
A concept-based approach to modelling
shared ontology-based models for industrial

applications.

Corniere, A. ∗ Fortineau, V. ∗ Paviot, T. ∗ Lamouri, S. ∗

∗ Arts et Métiers Paristech, 151 bd de l’hopital, Paris, France

Abstract: Ontologies have emerged as a new modelling paradigm in industry during the last
decade. They propose new design paradigms for information modelling that engineers must be
aware of and manage, whenever they aim to design consistent models. In this paper, guidelines
are proposed as well as an industrial illustration in order to help modellers to anticipate and
well manage the specificities of ontology modelling. An illustration based on family modelling
and an industrial example about classification of parts based on their basic shapes are proposed.

Keywords: Ontology, modelling, PLM, manufacturing, concept, methodology, UML,
properties, OWL, OWL 2, SWRL, OntoClean

1. INTRODUCTION

Ontologies, and especially inference ontologies based on
OWL syntax have emerged the last decade as a new
modelling paradigm for industrial applications. Indeed,
ontology-based modelling is far different from UML-based
modelling, to which most engineers are more used. There-
fore, there is a need of explaining to modellers what are
the specificities of inference ontologies, and how to avoid
misusing these tools.

The aim of this paper is to explore the issue of modelling
a system or a certain reality using inference ontologies.
Systems considered are industrial products in general, but
the proposed approach in this paper could be used in
more generic cases: modelling business activities, knowl-
edge management, etc. The present paper, while compar-
ing UML-based and ontology-based paradigms, provides
guidelines to modellers, in order to help them to create
consistent ontology-based models for industrial applica-
tions, that can be later shared or merged between various
users.

The present paper is therefore organized as follows: section
2 provides a state-of-the-art of ontology-based models for
the industry and of existing methodologies. Then section
3 explains why ontologies are (should) be concept-based
models, and provides guidelines to achieve such a concept-
based approach. Section 4 illustrates this proposition with
an industrial application. Finally, section 5 proposes a
large discussion and section 6 concludes this study.

2. ONTOLOGY-BASED MODELS FOR INDUSTRIAL
PURPOSE

2.1 State-of-the-Art of existing models

As explained in Fortineau et al. [2013b], there exist several
ontology-based models for industrial applications. Those
models can be standard models transformed into an ontol-

ogy, like OntoSTEP (Barbau et al. [2012]) which is a trans-
formation of STEP; the transformation of the Open As-
sembly Model (OAM) made by Fiorentini et al. [2007]; or
the transformation of the Semantic Object Model (SOM)
by Matsokis and Kiritsis [2011]. There also exist ad hoc
models, which involve various phases of the product life-
cycle, like the Product Design Ontology (Catalano et al.
[2009]) for the design phase, OntoPDM (Panetto et al.
[2012]) and PRONTO (Vegetti et al. [2011]) for the man-
ufacturing phase and logistics activities, and the Linked
Design Ontology (Kiritsis et al. [2012]) for knowledge
management.

2.2 Methodologies to design ontology-based models

Most of the previous contributions follow a design method-
ology to create the ontology. Catalano et al. [2009] followed
the On-To-Knowledge methodology (Staab et al. [2001])
which is, like most existing methodologies, a step-based
approach: a procedure is given in order to help ontology
designers, in the form of generic guidelines. Other well
known methodologies are Anemone (Özacar et al. [2011]),
Diligent (Pinto et al. [2004]), and Neon (Suárez-Figueroa
[2010]) methodology. Those methodologies describe the
fundamental activities to design an ontology, but very few
explain how to evaluate the ontology formalization in an
ontological language (like the Web Ontology Language
(OWL) for instance). They only focus on consistency
checking. However, there may exist several different for-
malizations of the same conceptualization that are consis-
tent. But the ontology consistency does not ensure a good
formalization of the model. In this paper, we therefore
specifically focus on the ontology formalization.

Most of the evaluation methods proposed within the exist-
ing methodologies are empirical, based on the confronta-
tion of the obtained taxonomy to business users approba-
tion. However the evaluation of the content of the ontology
is crucial when the model aims to be shared between
various users, which is often the case in industrial applica-

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 7831



tions. The OntoClean project provides a semi-automated
evaluation of the ontology formalization. Guarino and
Welty [2009], while studying the philosophical definition
of an ontology, propose four meta-properties to evaluate
the formalization: identity, unity, rigidity and dependency.
The study of those properties provides an objective and
semi-automated evaluation of the chosen formalization.

2.3 Requirements for designing industrial ontology-based
models

It is important to explicit why ontologies have been
identified as an improved and new paradigm for designing
industrial models. According to the literature ()Fortineau
et al. [2013b]), ontologies improve model richness, because
they enable to model information from different levels
of abstraction. Moreover, since they can deal with non-
canonic data (i.e. an instance may belong to several
classes), ontologies enable model merging and sharing: a
single ontology may represent several viewpoints. As a
consequence, they can improve semantic interoperability
between various business systems. Moreover, as Dekkers
et al. [2013] indicate, they may link knowledge-based
models with existing PLM systems.

Thus, the main requirements to design ontology-based
models for industrial applications are to ensure a semantic
richness and to enable model sharing, reuse and merging.
This last requirement extremely constrains the manner
the industrial ontology is formalized, and is compliant to
the primarily given definition of an ontology: ”a formal
specification of a shared conceptualization” (Borst and
Akkermans [1997]).

In the next section, we propose an approach to design
ontologies that takes into account the specificities of on-
tological modelling. The following method has been es-
tablished based on the literature review - notably the
work of Guarino and Welty [2009] - and on our own
experience in designing ontologies for industrial purpose
(Fortineau et al. [2013c], Fortineau et al. [2013a], Fortineau
et al. [2013d]). Therefore, we invite modellers to follow a
concept-based approach to formalize industrial ontologies
and we provide an industrial use case in section 4.

3. ONTOLOGY-BASED MODELLING: A
CONCEPT-BASED APPROACH

3.1 Concept-based approach VS UML approach

As explained previously, a majority of existing ontology-
based models are a translation of former UML-based mod-
els. UML deals with canonic data: besides generalization
properties, an instance belongs to only one class, and
semantic properties are attached to specific classes (they
do not exist by themselves). As a consequence, UML leads
to define classes as a set of instances, from a business view-
point: the modeller gather instances into groups (classes)
corresponding to what he specifically needs to model.

Because of ontology’s reasoning abilities, a similar mod-
elling approach is often followed while formalizing an on-
tology. However, the UML paradigm and the ontological
paradigm are different, notably due to the Open World
Assumption (see section 4.1), to the definition of object

properties from domains and ranges, and to non-canonic
data modelling.

Moreover, the reasoning can classify instances into cor-
responding classes by itself . Then, it is common in the
literature to apprehend the taxonomy of classes with sets
and subsets, and try to figure out most behaviour from
Venn diagrams. This leads to complex and domain-specific
taxonomies that are not defined considering properties
essential to a concept but in order to match the intended
behaviour. Thus, most classes definitions are built before-
hand and properties are set up later on. An example of
this approach is the well known Pizza ontology that many
modellers use as a starting point when learning ontologies.
While it can produce consistent ontologies, it leads to
design business-oriented ontologies, which is contradictory
to the aim of sharing ontologies between various users. If
the model has to be shared, then it needs to be as generic as
possible, and concepts (classes) must be defined according
to their intrinsic and objective properties. Moreover, con-
cept definition must be robust, to suffer a possible model
re-design.

We call this modelling approach a concept-based approach,
which is based on the following statements:

• classes represent concepts that must be defined ac-
cording to their essential properties;

• defined axioms are better based on object properties
than on taxonomies;

• avoiding using inference abilities in order to add
behaviour skills to the model;

• in an Open World, one should be aware that antag-
onist properties are information, but absence of data
is not.

3.2 Defining classes from conceptual definitions.

The OntoClean project focuses on meta-properties of
classes in an ontology. While this approach allows to verify
and to validate models for consistency, it remains difficult
to design a model using ontologies, partly because the
Open World Assumption is difficult to manage, since we
are used to manage definite sets, while classes are not all
definite.

Using the class to distinguish the essential properties of
the instances, as described in Guarino and Welty [2009]
makes it relevant to the sense it has to a human, while
leaving the ontology consistency to process. Based on
properties only, a class may regroup (or ’fetch’) instances
that would have been missing if fetched through a “class
intersection” filter only.

The paradigm for modelling with ontologies is very differ-
ent from those of most other models. The very concept
of classes is not usual : instead of the usual set disjoint
from the other classes, ontologies allow for a single element
to be included in several classes. They also allow classes
to be subclasses of each other. Following the works of
the OntoClean project, we advise to consider classes as
concepts.

Consequently, the relation of subduction of classes can be
considered as a more restrictive concept then the parent
class. A sub-class represents a kind of its parent class. This

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7832



approach mimics the way human reasoning operates and
takes advantage of the non-canonic data in ontologies (e.g.
a blue cubic Thing can -and should- appear in classes Cube
and its parent Parallelepiped and Blue).

3.3 Defining classes from semantic properties (instead of
taxonomy)

How could we define classes in order for them to represent
conceptual categories ? Our proposition is to define classes
according to the essential properties (Guarino and Welty
[2009]) that define them. This can be done by defining
classes through axioms, and whenever possible, make these
axioms rely on properties of the instances themselves.

A short example may help consider the implications of
this approach: in an ontology representing the family
relationships, how to propose a robust defining axiom for
GrandParent, a class intended to regroup people known
to have at least one grandchild?

There are two ways of thinking this out: create a class
Parent, regrouping people known for having a parental
relation to at least one other human, then defining
GrandParent as the members of Parent whose children
also happen to be Parent.

The other way is to define GrandParent as the group of
people who have a child who has a child.

• Parent≡ hasKid some Thing
GrandParent≡ hasKid some Parent
• GrandParent≡ hasKid some (hasKid some Thing)

Those two models are equivalent, in regard to the
GrandParent class, while both models differ on where
the information originates from: in one case, GrandParent
depends on the class Parent, in the other it builds itself
from the instances and their properties.

This makes a great difference: in one case, the inferred
reason facts are based on the taxonomy of the ontology,
more specifically the defining axiom for GrandParent is
based on the class Parent; while in the other case, the
object properties (i.e. the relations between individuals)
let the ontology build itself based on the information the
object properties carry. This also makes the instances data
and properties easier to use in another ontology, which, as
we will see later in this article, may reflect another context
in which the entities have to be modelled.

Assume the definition of a Parent has to be broadened to
model the relations to adopted children. In the first model
the GrandParent class is also modified, whereas in the
other model, the GrandParent class remains unchanged,
its essential definition being expressed a defining axiom. In
terms of model evolution, the second model is more robust.

3.4 Context-dependant reasoning

Shared ontologies, and shared data, implies for the models
to be used in different contexts. According to the context,
data will be given sense in, it will produce information
(Tsuchiya [1993]). For example, the same data regarding a
part will not be used in the same processes in a production
environment as in the package design or in the product
specification.

The distinction between data and information is especially
relevant when dealing with open world reasoning. It is
common, in automated decision making, to treat the
absence of data as negative information. Ontologies though
are designed to process information, which is likely to
be generated by external tools and incorporated into the
ontology at a later time. This same file defining the
instances and the data they carry might be used by
another processing environment where this data does not
hold the same information.

This data might be for instance used in the design phase
to represent and help out with the interactions of different
sub-systems in a product, in the production context the
material data and geometry information might help in
production design. In the middle of the product life, the
references of those same instances (parts), processed and
enriched from the maintenance network, allow (with cross-
referencing ontologies) to reference other products which
may need maintenance. In the end of life, recycling can be
designed according to all this information.

Those different contexts have to be modelled differently,
and they may need different tools because they do not use
the same information or reasoning paradigm 1 , but they
all use the same data that is relevant to the same parts.

In the previously mentioned example of a family ontology,
different axioms help to verify the consistency of data:
the class Error is intended to regroup the oddities, even
though they do not make the ontology inconsistent. For
example, a parent cannot be younger than any of his
children. Using OWL2 & SWRL basic comparison, we
detect this situation and ”label” them into the class Error.
To help the reviewing of the model we also create an object
property (WrongLink) to trace the two instances implied
in this error. This rule reflect the logical context in which
we conceive a family: parents are older than their children.

has_Child(?parent,?kid)
^ age(?parent,?age1)
^ age(?kid,?age2)
^ swrlb:greaterThan(?age2,?age1)

-> Error(?parent) ^ Error(?kid)
^ WrongLink(?parent,?kid)

Another set of SWRL rules can infer blue-eyed children,
using knowledge from the context of genetics that children
of blue-eyed parents have blue eyes too.

is_Father_of(?father,?kid)
^ is_Mother_of(?mother,?kid)
^ eyes_color(?father,"blue")
^ eyes_color(?mother,"blue")
-> eyes_color(?kid,"blue")

Ontologies, when designed with a conceptual approach, are
very suited to infer information, because of their reasoning
abilities. In this case, provided there is enough information
in the model to infer the colour of the kid’s eyes, the
reasoner infers this property itself. This kind of reasoning
can be very useful in an industrial environment, as it makes
the information as complete as possible by inference.

1 A closed-world assumption can help with managing negation for
instance.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7833



Those two SWRL rules describe how different elements in
a same ontology can serve different kinds of reasoning: one
is, in the context of common-sense logic, to check for errors
about the age, while the other one models a basic rule in
the context of genetics.

This in one of the reasons we advise defining classes
through axioms and basing them on properties : this way a
set of rules and axiom can easily be understood as elements
of context defining a concept.

3.5 Elementary reasoning in the Family ontology

Ontology reasoning abilities helps make tedious or repet-
itive tasks automatic: to allow the reasoner to infer the
ancestry of our instances in the family ontology, we intro-
duce some rules:

• has Child(?parent,?kid)
-> is Ancestor of(?parent,?kid)
• is Ancestor of(?x,?y) ˆ is Ancestor of(?y,?z)
-> is Ancestor of(?x,?z) this is equivalent to
making is Ancestor of transitive

We can then use this property to detect the descendants
of a particular person, with a DL request:

(Person and (is Ancestor of value John)) defines the
class of all the persons known to be in John’s family tree.
This DL expression can of course also define a class.

4. INDUSTRIAL APPLICATION : A
MANUFACTURING PROCESS DECISION HELPER

(SIMPLIFIED)

In this example we consider an ontology designed for
manufacturing. It is constructed from geometric models,
which are run through a set of geometric tests. The
instances of the ontology then model parts references, and
are given properties according to the results of those tests.

Some of these properties are:

• shape isLong: property of a part whose envelope has
one preponderant dimension in comparison to the
others,
• shape isFlat: property of a part whose envelope has

one significantly smaller dimension than the others,
• shape envCyl: boolean property of a part whose

envelope is a cylinder ,
• shape envBox: boolean property of a part whose

envelope is a box,
• shape hasPlanes: boolean property of a part pre-

senting flat surfaces,
• shape planeAxes: data properties (may be multiple)

representing the directions of the normals to the
planes, if any.
• shape width, shape height, shape length: data

properties (integers) representing the size of the part’s
shape.

From those properties, a series of classes can be con-
structed:

• LathablePart ≡ Part and ((shape envCyl value
true) or (shape isLong value true))

Fig. 1. Example of shape xx properties for a tube

• LathableInThreeAxesLathePart ≡ LathablePart
and shape planeAxes some {"X" ,"Y"}

• MillablePart ≡ Part and (shape envBox value
true)

• MillableNeedsFourAxesMillPart ≡ MillablePart
and shape planeAxes some not {"X","Y","Z"}

• CutoutPart : Part and
(shape isFlat value true)

Those classes then gather the parts that are eligible to
each process. One can also be more restrictive in the
class defining axioms including specifics of the machines
available :

PartMillableOn_XC300 : MillablePart and
(shape_width some float[< 300]) and
(shape_planeAxes some {"X","Y","Z"})

This class for instance regroups parts that are small
enough to be processed in the XC300 mill. It also checks
for planes correctly oriented for this 3-axis mill. Yet, the
ontology cannot detect whether there are other planes as
well, as this is a inference relevant to closed-world reason-
ing. This can potentially lead, in industrial applications,
to undesired effects some of which are discussed later in
this article.

Note the machines specific characteristics may be modelled
in an ontology as well: they could be instances of the class
Machine. Their status and specific capabilities may be
used in the processes office; while their maintenance and
usage history, being processed in another ontology, may
help the maintenance department keep track of incoming
tasks.

For many applications, ontologies are complement to
databases:

while the database holds the information, ontologies are
relevant in the knowledge and information management,
individuals of an instance being akin to lines in the
database, the reasoning ability of the ontology allows to
infer information and make the information complete and
consistent, even if some more information is added to the
model later on.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7834



Fig. 2. Part of the class taxonomy for a manufacturing
process decision helper

4.1 Some implications of the Open World Assumption in
modelling

The Open World Assumption states that, in the absence
of information, the reasoning can’t assume there is infor-
mation. This comes from the postulate that information
is by nature incomplete, even if data appears to be. One
benefit from this is that any inferred result in an ontology
is backed with information that guarantees it (Drummond
and Shearer [2006]) and guarantees it will keep its consis-
tency whenever information is added to the model. Yet,
reasoning under the Open World Assumption is fairly
different from usual thinking.

Considering the family ontology introduced in part 3,
and considering a class can be constructed to group the
ancestry for a particular individual, let us define :

Johns Ancestors ≡ (Person and
(is Ancestor of value John))

In a closed-world environment, people who are not ances-
tors to John would be collected by the request :

(Person and not (Johns Ancestors))

In the state of information described, no individual can
be included in this class 2 . The explanation for this is
that in an open world assumption where any informa-
tion is susceptible to be added, there is no explicit in-
formation preventing other individuals to be included in
Johns Ancestors.

2 though John himself can be included in this class if is Ancestor of

is defined as irreflexive.

The action of listing people known to the model and not
part of John’s ancestry is by definition to be executed in
the closed model of known individuals.

In a similar way, our industrial example cannot de-
tect parts that do not have planes other than along
X,Y ,or Z. A class defined by (not (shape planeAxes
some not {"X","Y","Z"}) is empty though not a sub-
class of Nothing.

We recommend not trying to mix paradigms in the design
of an ontology, but to consider instead the use of another
work environment to process information in a closed-world
assumption. The use of separate reasoning for different
paradigms (Open World Assumption and Closed World
Assumption) makes it easier to keep the ontology model
remain consistent along time and across users.

There could be explicit information providing closure to
some instances (e.g. a class with a cardinality restriction),
but as of now there is no way we know to provide closure
of information on an instance itself,and as this would be
equivalent to stating the information is complete for said
instance, we would advise against it for the difficulties it
would yield.

While the Open World Assumption makes some deduc-
tions impossible, the ontologies are especially apt for
information management, as the reasoning facts remain
consistent as more information is added to the model. This
reasoning paradigm makes them a tool to consider in situ-
ations where information is likely to be added to the model
along time, such as in product lifecycle management.

5. DISCUSSION

Some cases are not as manageable using ontologies than
using closed-world models. We are used to work with
definite sets, and this makes the Open World Assumption
one of the most tangible difficulties for modellers turning
to ontologies. The Open World Assumption itself doesn’t
allow for negative statements which can be disturbing
to modellers. It is common to try working around what
appears to be a limitation to the model, because the
modelling paradigm is very different of the tools and
techniques modellers are used to.

Sharing ontologies or merging them in such situations can
be very difficult, as workarounds on one part and another
can make the merged ontology inconsistent, or as the
classes and instances on different branches of the classes
taxonomy may not model homogeneous concepts.

In the domain of information and knowledge management
thought, considering classes as models for concepts, and
subsequently considering subduction as a restriction of
parent concept, makes classes consistent to each other.
This conceptual approach, mostly based on the instances
properties, lets the reasoner infer most of the classes taxon-
omy. It also helps to produce consistent ontologies, accord-
ing to the principles of the OntoClean project (Guarino
and Welty [2009]).

We believe modellers have to waive their UML habits
while modelling with ontologies, designing ontologies for
information enrichment instead of behaviour design; rely-
ing on the concept a class represents instead of the set

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7835



of individuals it is expected to be; and let the model be
enriched with more information instead of trying to reason
on the lack of information.

However, their modelling paradigm being such, other tools
may be needed to allow for the reasoner to manage infor-
mation. Analysis and information-tracking tools before-
hand, to provide the information needed to the model; and
specific tools to perform the specific closed-world reasoning
afterwards. While this implies a number of specific tools,
it also seems to us that it is relevant regarding the level of
abstraction of ontology-based models.

6. CONCLUSION

The emergence of ontologies in the industrial modelling
area forces modellers, that are more used to UML-based
models, to completely transform the way they formalize
a given model. Indeed, inference ontologies provides new
design paradigms, whose most crucial are: the Open World
Assumption, non-canonic data, and semantic and indepen-
dent object properties. This paper provides guidelines to
modellers that enable to anticipate and consider those new
paradigms when formalizing an ontology. More concrete
explanations are then given using an industrial use case.

However, the proposed guidelines do not provide a full and
automated evaluation of the obtained ontology. According
to the authors, only the OntoClean approach enables an
objective evaluation of ontologies, but this evaluation is
limited to the ontology taxonomy and classes relationships.
A more complete evaluation is a necessary perspective of
the present work, that could be extremely useful to the
industrial community.

Finally, a short-term perspective of the present paper is
to provide and diffuse to the community a step by step
tutorial to design a simple ontology (the family ontology)
that follows the guidelines proposed in this paper, in order
to help modellers that are new in ontology modelling.
This contribution will be diffused through the IFAC TC51
Working Group on ontologies website 3 .

REFERENCES

R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fioren-
tini, S. Foufou, and R.D. Sriram. OntoSTEP: Enriching
product model data using ontologies. Computer Aided
Design, 44(6):575–590, 2012.

P. Borst and H. Akkermans. An ontology approach to
product disassembly. Journal of Computer Science,
1319:33–48, 1997.

C.E. Catalano, E. Camossi, R. Ferrandes, and V. Cheutet.
A product design ontology for enhancing shape process-
ing in design workflows. Journal of Intelligent Manu-
facturing, 20 (5):553–567, 2009.

R. Dekkers, C.M. Chang, and J. Kreutzfeldt. The interface
between “product design and engineering” and manufac-
turing: A review of the literature and empirical evidence.
International Journal of Production Economics, 63:749–
755, 2013.

N. Drummond and R. Shearer. The Open World Assump-
tion. Technical report, University of Manchester, UK,
2006.

3 https://sites.google.com/site/tc51wgontology/contributions

X. Fiorentini, I. Gambino, V.C. Liand, S. Foufou,
S. Rachuri, C. Bock, and M. Mani. Towards an ontology
for Open Assembly Model. International Conference on
Product Lifecycle Management, Milan, Italy, 2007.

V. Fortineau, T. Paviot, , and S. Lamouri. Expressing
business rules from business expertise to formal im-
plementation: An application to the nuclear industry.
Doctoral Workshop, Internation Conference on Product
Lifecycle Management, PLM13, Nantes, France, 2013a.

V. Fortineau, T. Paviot, and S. Lamouri. Improving the
interoperability of industrial information systems with
description logic-based models - the state of the art.
Computers in Industry, 64:363–375, 2013b.

V. Fortineau, T. Paviot, and S. Lamouri. 5 root concepts
for a meta-ontology to model product along its whole
lifecycle. 11th IFAC workshop on Intelligent Manufac-
turing Systems (IMS’13), Sao Paulo, Brazil, 2013c.

V. Fortineau, X. Paviot, T. Fiorentini, L. Louis-Sidney,
and S. Lamouri. Expressing formal rules within
ontology-based models using SWRL: an application to
the nuclear industry. International Journal On Product
Lifecycle Management, sousmis, 2013d.

N. Guarino and C.A. Welty. Handbook on Ontologies,
chapter An overview of OntoClean, pages 201–220. 2009.

D. Kiritsis, S. El Kadiri, A. Perdikakis, and A. Milicic.
Design of fundamental ontology for manufacturing prod-
uct lifecycle applications. International Conference on
Advances in Production Management Systems, Rhodes
Island, Greece, 2012.

A. Matsokis and D. Kiritsis. Ontology applications in
PLM. International Journal of Product Lifecycle Man-
agement, 5:84–97, 2011.

T. Özacar, Ö. Öztük, and M.O. Ünalir. ANEMONE:
an environement for modular ontology development.
Journal of Data and knowledge engineering, 70:504–526,
2011.

H. Panetto, M. Dassisti, and A. Tursi. ONTO-PDM:
Product-driven ONTOlogy for Product Data Manage-
ment interoperability within manufacturing process en-
vironment. Knowledge based engineering to support
complex product design, 26(2):334–348, 2012.

H.S. Pinto, S. Staab, and C. Tempich. Diligent: Towards
a fine-grained methodology for distributed, loosely-
controlled and evolving engineering of ontologies. In
ECAI, volume 16, page 393, 2004.

S. Staab, H.P. Schnurr, R. Studer, and Y. Sure. Knowledge
processes and ontologies. IEEE Intelligent Systems, 16
(1):26–34, 2001.

M.C. Suárez-Figueroa. NeOn Methodology for building
ontology networks: specification, scheduling and reuse.
PhD thesis, Informatica, Spain, 2010.

S. Tsuchiya. Improving knowledge creation ability trough
organizational learning. Proceedings of International
Symposium on the Management of Industrial and Cor-
porate Knowledge, ISMICK, Compiègne, France, 1993.

M. Vegetti, H. Leone, and G. Henning. PRONTO: An
ontology for comprehensive and consistent representa-
tion of product information. Engineerings Applications
of Artificial Intelligence, 24(8):1305–1327, 2011.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7836


