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Abstract: We propose a recursive generalized total least-squares (RGTLS) estimator that is
used in parallel with a noise covariance estimator (NCE) to solve the errors-in-variables problem
for multi-input-single-output linear systems with unknown noise covariance matrix. Simulation
experiments show that the suggested RGTLS with NCE procedure outperforms the common
recursive least squares (RLS) and recursive total instrumental variables (RTIV) estimators when
all measured inputs and the measured output are noisy. Moreover, when all measured inputs are
noise-free, RGTLS with NCE performs similarly to RLS, which in this special case is the optimal
estimator, and again RTIV was inferior compared with the RGTLS and NCE procedure.
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1. INTRODUCTION

Unbiased estimates of unknown parameters (X) are re-
quired in many multi-input-single-output (MISO) problems.
The common recursive filters, such as recursive least squares
(RLS) or the Kalman filter (KF), solve the constrained
perturbation problem. This problem is known as output
error model and corrections were solely applied to the
measured output (B). However, RLS and KF are known
to produce biased estimates if the measured inputs (A)
are noisy. In this case, the unconstrained perturbation
problem, or precisely the errors-in-variables (EIV) model,
is preferred. EIV methods can be divided into two classes.
The first class requires knowledge of the noise covariance

matrix (‹P ). The bias-compensating RLS algorithm by
Ding et al. [2006] adds a correction term, that is built
from the noise variance and a cross-correlation matrix and
adjusts the estimates. Furthermore, numerous recursive
total least-squares algorithms based on the minimization of
the Rayleigh quotient (RQ) were proposed by Davila [1994];
Feng et al. [2004]; Lim et al. [2005]; Feng and Zheng [2007];
Arablouei and Dogancay [2012]. All of these methods try to
solve the EIV problem with a cost function that considers
data corrections in all elements of the augmented data (Z).
In the second class, the bias in the parameter estimates

(“X) is reduced by properly chosen instruments (A). A
recursive total instrumental variables (RTIV) estimator was
introduced by Feng and Zheng [2007]. The main advantage
of instrumental variables (IV) methods is that no knowledge

of ‹P is required. An extensive overview of EIV methods is
given by Söderström [2007].

After a brief review of the output error model and
the RLS filter in Sec. 2, the EIV model is presented in

? The associated Matlab code can be downloaded from:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000038517

Sec. 3. The proposed recursive generalized total least-
squares (RGTLS) estimator in Sec. 3.1 falls into the

first class, where knowledge of ‹P is required. As ‹P
is commonly unknown in practice, we present a noise
covariance estimator (NCE) in Sec. 3.3 that is based on
a novel polynomial Kalman smoother (PKS) described in
Sec. 3.2. We use simulation experiments with two noise
settings in Sec. 4 to compare the results of RLS, RTIV, and
RGTLS with NCE in Sec. 5 and finish with conclusions.

2. OUTPUT ERROR MODEL

The constrained perturbation problem is

AX ≈ B, B = B + ‹B, (1)

with the true input (A), A ∈ Rm×n unknown X, X ∈ Rn×1

and B, B ∈ Rm×1, that consists of the true output (B) and

output noise (‹B). The noise covariance matrix of dimension‹P ∈ Rq×q with q = n + 1 is assumed as diagonal matrix

where only the last element ‹Pq,q is greater than zero and
σ2 is an unknown multiplier.

diag(‹P ) = σ2[0, . . . , 1]> (2)

The assumption in (2) is rather restrictive and will result
in biased estimates if there is any kind of noise correlation

or if input noise (Ã) is present. The well-known RLS
estimator [Ljung, 1999, 365] is shown in Alg. 1. RLS is
the exponentially weighted recursive version of batch least
squares (LS) with the cost function and closed-form solution
[Ljung, 1999, 206]

min
X,B̂∈Rm×1

‖B − “B‖2, s.t. AX = “B (3a)“X = (A>A)−1A>B. (3b)
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Alg. 1: Recursive least squares (RLS)
1 for t← 1 to m do

input: “Xt−1, Pt−1, At, Bt, λ

2 Lt =
(
Pt−1A

>
t

)(
λ+AtPt−1A

>
t

)−1
3 “Xt = “Xt−1 + Lt

Ä
Bt −At“Xt−1

ä
4 Pt = (I − LtAt)Pt−1 1

λ

output: “Xt, Pt

3. ERRORS-IN-VARIABLES MODEL

The unconstrained perturbation problem

AX ≈ B, A = A+ Ã, B = B + ‹B (4)

is known as EIV model and considers input noise and
output noise. Generally speaking, EIV is a more realistic

perturbation model, but requires knowledge of ‹P . Total
least squares (TLS) is the optimal estimator if‹P = σ2I. (5)

That means the noise is independently identically dis-
tributed (i.i.d.), Markovsky and Van Huffel [2007]. This
condition is as restrictive as (2) in the output error model.
However, there are weighted versions of TLS that can

handle any ‹P that is created from noise with zero mean and
normal distribution, Markovsky and Van Huffel [2007]. And
some of these estimators, specifically generalized total least
squares (GTLS), yield the maximum likelihood estimates
for EIV problems with a closed-form solution if the problem
can be formulated as

min
X,Ẑ∈Rm×q

‖Wl(Z − Ẑ)Wr‖F s.t. Ẑ

ï
X
−I

ò
= 0, (6)

with Z = [A,B] and Ẑ = [Â, “B], respectively. One can
use the left weighting matrix (Wl) as diagonal matrix that
considers the row-wise exponential forgetting diag(Wl) =
[. . . , λ2, λ1, λ0]> and compute the right weighting matrix

(Wr) from the Cholesky factor (C) of ‹P in the sense that

Wr transforms Z and Ẑ into Z ′ and Ẑ ′ where any ‹P 6= σ2I

becomes ‹P ′ = σ2I (i.i.d.) and TLS is the optimal estimator.
Alg. 2 shows the GTLS solution by data scaling through

Cholesky factorization (chol(·)) of ‹P , Schuermans et al.
[2005]. Recursive versions of GTLS with data scaling were
shown in Kubus et al. [2008]; Rhode and Gauterin [2013].
These algorithms replace the batch svd(·) in Alg. 2 line 4
with efficient svd(·) update schemes, Brand [2002, 2006]; Gu

Alg. 2: Generalized total least squares (GTLS)

input: A,B, ‹P
1 C = chol(‹P )

2 Wr = C−1 :=

ï n 1

n Wr11 Wr12

1 0 Wr22

ò
3 Z ′ = [A′, B′] = [A,B]Wr

4 ∼ S′V ′> = svd(Z ′)

5 V ′ :=

ï n 1

n V ′11 V
′
12

1 V ′21 V
′
22

ò
6 “X =

Ä
Wr11(−V ′12V ′22

−1
)−Wr12

ä
Wr
−1
22

output: “X

and Eisenstat [1993]. A drawback of data scaling is that one
cannot assume one or more measured inputs as noise-free,
because a scaling with zero would neglect these measured
inputs. However, these algorithms provide a closed-form
solution.

The majority of recursive total least-squares algorithms use
power methods, such as inverse iteration (II) or Rayleigh
quotient iteration (RQI). Davila [1994] showed that the
minimization of the generalized Rayleigh quotient (GRQ)

min
V:,q

V >:,q(Z
>Z)V:,q

V >:,q‹PV:,q (7)

provides the eigenvector V:,q that corresponds to the
smallest eigenvalue Sq,q. And this eigenvector is involved in
the GTLS solution. The notation V:,q means all (:) rows in
the rightmost (q-th) column of V and Sq,q the last element
of S.

Lemma 1. The minimization of (7) results in asymptot-
ically unbiased and consistent GTLS solution X in case
of additive, zero mean, Gaussian noise and known noise
covariance matrix up to a multiplier by the substitution
of V:,q with [X>,−1]> and the substitution of Z>Z with
the expectation (E) of the sample cross-correlation matrix
(R) for large enough t, where

Rt =
1

t

t∑
i

Z>i Zi. (8)

Proof. See Proof of Theorem 1 in Davila [1994] for the
substitution of Z>Z with E(Rt) and Sec. B in Feng et al.
[2004] for the substitution of V:,q with [X>,−1]>.

Hence, as shown in Feng et al. [2004], the eigenvector V:,q
can be replaced with [X>,−1]> in (7) and the minimization
simplifies to the constrained generalized Rayleigh quotient
(CGRQ)

min
X

[X>,−1](Z>Z)[X>,−1]>

[X>,−1]‹P [X>,−1]>
. (9)

Following [Golub and Van Loan, 1996, 465], one can solve
(7) with generalized inverse iteration (GII) as shown in
Alg. 3. It is obvious that the while loop in Alg. 3 line 3 does
not allow a closed-form solution, but GII converges in the
most cases very fast within a few iterations. Because of
that, GII is suitable for online algorithms assuming that
for each time step one iteration is sufficient to follow the
smallest eigenvector.

Alg. 3: Generalized inverse iteration (GII)

input: Z, ‹P
1 V:,q;t = [1, 1, . . . , 1]>

2 V:,q;t−1 = [0, 0, . . . , 0]>

3 while ‖V:,q;t−1 − V:,q;t‖2 > threshold do
4 V:,q;t−1 = V:,q;t

5 V:,q;t = (Z>Z)−1(‹PV:,q;t)
6 V:,q;t = V:,q;t/‖V:,q;t‖2
7 “X = −V1:n,q;t/Vq,q;t

output: “X
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3.1 Recursive generalized total least squares (RGTLS)

The herein proposed RGTLS algorithm that is shown in
Alg. 4, is based on the optimization procedure (9) and
the recursive update of the augmented data covariance
matrix. Apart from using Zt instead of At, the update in
Alg. 4 line 3 conforms with Alg. 1 line 4. The constrained
generalized inverse iteration (CGII) is performed in Alg. 4

from line 4–line 5 and ‹P is replaced with an estimated noise

covariance matrix (ÙP ). ÙP can also be used as fixed user
input in the form of (2) for a RLS solution or (5) for a

RTLS solution. A method for the estimation of ÙP is shown
in Sec. 3.2 and Sec. 3.3.

Alg. 4: Recursive generalized total least squares
(RGTLS)
1 for t← 1 to m do

input: “Xt−1, Pt−1, Zt, ÙPt, λ
2 Lt =

(
Pt−1Z

>
t

)(
λ+ ZtPt−1Z

>
t

)−1
3 Pt = (I − LtZt)Pt−1 1

λ

4 V:,q;t−1 = [“X>t−1,−1]>

5 V ′:,q;t = Pt(ÙPtV:,q;t−1)

6 “Xt = −V ′1:n,q;t/V ′q,q;t
output: “Xt, Pt

3.2 Polynomial Kalman smoother (PKS)

Polynomial functions have been shown suitable for extract-
ing signals from noisy time series, Savitzky and Golay
[1964]. They are able to preserve the original signal level
and have a well-defined and tunable delay.

The Savitzky Golay filter (SGF) uses convolution arrays to
obtain the smoothed signal and the smoothed derivatives
at one preselected point. Like proposed in Savitzky and
Golay [1964], we use a smoothing window with equal left
window (wl) and right window (wr) and model the signal
with a time-varying polynomial function of order n− 1.

SGF performs a weighted sum of the measured signal
within the smoothing window. Hence, SGF requires one
buffer of size wl + 1 +wr for the measured data within the
smoothing window and at least one buffer of same size for
the weights, that are derived in Madden [1978]. Additional
buffers with specific weights are required as the number of
desired derivatives increases.

We use a specific form of the Kalman filter, which we call
polynomial Kalman smoother (PKS), to extract noise from
noisy measurements. PKS is based on the principles of
SGF. The herein proposed PKS approach can be seen as
the recursive version of SGF with exponentially weighted
data. Conversely to SGF, PKS yields estimates of the
polynomial function parameters. Hence, one can evaluate
the polynomial function as well as its derivatives at multiple
points. Due to the recursive approach, PKS outperforms
SGF significantly in matters of memory.

The requirement for the polynomial function approach is
that the time series is built from auto-correlated signals.
The following procedure would fail if the signal is a random

process, because the time-varying polynomial function
would not properly model the underlying signal from the
measured signal in this case.

However, the proposed RGTLS estimator could also be used

in this case but then requires a user-defined ‹P instead of

the estimated ÙP . Note that any kind of IV estimator would
fail in this case, because the instruments are not properly
correlated with the true input, which is a requirement in
IV estimation, see Sec. 3.5.

We use the state-space representation in (10) with the
state transition matrix (A), the polynomial parameters
X and the measurement vector (C) as polynomial control
input vector and perform a random walk model [Ljung and
Gunnarsson, 1990] of the time-varying polynomial function,
while B and D are zero.

Xt = AXt−1 + BAt (10a)

Bt = CXt +DAt (10b)

For a fixed unit shift of the polynomial function, the state
transition matrix A ∈ Zn×n becomes a time-invariant
upper triangular square matrix and contains binomial
coefficients

(
n
k

)
Ai,j =

®(
j−1
j−i
)
∀j ≥ i

0 ∀j < i,
(11)

see Zima [1997] for general shifts. For instance, A yields for
a polynomial function with four parameters (third order)
to

A =

 1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 . (12)

If PKS is used a smoother with wl = wr, C is given with

C = [(wl + 1 + wr)
0, (wl + 1 + wr)

1, . . . , (wl + 1 + wr)
n−1].
(13)

The PKS algorithm is shown in Alg. 5, with the noisy
measurement Bt and the forgetting factor (λ).

Alg. 5: Polynomial Kalman smoother (PKS)
1 for t← 1 to m do

input: “Xt−1, Pt−1, Bt,A, C, λ
2 “X ′t−1 = A“Xt−1
3 P ′t−1 = APt−1A>

4 Kt =
(
P ′t−1C>

)(
λ+ CP ′t−1C>

)−1
5 Pt = 1

λ

(
P ′t−1 −KtCP ′t−1

)
6 “Xt = “X ′t−1 +Kt

Ä
Bt − C“X ′t−1ä

output: “Xt, Pt

The smoothed signal at the center of the window (wl + 1)
is gained by“Bt−wr

= [(wl + 1)0, (wl + 1)1, . . . , (wl + 1)n−1]“Xt. (14)

The estimated noise can be extracted from the measurement
with ÙBt−wr

= Bt−wr
− “Bt−wr

. (15)

Note that we need a delay of wr samples in the measured

signal B to synchronize the smoothed signal “B from PKS.
This requires additional memory for each measurement.
However, in many cases, the accuracy of smoothing with
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PKS1

PKS2

PKSn

PKSq

[At, Bt] NCE

ÛA1;tÛA2;tÛAn;tÙBt
A1;t

A2;t

An;t

Bt

RGTLS

ÙPt “Xt

Fig. 1. Block diagram of RGTLS with NCE.

equal left window and right window outperforms a filter
without right window. Nevertheless, we can modify PKS
into a filter by setting wr = 0.

3.3 Noise covariance estimator (NCE)

In MISO system identification, ÙP is a square matrix withÙP ∈ Rq×q. A simple noise covariance update formula with
forgetting is ÛZt = [ ÛA1;t, . . . , ÛAn;t, ÙBt], (16a)ÙPt = λÙPt−1 + (1− λ)( ÛZ>t ÛZt), (16b)

where (16b) is the multidimensional version of the noise
variance estimator in Zou et al. [2000].

Fig. 1 shows that we need q-independent PKS to computeÛZt in (16a). The noisy measurement Bt in Alg. 5 is A1;t for
PKS1, . . . , An;t for PKSn and Bt for PKSq.

3.4 RGTLS with NCE

Finally, Fig. 1 gives the block diagram of RGTLS with
NCE. Note that the smoothing of the q-independent PKS

is only used in NCE to compute ÙP , while RGTLS uses raw
measured data.

3.5 Recursive total instrumental variables (RTIV)

The IV method can yield bias-free estimates if the in-
struments are chosen in such a way that they are highly
correlated with A and uncorrelated with the noise [Ljung,
1999, 224]. IV estimators are easy to apply, because knowl-

edge of ‹P is not needed. The closed-form solution becomes
[Ljung, 1999, 224] “X = (A>A)−1A>B, (17)

and is very similar to (3b).

The RTIV estimator in Alg. 6 was introduced by Feng and
Zheng [2007] and is comparable with the proposed RGTLS
estimator in Alg. 4 in terms of the used II. RTIV serves as
benchmarking method for the proposed RGTLS with NCE
estimator.

4. SIMULATION EXPERIMENTS

4.1 Simulation data setup

Fig. 2 shows A and B for t = 400 s to 1000 s. In particular,
A, X, and B were generated with

Alg. 6: Recursive total instrumental variables (RTIV)
1 for t← 1 to m do

input: Rt−1, V:,1;t−1, V:,q;t−1, Zt,Zt, λ
2 Rt = λRt−1 + (Z>t Zt)

3 V ′:,1;t = R>t RtV:,1;t−1
4 S1,1;t = ‖V ′:,1;t‖2
5 V:,1;t = V ′:,1;t/S1,1;t

6 V ′:,q;t = R>t RtV:,q;t−1
7 Sq,q;t = ‖V ′:,q;t‖2
8 V ′′:,q;t = (0.5S1,1;t + Sq,q;t)V:,q;t−1 − V ′:,q;t
9 V:,q;t = V ′′:,q;t/‖V ′′:,q;t‖2

10 “Xt = −V1:n,q;t/Vq,q;t
output: “Xt, Rt, V:,1;t, V:,q;t,

a)

−1

0

1

A

A1 A2 A3

b)

400 500 600 700 800 900 1,000

−5

0

5

t (s)

B

Fig. 2. True inputs (Fig. 2a) and true output (Fig. 2b)
modeled as sine waves.

t = [1, 2, 3, . . . ,m]>, m = 10 000 s (18a)

A1 = sin(2π t 0.006) sin(2π t 0.006/3.3) (18b)

A2 = sin(2π t 0.012) sin(2π t 0.012/3.3) (18c)

A3 = sin(2π t 0.014) sin(2π t 0.014/3.3) (18d)

X =

®
[1, 2, 3]> 1 s ≤ t < 5000 s

[2, 2, 3]> 5000 s < t ≤ 10 000 s
(18e)

B = A�X. (18f)

Note that there is a parameter step in (18e) for X1 to test
the tracking performance of RLS, RTIV and RGTLS.

Two different noise settings were applied. For each noise
setting, 1000 independent experiments with white Gaussian
noise were generated. The noise variances were selected as
follows.

Noise setting №1: The first noise setting conforms to
weighted total least squares (WTLS), where each measured
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input and measured output is noisy. The noise covariance
matrix is uncorrelated and unequally sized, which means

that all off-diagonal elements of ‹P are zero.

σ2(Ã1) = 0.1, σ2(Ã2) = 0.2, σ2(Ã3) = 0.4 (19a)

σ2(‹B) = 1 (19b)

Noise setting №2: The noise variances in the second noise
setting are

σ2(Ã1) = σ2(Ã2) = σ2(Ã3) = 0 (20a)

σ2(‹B) = 1. (20b)

This setting corresponds to the assumptions of RLS
filtering, where input noise is not considered. Hence,‹P4,4 = 1 and all other elements are zero.

4.2 Estimator setup

All estimators were initialized with parameter estimates

(“Xt−1) of batch LS at t = 30 s, while “Xt<30 s = 0. The
initial covariance matrix (Pt−1) for RLS and RGTLS
was also gained from batch LS, while the initial cross-
correlation matrix (Rt−1) for RTIV was computed with
Rt=30 s = Z>t=1 s to 30 sZt=1 s to 30 s.

The forgetting factor was fixed to λ = 0.998 for the RLS,
RTIV, NCE and RGTLS estimator. However, the PKS
estimator was used with λ = 0.9.

RTIV setup: The augmented instruments were built with
a delay of four from the augmented data. Hence, Zt = Zt−4.

PKS setup: We used wl = wr = 30 and a polynomial
function with five parameters (fourth order). This setup
leads with (11), (13) and (14) to

A =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 (21)

C = [1, 61, 3721, 226981, 13845841] (22)“Bt−wr = [1, 31, 961, 29791, 923521]“Xt. (23)

NCE setup: The estimated noise covariance matrix was

initialized with ÙPt<30 s = 0.3I. This setting corresponds to
a TLS-like noise assumption, with i.i.d. noise.

5. RESULTS AND DISCUSSION

In accordance with Davila [1994]; Feng and Zheng [2007],
the squared error vector norm (E)

Et =
∥∥∥“Xt −Xt

∥∥∥2
2
, (24)

was computed as performance index for each estimator,
noise setting, and experiment. Afterwards, the arithmetic
mean (µ(·)) was used to compute the expectation (E) of
E over the 1000 experiments for each noise setting and
estimator.

0 0.2 0.4 0.6 0.8 1

·104

0

0.3

0.5

σ2(Ã1)

σ2(Ã2)

σ2(Ã3)

σ2(ÛA1)

σ2(ÛA2)

σ2(ÛA3)

t (s)

σ
2
(Ã
,
Û A)

0

0.25

0.5

0.75

σ2(B̃)

σ2(ÛB)

σ
2
(B̃
,
Û B)

Fig. 3. Input and output noise variance estimation in noise

setting №1 of one experiment. Note that σ2(‹B) and

σ2(ÙB) belong to the right ordinate. True values are
shown with , while estimated values are given with

.

0 0.2 0.4 0.6 0.8 1

·104

10−5

10−4

10−3

10−2

10−1

100

σ2(ÛA1)

σ2(ÛA2)

σ2(ÛA3)

t (s)

σ
2
(
Û A)

0

0.25

0.5

0.75

σ2(B̃)

σ2(ÛB)

σ
2
(B̃
,
Û B)

Fig. 4. Input and output noise variance estimation in
noise setting №2 of one experiment with noise free

inputs. Note that σ2(‹B) and σ2(ÙB) belong to the right

ordinate. The true input noise variance is σ2(Ã1:3) =
0.

5.1 Results of NCE

Fig. 3 provides the diagonal elements of ÙPt for one ex-

periment in noise setting №1, where ‹P was adjusted in
accordance with (19). NCE gives accurate estimates from

t > 1000 s on, while σ2( ÛA1) and σ2( ÛA2) are more accurate

than σ2( ÛA3) and σ2(ÙB). The reason for this is that we
used the same polynomial order and forgetting factor for
all PKS filters. Hence, the higher frequent signals A3 and
B were less accurate modeled by the polynomial function
as the lower frequent A1 and A2. However, with a specific
adjustment for each individual PKS, more accurate results
are to be expected.

The NCE result for noise setting №2 of one experiment

is given in Fig. 4. As expected, the accuracy of σ2(ÙB) is

comparable with Fig. 3, while the estimates of σ2( ÛA1:3)
depend once again on the frequency of A1:3, compare (18).
The lower frequent A1 has the most accurate noise variance

estimate σ2( ÛA1) followed by σ2( ÛA2) and finally σ2( ÛA3).
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a) Noise setting №1

10−2

10−1

100

101

102

µ
(E

)

RLS RTIV RGTLS & NCE

b) Noise setting №2

0 0.2 0.4 0.6 0.8 1

·104

10−2

10−1

100

101

102

0.8 0.85 0.9 0.95 1

·104

10−2

10−1.9

t (s)

µ
(E

)

t (s)

µ
(E

)

RLS RTIV RGTLS & NCE

Fig. 5. Squared error vector norm ensemble averaged over
1000 independent experiments. The RGTLS estima-
tor outperforms RLS and RTIV in noise setting №1
(Fig. 5a). Additionally, practically no difference can
be observed between RGTLS and RLS in noise setting
№2 (Fig. 5b), where RLS is the optimal estimator.
Note the inset in Fig. 5b. RGTLS outperforms RTIV
in both noise settings.

5.2 Results of RLS, RTIV, and RGTLS with NCE

Finally, we compare the performance of RLS, RTIV, and
RGTLS with NCE in Fig. 5. The poor performance of
RLS in Fig. 5a for noise setting №1 motivates to use
EIV methods. Note that RLS fails entirely to indicate
the parameter step change of X1 at t = 5000 s. As this
observation is quite obvious because RLS is not designed
for EIV problems such as noise setting №1, the superior
performance of RGTLS with NCE compared with RTIV is
remarkable. However, RTIV converges faster than RGTLS
for t < 1000 s. The reason is that NCE requires some time
to converge.

Noise setting №2 in Fig. 5b is designed for RLS. Moreover,
RLS provides the optimal solution in this case and is
suitable for benchmarking RTIV and RGTLS with NCE.
RGTLS with NCE is the slowest converging algorithm.
Once again, this is due to the time that NCE requires to

provide an accurate ÙP result. However, the inset in Fig. 5b
shows that practically no difference is observed between the
optimal RLS and the proposed RGTLS with NCE, while
RTIV here again is inferior. This considerable performance
of RGTLS was not expected here if we take into account the

biased estimates of σ2( ÛA1:3) in Fig. 4. This indicates that

an approximate estimate of ÙP is sufficient to use RGTLS
for various noise settings.

6. CONCLUSION

The simulation experiments show that the proposed recur-
sive generalized total least-squares (RGTLS) estimator
together with the introduced noise covariance estimator

(NCE) yield highly accurate parameter estimates (“X) in un-
known noise environments. RGTLS with NCE outperforms
the recursive total instrumental variables (RTIV) estimator
in noise setting №1, where all measured inputs (A) and
the measured output (B) were noisy as well as in noise
setting№2, where only B is noisy. In addition, although the

estimated noise covariance matrix (ÙP ) of NCE was biased
in noise setting №2, RGTLS with NCE produced similar
results as the, in this case optimal, recursive least squares
(RLS) estimator. Once again the RTIV estimator performed
poorer than RGTLS with NCE. The only drawback of
RGTLS with NCE is the slower convergence during the
first iterations compared with RTIV in both noise settings.
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T. Söderström. Errors-in-variables methods in system
identification. Automatica, 43(6):939–958, 2007.

E.V. Zima. Fast parallel computation of the polynomial
shift. In Parallel Processing Symposium, 1997. Proceed-
ings., 11th International, pages 402–406, 4 1997.

Y. Zou, S.C. Chan, and T.S. Ng. A recursive least m-
estimate (rlm) adaptive filter for robust filtering in
impulse noise. Signal Processing Letters, IEEE, 7(11):
324–326, 11 2000.

Appendix A. ACRONYMS

CGII. . . . . . . . . . constrained
generalized inverse iteration
CGRQ.constrained general-
ized Rayleigh quotient
EIV. . . . . errors-in-variables
GII. . . . . generalized inverse
iteration
GRQ. generalized Rayleigh
quotient
GTLS. . . . generalized total
least squares
i.i.d.. . . . . . . . . independently
identically distributed
II. . . . . . . . . inverse iteration
IV. . instrumental variables
KF. . . . . . . . . . Kalman filter
LS.. . . . . . . . . . . least squares
MISO. . . multi-input-single-
output

NCE. . . . . . noise covariance
estimator
PKS. . .polynomial Kalman
smoother
RGTLS. . recursive general-
ized total least squares
RLS.recursive least squares
RQ. . . . . . Rayleigh quotient
RQI. . . . . Rayleigh quotient
iteration
RTIV. . . . . . . recursive total
instrumental variables
RTLS. .recursive total least
squares
SGF. . Savitzky Golay filter
s.t.. . . . . . . . . . . . . . subject to
TLS.. . . .total least squares
WTLS. weighted total least
squares

Appendix B. LIST OF SYMBOLS

Â. . . . . . . . . .estimated input
A. . . . . . . . . . . . . . instrumentsÛA. . . . estimated input noise

Ã. . . . . . . . . . . . . . input noise
A. . . . . . . . . . . . . . . true input
A. . . . . . . . . . measured input
A. . .state transition matrix“B. . . . . . . . estimated outputÙB. . estimated output noise‹B. . . . . . . . . . . . .output noise
B. . . . . . . . . . . . . . true output
B. . . . . . . . measured output
B. . . . . . . state input matrix
C. . . . . . . . . .Cholesky factor
C. . . . . .measurement vector
chol(·). . . . . . . . . . . .Cholesky
factorization
D. . . . . . measurement input
matrix
diag(·). . .diagonal elements
E. . . . . . . . . . . . . . expectation
�. . . . element-wise product
E . . . . . squared error vector
norm
‖·‖2. . . . . . . Euclidean norm
‖·‖F. . . . . . . Frobenius norm
I. . . . . . . . . . . identity matrix
K. . . . . . . . . . . . Kalman gain
L. . . . . . . . . correction vector

λ. . . . . . . . . forgetting factor
m. . . . . . . . . . . . . . . . . samples
µ(·). . . . . . . arithmetic mean
n. . . .number of parametersÙP . . . . . . . . . . estimated noise
covariance matrix‹P . . noise covariance matrix
P . . . . . . . .covariance matrix
q. . . . . . . . . . . . . . . . . . . . n+ 1
R. .cross-correlation matrix
R. . . . . . . . rational numbers
S. . . . matrix of eigenvalues
σ2(·). . . . . . . . . . . . . . variance
svd(·). . . . . . . singular value
decomposition
t (s). . . . . . . . . . . . . . . . . . time
V . . . matrix of eigenvectors
Wl. . . left weighting matrix
Wr. . right weighting matrix
wl. . . . . . . . . . . . . left window
wr. . . . . . . . . . . right window“X. . . . .parameter estimates
X. . . . . . . . . . . . . . . parameter

Ẑ. . . . estimated augmented
data
Z. . augmented instrumentsÛZ. . . . augmented estimated
noise
Z. . . . . . . . . augmented data
Z. . . . . . . . . integer numbers
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