxes of the DSMLs,
but also as a representation of the models conforming to
them. Each domain model expressed in one of the DSML
is also in fact expressed as an ontology. The linguistic
relationships between the models and the DSMLs are
materialized in the ontologies as ontological instantiations.
Doing so, this approach has the following properties: First,
the syntactic merge of the DSMLs is easy to realize because
all models will be expressed as ontologies and the merged
xOWL ontologies of the DSMLs’ abstract syntaxes are
simply “upper” ontologies. Second, the syntactic merge in
this approach ensures that models coming from different
domains are still separated and can still be used separately
with only the language for their respective domain. This is
due to the fact that the xOWL ontologies for the DSMLs are
not modified by the merge process, only new information
(the bridges) is added. These properties will be made more
explicit in the following Section that validates this approach
by applying it on the use case presented in Section 3.

3. CASE STUDY: AN AVIONIC COCKPIT

An important property of aircrafts is that they are designed
to be used by professionals with adequate training. The
professionals (i.e. the pilots) have to interact with the
aircrafts through specific procedures. The procedures are
designed, validated and certified to ensure the safety of
both the aircraft and its operators. A striking property of
the procedures is that they are themselves safety-critical.
In this point of view, even the most simple action -like
pushing a button- has to be considered a part of a complete
safety-related context. The completion of any procedure
also depends of the level of stress of the pilots, which is
also related to the easiness of manipulating the buttons.

The case study in this paper is how such a simple button,
one of the core elements of the Cockpit Interfaces Domain,
has to be taken into account in the Pilot’s Procedures
Domain and the Human Sciences Domain due to the
level of stress induced by its manipulation. The three
domains presented below are about different aspects of

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7839

the same central concern, the representation of human-
machine interactions in a cockpit. The objective of the
domain experts is to put together their work so that it
is possible to have cross-domain analysis of the human-
machine interactions. In this paper, the evaluation of a
procedure in term of stress impact for the pilot will be the
cross-domain chosen issue. For the sake of readability, all
the behaviors presented in this section are using a state
machine formalism although it may not be the source
behavior model used by expert in each domain.

3.1 Cockpit Interfaces Domain

Experts in this domain have to define the behavior of
the components within a cockpit. They only consider the
independent behavior of each category of components. In
this case study, only the behavior of Guarded Button will
be used, it is described as follow: The default state is
Guarded and Inactive. When a user Lift the Protection,
it becomes Unguarded. When Unguarded a user can
Push the button, which makes it cycle through the
Inactive and Active states. This kind of behavior is
best represented with state machines. For example the
button for navigation Lights is shown in Figure 3.1. This
state machine has four states (NavLightsGuardedInactive,
NavLightsUnguardedInactive, NavLightsUnguardedActive,
NavLightsGuardedActive), reacts to three input signals
(P NavLights LIFT, P NavLights LOWER -P stands for
protection here-, and B NavLights PUSH -B stands for
Button here-). Depending on the state, the light associated
to the button is visible -L NavLights for Light of Navigation
Lights- and the button is protected -P NavLights for
Portection of Navigation Lights- or not. This behavior
essentially focuses on the physical low level description
of the button and is based on concept such as Physical
action, Light, Button and Protection.

P_NavLights_LIFT/
P_NavLights := false

B_NavLights_PUSH/
L_NavLights := true

NavLights
Guarded
Inactive

NavLights
Guarded

Active

NavLights
Unguarded

Inactive

NavLights
Unguarded

Active

P_NavLights_LOWER/
P_NavLights := true

B_NavLights_PUSH/
L_Navlights := false

P_NavLights_LIFT/
P_NavLights := false

P_NavLights_LOWER/
P_NavLights := true

Fig. 5. Example of state machine for Navigation Lights

3.2 Pilot’s Procedures Domain

Experts in this domain build procedures with varying levels
of details. Some low-level procedures describe how a pilot
can access a certain value in the embedded software. These
procedures specify in details which cockpit components the
pilot has to activate in order to complete a procedure. Low-
level procedures will be reused by the experts to define more
high-level procedures describing the achievement of high-
level goals in the cockpit. Pilot’s procedures may not be
unique to achieve a high-level goals: domain experts need to
represent this variety as the chosen one may vary from the
safest to the quickest depending on the situation. Therefore,

domain experts need to evaluate the time consumption and
the stress induced by a procedure to choose the best suited.

In this case study the procedure to respond to a wing
fire will be used. It is expressed as follow: Switch OFF
Navigation Lights, Switch OFF Strobes Lights, Switch OFF
Pilot Heat (heating of pilot probes in the wings), Ti side
Slip away from fire and to Land ASAP. This procedure has
been described using the Domain-Specific Language and
then translated into the state machine presented in Figure
6 using xOWL. In this state machine, the seven states
describe the several steps of the procedure (starting from
ProcedureStart, trough Step1Complete, Step2Complete,
Step3Complete, Step4Complete until the last step Pro-
cedureComplete closing to finally ProcedureExited) and
emit signals to act represents needed action from the pilot
(NavLights OFF, Strobes OFF, PilotHeat OFF, SideSlip,
ELandingReq -for Emergency Landing Request-) and to de-
clare starting and ending of the procedure (EmerProc Start
-for Emergency Procedure Start- and Proc Exit). This
behavior focuses on high level interactions between pilots
and the aircraft, concepts such as Procedure and Pilot
action are used.

Step 1
Complete

/NavLights_OFF
Procedure

Start

Step 4
Complete

Step 2
Complete

/Strobes_OFF

Step 3
Complete

/ PilotHeat_OFF

/ELandingReq / SideSlip
Procedure
Complete

/EmerProc_Start

Procedure
Exited

/Proc_Exit

Fig. 6. Pilot Procedure

3.3 Human Sciences Domain

Human Sciences do not form a single and consistent domain.
However, in the context of this use case, the term refers to
a small cluster of fields: physical and cognitive ergonomics.
Physical ergonomics focuses on the tangible aspects of the
human-machine interfaces and uses studies to validate that
all the interfaces are easily accessible to the pilots from
their seat.

The actuation sub-domain describes how humans make
changes to their environment. The experts in this sub-
domain represent the human limbs’ capabilities. For ex-
ample, human hands are able to PUSH, PULL, ROTATE,
GRIP and so on. In this case study, this domain-specific
language will explain the link between an pilot action a and
the physical and logical actions that as to be performed -and
associated stress-, in relation with the chosen technology in
the cabin. The result is presented here in the form of a state
machine in Figure 7. It is limited to the actions to be per-
formed when the pilots have to check that Navigation lights
are OFF (input signal NavLights OFF), states represents
the state of mind of the pilot in relation with the asked
action (start at Idle, then evolve to NavLightsToCheck,
NavLightsStateKnowed, and then depending on the status
of the Navigation Lights Button: NavLightsInactive, Nav-
LightsUnguardedInactive, NavLightsUnguardedActive, and

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7840

NavLightsGuardedActive). The pilots will perform actions
related to the global environments (H Obs NavLights -
stands for Human Observe Navigation Lights button status-
and H MovTo NavLights -stands for Human Move Hands
to reach the Navigation Lights button-) and the button
manipulation (NavLights P LIFT, NavLights P LOWER,
and NavLights B PUSH). When observing the Naviga-
tion Lights button, pilots will determine is status using
human related variables NavLights A -Navigation Lights
Active-, NavLights NA -Navigation Lights Non Active-
, NavLights B P -navigation Lights Button Protected-
, and NavLights B NP -navigation Lights Button Non
Protected-. For each action to perform, a stress level
increase (S A LVL -Stress Addition Level-) is set and and
output (ActionPerfom) is send to signal that an action as
been taken (and thus some stress addition level have to
be taken into account). This part of the domain mainly
use concepts around Human physical action, Human
observation, and Stress.

NavLights_OFF

[NavLights_NA]

Idle

NavLights
Guarded

Active

NavLights
To Check

NavLights
Inactive

[NavLights_A]
/ H_MovTo_NavLights, S_A_LVL := 4, ActionPerform

NavLights
State Knowed

/H_Obs_NavLights,
S_A_LVL := 4,
ActionPerform

NavLights
Unguarded

Inactive

NavLights
Unguarded

Active

[NavLights_B_P]
/NavLights_P_LIFT,
S_A_LVL := 2,
ActionPerform

/NavLights_B_PUSH, S_A_LVL := 2, ActionPerform

/NavLights_P_LOWER, S_A_LVL := 2, ActionPerform

[NavLights_B_NP]

Fig. 7. Human action related to the switching of a button
StateMachine.

The cognitive ergonomics field focuses on the analysis of
factors such as stress, fatigue and workload on the pilot’
performances: The heavier the workload is; the likelier pilots
are to commit errors. The cognitive ergonomics ensure
that the workload is still reasonable for the pilots and
is evenly distributed between the flying and non-flying
pilots. The state machine shown in Figure 8 represents the
evolution of the stress level of a pilot performing actions
without any break time. The stress of the pilot during the
execution of a procedure is modeled by states (NoProc
when no procedure are used, ProcStart when a procedure
has started and from NoStress, LowStress, High Stress to
CriticalStress), the stress levels are defined using a stress
level variable (S LVL, using guard with limits from 25,
60 to 80) incremented each time an action is performed
(input signal ActionPerform, the stress addition Level is
added to the stress Level). If the stress level reaches a
maximum level, a critical stress state of mind is reached
and the safety is no more guaranteed (forbidden state).
The stress level decreases with time when the pilot is idle
(S LVL lose S R LVL -for Stress remove Level- any DT
time delay). Starting an emergency procedure is itself a
stressful action (has something visibly go wrong during
the flight) and thus will rise the stress level (when input
signal EmerProc Start arrive, the stress level is raised by
25). This other part of the domain uses on concepts such
as Stress Level, Human rest behavior, and Human
reaction.

Critical stress

Proc_Exit ActionPerform
/ S_LVL := S_LVL +
S_A_LVL

[S_LVL >= 25]
/ S_LVL_LOW

No Stress

Low Stress

High Stress

[S_LVL >= 60]
/ S_LVL_HIGH

ActionPerform
/ S_LVL := S_LVL +
S_A_LVL

ActionPerform
/ S_LVL := S_LVL +
S_A_LVL

[S_LVL >= 80]
/ S_LVL_CRIT

No Proc

Proc Start

[S_LVL < 25]/ S_LVL_NO

[S_LVL >= 25 & S_LVL < 60]
/ S_LVL_LOW

Proc_Exit

EmerProc_Start
/ S_LVL := S_LVL + 25 [S_LVL >= 60 & S_LVL < 80]

/ S_LVL_HIGH

Proc_Exit

[S_LVL >= 80]
/ S_LVL_CRIT

NormProc_Start

[Clock == DT]
/ S_LVL := S_LVL - S_R_LVL,
Clock := 0

Fig. 8. Modeling a pilot’s stress level

3.4 Domains Integration

For each domain, a xOWL ontology representing the
abstract syntax of the corresponding DSML is built. Up
to now, the three xOWL ontologies are independent and
represent domains that are not related (in their ontological
representations). The semantic merge of these domains
consists in their integration into a single consistent xOWL
ontology. In this example this is achieved by the description
of the relations between concepts from different domains.
For more complex applications, the use of an existing
approach to ontology merging would be useful. Because
there are only three domains in this application case, their
semantic integration has been achieved pairwise.

Pilot’s Procedures and Cockpit Interfaces The Pilot’s
Procedures domain does not go too deep into the details
of what exactly are the entities that are interacting. It is
clear that there should be a relation between the Pilot
action concept and the Physical action. In practice,
based on the technology of the Button and Protections,
the Pilot action will be detailed into sets of possible
Physical action. The fact that Pilot action also consider
the state of the Button (switching OFF a button included
the knowledge of the state of the button) implies a link
between the Pilot action concept and the Light concept.
In our case study, the Pilot action NavLights OFF will
be related to the NavLights Button.

Cockpit Interfaces and Human Sciences The Cockpit
Interfaces and Human Sciences domain are nearly disjoint.
Nevertheless, in order to be able to decide what to do, pilots
base their Human physical action on their Human
observation, which in fact depends on the Light and
Protection state of the Buttons. In our case study, for
example the Human observation NavLights A is related
to the value of variable L NavLights of the Light of
the NavLights Button. The Human physical action
NavLights P LIFT is to be linked to the Physical action
P NavLights LIFT of the Protection concept.

Pilot’s Procedures and Human Sciences On one hand, the
Pilot’s Procedure domain defines the Procedure as a set of
Pilot action that as to be performed. On the other hand,
the Human Sciences domain defines the Human physical
action and Human observation humanly possible. In
the context of the application case, the human pilots will

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7841

uses both physical actions and observations to perform
the high level actions described in the procedure. Based
on the set of low level physical and logical actions taken
by the pilots, the stress level increase associated to a
procedure may be calculated using the concepts of Stress,
Stress Level, Human rest behavior, and Human
reaction. The Pilot action NavLights OFF is in fact
the complete behavior of Human physical action and
Human observation represented in Figure 7.

Solving stress level issue Once the links between all
concept are effective, the whole set of behaviors are
simulated to determine the stress level increase due to
the emergency procedure for wing fire. The impact of using
a guarded button may be measured, as for the order of
the procedure in regard to the movement -and associated
stress increase- needed to go from one button to another.

4. CONCLUSION

The approach presented in this paper allows software
engineers to integrate multiple DSMLs so that experts from
different domains can build models conceptually expressed
in all of them at the same time. Doing so we will avoid
having to integrate heterogeneous models (expressed in
different languages) when we need to run tests and/or
simulations. The main advantage of this approach is that
it builds on the existing ontology merging approaches with
the added features for behaviors. The integration of the
DSMLs is a one-time effort whereas the integration of
heterogeneous models each time a global artefact is needed
can be more time and/or resource consuming.

Fortunately, by leveraging the expressiveness of the OWL2
language, software engineers are able to express complex
relations between different DSMLs. For example, a class
in domain A can be equivalent to the intersection of two
other classes in domains B and C. Still some relations
cannot be expressed. For example, a single class in domain
A that corresponds to the aggregation of two other classes
in domain B.

The main drawback is then that the integration of the
DSMLs has to be achieved before any model can be
expressed. This means that it is difficult to integrate in
this approach models that have already been expressed
in one of the DSMLs because this is going back to the
heterogeneous modeling approach. Hence, it is often not
possible to reuse models that have been expressed in a
DSML prior to its integration with the other considered
DSMLs. In an industrial context where this approach is
applied, this can become problematic. However, bridging
the gap between the approach proposed here and the
heterogeneous modeling approaches is a research objective.

REFERENCES

B. Baudry, B. Combemale, J. DeAntoni, and F. Mallet.
Study on Heterogeneous Modeling, Action Spcifique 2011
du GDR GPL. Technical report, Centre National de la
Recherche Scientifique, 2011.

D. Calvanese, G. De Giacomo, and M Lenzerini. Ontology
of Integration and Integration of Ontologies. In Interna-
tional Description Logics Workshop, volume 49 of CEUR
Workshop Proceedings. CEUR-WS.org, 2001.

K. Chen, J. Sztipanovits, S. Abdelwahed, and E. K. Jackson.
Semantic Anchoring with Model Transformations. In
ECMDA-FA, 2005.

E. Compatangelo and H. Meisel. Intelligent Support to
Knowledge Sharing Through the Articulation of Class
Schemas. In In Proc. of the 6th Intl. Conf. on Knowledge-
Based Intelligent Information & Engineering Systems.
IOS Press, 2002.

A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy.
Ontology Matching: A Machine Learning Approach. In
Handbook on Ontologies, International Handbooks on
Information Systems. Springer, 2004.

J. T. Fernández-Breis and R. Mart́ınez-Béjar. A Coopera-
tive Framework For Integrating Ontologies. International
Journal on Human-Computer Studies, 56:665–720, 2002.

Cécile Herdebolle. Composition de Modles pour la Modli-
sation Multi-Paradigme du Comportement des Systmes.
PhD thesis, Universit Paris-Sud, 2008.

Y. Kalfoglou and W. M. Schorlemmer. Information-Flow-
Based Ontology Mapping. In CoopIS/DOA/ODBASE,
volume 2519 of Lecture Notes in Computer Science, pages
1132–1151. Springer, 2002.

G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter,
W. Retschitzegger, W. Schwinger, and M. Wimmer.
On models and ontologies - a semantic infrastructure
supporting model integration. In Modellierung. GI, 2006.

A. Kiryakov, K. Ivanov Simov, and M. Dimitrov. OntoMap:
Portal for Upper-Level Ontologies. In FOIS, 2001.

G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Rets-
chitzegger, and W. Schwinger. Towards a semantic
infrastructure supporting model-based tool integration.
In Proceedings of the 2006 international workshop on
Global integrated model management. ACM, 2006.

A. Maedche, B. Motik, N. Silva, and R. volz. MAFRA
- A MApping FRAmework for Distributed Ontologies.
In Knowledge Engineering and Knowledge Management,
volume 2473 of Lecture Notes in Computer Science, pages
235–250. Springer, 2002.

P. Mitra and G. Wiederhold. Resolving Terminological
Heterogeneity in Ontologies. In ECAI Workshop on
Ontologies, 2002.

N. Fridman Noy and M. A. Musen. PROMPT: Algo-
rithm and Tool for Automated Ontology Merging and
Alignment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Confer-
ence on Innovative Applications of Artificial Intelligence,
pages 150–455. AAAI Press / The MIT Press, 2000.

OMG. Unified Modeling Language. Technical Report 2.0,
OMG, 2004.

G. Stumme and A. Maedche. Ontology Merging for Feder-
ated Ontologies on the Semantic Web. In Proceedings of
the International Workshop for Foundations of Models
for Information Integration, 2001.

V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis.
User acceptance of information technology: Toward a
unified view. MIS Quaterly, 27:425–478, 2003.

L. Wouters and M.-P. Gervais. xOWL an Executable
Modeling Language for Domain Experts. In Proceedings
of the 15th IEEE International Enterprise Distributed
Object Computing Conference. IEEE, 2011.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7842

