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Abstract: In recent years, inland navigation networks benefit from the innovation of the instrumentation
and SCADA systems. These data acquisition and control systems lead to a reactive asset-management of
inland navigation networks. However, sensors and actuators are subject to faults due to the strong effects
of the environment, aging, etc. In this paper, a sensor Fault Detection and Isolation (FDI) approach is
proposed using an Integrator-Delay-Zero (IDZ) model, interval observers and the dynamic classification
algorithm AUDyC. The combined use of these approaches allows the improvement of the sensor fault
diagnosis. The proposed approach is introduced through the case study of the Cuinchy-Fontinettes reach
in the north of France.
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1. INTRODUCTION

To improve the management of the inland navigation networks,
national companies are still modernizing the data acquisition
and remote control systems. They benefit from the progress in
new technologies for sensors and actuators (Fastenbauer et al.,
2007) and SCADA (Supervisory Control and Data Acquisition)
systems (Malaterre and Chateau, 2007). The data that is taken
into account to supervise the networks and to control the
actuators have to be safe in order to avoid serious failures of
the navigation and the infrastructure. Thus, Fault Detection and
Isolation (FDI) methods have to be designed and implemented.
The FDI techniques are generally divided into two families:
model-based and data-driven approaches.

Model-based approaches require accurate models of the system
dynamics. A survey of model-based techniques is proposed in
Frank et al. (2000). Model-based Fault diagnosis techniques
have recently addressed the supervision of open flow channels.
Parity equations method in Blesa et al. (2010), the cumulative
sum (CUSUM) algorithm applied to model-based residuals in
Bedjaoui and Weyer (2011), physical and nonlinear black-box
models of a real undershot/overshot gate in Pocher et al. (2012),
the evaluation of model-based residuals Nabais et al. (2013) and
subspace identification in Akhenak et al. (2013).

The second family gathers the data-driven approaches that
have been recently surveyed in Qin (2012). These methods
perform the fault diagnosis by directly processing the signals
collected from the sensors (Hartert et al., 2010). Amongst these
methods, pattern recognition techniques consist in representing
the operating modes of the system, i.e. normal and faulty, by
classes. Some dynamical classification algorithms are proposed
in the literature such as the CDL algorithm (Cluster Detection

and Labeling), algorithms based on adaptive resonance theory
(ART) networks (Eltoft and de Figueiredo, 1998), or AUDyC
(Auto-Adaptive Dynamical Clustering) algorithm (Lecoeuche
et al., 2004). The characteristics of the classes are followed
online and faults can be detected using metrics between classes.
A FDI technique based on the algorithm AUDyC is proposed in
Pocher et al. (2012) to detect sensor faults of a navigation reach
only from real data.

A FDI strategy for sensors of inland navigation reaches, that
combines model-based and data-driven approaches, is proposed
in Duviella et al. (2013b). The model is a gray-box model
dedicated to multi-input/multi-output (MIMO) and time-delay
open-flow channel systems (Duviella et al., 2013a). It is applied
to the navigation reach of the north of France. However in this
paper, the residuals from gray-box model are ideal because they
are affected only by faults. In real applications, the presence of
disturbances, noise and modelling errors causes the residuals
to become nonzero even in the absence of faults. Therefore, the
fault detection procedure must be robust against these undesired
effects (Chen and Patton, 1999). When parametric uncertainties
are taken into account, the healthy system model should include
a vector of uncertain parameters bounded by a set that contains
all possible parameter values of normal operation. In the robust
fault detection literature, so far, parameters have been bounded
using intervals and the resulting model is known as an interval
model (Puig et al., 2008). When a dynamic system is modelled
using an interval model, the predicted output is also usually
bounded by an interval. Then, fault detection test is based on
checking if zero is contained or not in the residual interval
after propagating the parameter uncertainty. In this paper, the
FDI approach proposed in Duviella et al. (2013b) is improved
by using an interval method based on a white-box model of
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Fig. 1. Schematics of the CFR

navigation reach: the Integrator-Delay-Zero (IDZ) model. The
nominal model and the interval outputs provided by the interval
model are used as features for the classification algorithm
AUDyC that permits the detection and isolation of sensor faults.
The proposed approach is applied to a navigation reach in the
north of France.

The structure of the paper is the following: Section 2 is dedi-
cated to the description of the IDZ model. The interval model
is proposed in Section 3. In Section 4, the algorithm AUDyC
and the fault detection module are presented. The proposed
approach is applied to the real network in Section 5.

2. CUINCHY-FONTINTETTES CASE STUDY

2.1 Description

The Cuinchy-Fontintettes reach (CFR) belongs to the naviga-
tion network of the north of France. The system has to ensure
the waterway between Paris and the major ports of the North
Sea. The CFR reach is 42 km long being bounded by the lock
of Cuinchy at the upstream and by the lock of Fontinettes at
the downstream end (see Figure 1). There are two additional
inflows to the reach: (1) at the upstream end on the side of the
lock of Cuinchy there is a gate (QGC), (2) in the middle of the
reach the river Aire is connected to the CFR by a gate (QA).
The water level is mainly influenced by the operations of the
two locks: when lock Cuinchy is operated it releases its water
volume (3600 m3) to the CFR, when lock Fontinettes is oper-
ated it takes water (25000m3) from the CFR. As the volume of
the lock of Fontinettes is considerably bigger than the volume
of Cuinchy, it produces a negative wave of amplitude about 15
cm that is able to travel up and down in the reach.

In order to model the reach, the discharge of the lock of Cuinchy
(QLC) and the gate at the side (QGC) is considered together,
and denoted as QC . The other two inputs to the model are
the discharge in the middle of the canal, at Aire (QA) and the
discharge at the downstream end from the operation of lock
Fontinettes (QF ). The three measured variables are the water
levels at the three locations of the canal: at the upstream end,
at Cuinchy (YC), in the middle of the reach at Aire (YA) and at
the downstream end of the reach at lock Fontinettes (YF ).

2.2 The IDZ model

The dynamics of the open-flow channel can be described by
the Saint-Venant (SV) equations that are hyperbolic partial dif-
ferential equations, (Chow, 1959). These equations are highly
non-linear and they have no analytical solution in the general
case. It is common to use their numerical solution for simula-
tion purposes, however for other goals (as real-time control or
fault detection) these solutions are too complex.

For this reason there are several simplified models that have
been deduced from the SV equations with different simplifica-
tions, for example Hayami (Hayami, 1951), ID (Schuurmans,
1995), IR (van Overloop et al., 2010) and IDZ (Litrico and
Fromion, 2004). The IDZ model is based on the linearisation
of the SV equations around a set-point, using three points of a
spatial discretization the canal reach is divided into two parts:
an upstream (uniform flow) part and a downstream (backwater)
part. Then, the approximation is based on three points: the
upstream and the downstream ends and one intermediate point.

The model contains four transfer functions[
Yup
Ydown

]
=

[
p11(s) p12(s)
p21(s) p22(s)

] [
Qup
Qdown

]
(1)

where p11(s) relates the upstream discharge (Qup) and the
downstream water level (Ydown), p12(s) relates the downstream
discharge (Qdown) and the upstream water level (Yup), p21(s)
relates the upstream discharge and the upstream water level and
p22(s) relates the downstream discharge and the downstream
water level. The structure of each transfer function is the same.
They contain an integrator, a delay and a zero as the name of
the model indicates (see Eq. (2)).

The integrator is responsible for the modelling at low frequen-
cies, where the canal pool acts as an integrator, that is the water
level increases with the integral value of the discharge, like
a tank, multiplied by the inverse of the surface of the canal
reach, known as the backwater area, As. This area is close to
the product of the width and the length of the canal.

The delay is the time it takes for a wave to travel from the point
of disturbance to the point of measurement. It is slightly differ-
ent in the upstream (τu) and in the downstream (τd) directions.
Their approximation is detailed in Litrico and Fromion (2004).

The IDZ model contains a zero, that accounts for the first fast
increase in water level after a disturbance occurs. The general
form of the transfer functions can be written as:

G(s) =
p1s+ 1

Ass
e−τs, (2)

where the parameter p1 accounts for the zero and τ can be τu
or τd depending of the direction of the disturbance.

2.3 Application to the Cuinchy-Fontinettes case study

The IDZ modelling approach is applied to the Cuinchy-
Fontinettes case study considering that it can be decomposed
in three reaches that are described by the parameters presented
in Table 1. The Manning’s coefficient was chosen to be 0.035
based on Chow (1959). As the bed slope is very small (almost
zero), the reach is affected by backwater and therefore the
whole reach was modelled just one part as backwater part. The
CFR system has three inputs (QC , QA, QF ) and three outputs
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Name Length Width Depth Discharge Bottom
(m) (m) (m) (m3/s) slope (-)

CF 42300 52 3.8 3 2.5× 10−7

CA 28700 52 3.8 0 2.5× 10−7

AF 13600 52 3.8 0 2.5× 10−7

Table 1. Physical data of the CFR

Name Backwater τ p1 TF Reach
surface (m2) (s) (-)

GCC 2200 ×103 0 13990 p11 CF
GAC 2200 ×103 4711 4885 p12 CA
GFC -2200 ×103 6943 3969 p12 CF
GCA 2197 ×103 4688 4892 p21 CA
GAA 2197×103 0 10380 p22 CA
GFA -2200 ×103 2233 5975 p12 AF
GCF 2197 ×103 6909 3969 p21 CF
GAF 2197 ×103 2222 5979 p21 AF
GFF -2197 ×103 0 9196 p22 CF

Table 2. Properties of the three reaches

(YC , YA, YF ). Each output can be modelled by using three
transfer functions with the structure of (2):

YC(s) = GCC(s)QC(s) +GAC(s)QA(s) +GFC(s)QF (s)

YA(s) = GCA(s)QC(s) +GAA(s)QA(s) +GFA(s)QF (s)

YF (s) = GCF (s)QC(s) +GAF (s)QA(s) +GFF (s)QF (s)

(3)

The transfer functions show the effect of the discharges to the
water levels, e.g. GCF is the transfer function between the
discharge at Fontintettes and the level at Cuinchy.

The modelling of the intermediate discharge in the middle of
the reach was not that straightforward. In order to model the
transfer functions between Cuinchy and Aire and Aire and
Fontinettes, all the IDZ parameters (the time delay, the zero and
the backwater surface) were calculated following Litrico and
Fromion (2004). Finally, the backwater surface was substituted
with the one calculated for the whole canal: the discharge that
enters in the middle of the reach contributes to the water level
of the whole reach. The calculated parameters are summarized
in Table 2. The following remarks should be considered:

(1) Note that the all the backwater areas are very similar, but
there is a slight difference between them in the upstream
and downstream directions. However, they are similar
between the reaches.

(2) The sign of the backwater area is negative belonging
to the effect of the discharge at Fontinettes, that is the
downstream end. The reason is that this discharge leaves
the canal, therefore its effect is decreasing the water level.

(3) The obtained time delays are similar, but not equal in the
upstream and downstream directions: e.g. in the down-
stream direction from Cuinchy to Aire is 4688s (line 4),
while in the upstream direction form Aire to Cuinchy is
4711s (line 2). The reason is that the wave travelling with
the direction of the celerity in the downstream direction
the velocity of the bulk of the water is added to the
wave celerity, while when travelling upstream this veloc-
ity slows the wave down. However, as it can be seen that
the two values are very close to each other, the velocity of
the bulk of the water is negligible compared to the wave
celerity.

3. RESIDUAL GENERATION USING INTERVAL
OBSERVERS

3.1 Interval observers

As discussed in the introduction, the FDI approach proposed in
this paper for CFR system aims at combining model-based and
data-based approaches.

The model-based approach will be used to generate residuals
and their thresholds by means of interval observer methodology
(Puig et al., 2008). With this objective, the CFR model (3) is
expressed in discrete-time state space form as follows:

x(k + 1) =A(θ̃)x(k) +B(θ̃)u(k) (4)

y(k) =C(θ̃)x(k) + Fy(θ̃)fy(k) + ṽ(k) (5)

where u(k) ∈ Rnu is the system input, y(k) ∈ Rny is the
system output, x(k) ∈ Rnx is the state-space vector, ṽ(k) ∈
Rny is the output noise that is assumed to be bounded |ṽi(k)| <
σi with i = 1, . . . , ny , fy(k) ∈ Rny represents faults in the
output sensors. A(θ̃), B(θ̃), C(θ̃) and Fy(θ̃) are matrices of
appropriate dimensions where θ̃ ∈ Rnθ is the vector of real
parameters.

Then, the system (4)-(5) can be monitored using a linear ob-
server with Luenberger structure that uses an interval model of
the system, i.e. a model with parameters θ bounded by intervals:

θ ∈ Θ =
{
θ ∈ Rnθ | θi ≤ θi ≤ θ̄i, i = 1, . . . , nθ

}
(6)

that represent the uncertainty about the exact knowledge of the
real parameters θ̃. This observer, known as an interval observer,
is expressed as follows (Meseguer et al., 2010):

x̂(k + 1, θ) = (A(θ)− LC(θ)) x̂(k, θ) +B(θ)u(k) + Ly(k)

=A0(θ)x̂(k, θ) +B(θ)u(k) + Ly(k) (7)

ŷ(k, θ) =C(θ)x̂(k, θ)

where x̂(k, θ) is the estimated system state vector, ŷ(k, θ) is the
estimated system output vector and A0(θ) = A(θ)− LC(θ) is
the observer matrix.

The observer gain matrix L ∈ Rnx×ny is designed to stabi-
lize the matrix A0(θ) and to guarantee a desired performance
regarding fault detection for all θ ∈ Θ using the LMI pole
placement approach (Chilali and Gahinet, 1996).

The input/output form of the system (4)-(5) using the shift
operator q−1 and assuming zero initial conditions is given by:

y(k) = y0(k, θ̃) +Gfy (θ̃)fy(k) + ṽ(k) (8)

where y0(k, θ̃) is the system output when the system is not
affected by faults, disturbances and noises:

y0(k, θ̃) =Gu(q−1, θ̃)u(k) (9)

Gu(q−1, θ̃) =C(θ̃)(qI −A(θ̃))−1B(θ̃) (10)

Gfy (θ̃) = Fy(θ̃) (11)

The input/output form of the observer (7) is expressed as
follows:

ŷ(k, θ) = G(q−1, θ)u(k) +H(q−1, θ)y(k) (12)
with:
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G(q−1, θ) =C(θ)(qI −A0(θ))−1B(θ) (13)

H(q−1, θ) =C(θ)(qI −A0(θ))−1L (14)

The effect of the uncertain parameters θ on the observer tem-
poral response ŷ(k, θ) will be bounded using an interval satis-
fying:

ŷ(k, θ) ∈
[
ŷ(k), ŷ(k)

]
(15)

Such interval can be computed independently for each output
i = 1, . . . , ny , neglecting couplings among outputs, as follows:

ŷi(k) = min
θ∈Θ

ŷi(k, θ) and ŷi(k) = max
θ∈Θ

ŷi(k, θ) (16)

subject to the observer equations given by (7). The optimization
problems (16) could be solved using numerical methods as in
Puig et al. (2003).

Finally, taking into account that the additive noise in the system
(5) is bounded, the following condition should be satisfied in a
non-faulty scenario:

yi(k) ∈
[
ŷi(k)− σi, ŷi(k) + σi

]
i = 1, . . . , ny (17)

3.2 Parameter uncertainty estimation

One of the key points in passive robust model-based fault detec-
tion is how models and their uncertainty bounds are obtained.
Recently, some methodologies that provide a model with its
uncertainty have been developed, but always thinking of its ap-
plication to control (Reinelt et al., 2002). One of the methodolo-
gies assumes the bounded and unknown description of the noise
and parametric uncertainty. This methodology is known as
bounded-error or set-membership estimation (Milanese et al.,
1996), which produces a set of parameters consistent with the
selected model structure and the pre-specified noise bounds.
This approach is used for estimating parametric uncertainty of
the interval observers in (7).

Regarding the uncertain variables that appear in (7), it is as-
sumed that a priori theoretical or practical considerations allow
to obtain useful intervals associated to measurement noises,
leading to an estimation of the noise bound σ. The goal of the
parameter estimation algorithm is to characterize the parame-
ter set Θ (here a box) consistent with the data collected in a
fault-free scenario. Given N measurements of system inputs
u(k) and outputs y(k) from a scenario free of faults and rich
enough from the identifiability point of view, and a nominal
model described by a vector θn that can be obtained by the
physical knowledge of the system or using a standard least-
square parameter estimation algorithm Ljung (1987), the un-
certain parameter estimation algorithm proceeds by solving the
following optimization problem that can be solved by bi-level
optimization (Bard, 1988):

min α
subject to :

yi(k) ∈
[
ŷ
i
(k)− σi, ŷi(k) + σi

]
i = 1, ..., ny k = 1, ..., N

ŷ
i
(k) = min

θ∈Θ
ŷi(k, θ) i = 1, ..., ny k = 1, ..., N

ŷi(k) = max
θ∈Θ

ŷi(k, θ) i = 1, ..., ny k = 1, ..., N

ŷ(k, θ) = G(q−1, θ)u(k) +H(q−1, θ)y(k) k = 1, ..., N
Θ = [θn(1− α), θn(1 + α)]

(18)

3.3 Residual generation

Fault detection is based on generating a nominal residual com-
paring the measurements of physical system variables y(k) with

their estimation ŷ(k) provided by the observer (7):
ro(k) = y(k)− ŷ(k, θn) (19)

where r0(k) ∈ Rny is the nominal residual. According to
Gertler (1998), the computational form of the nominal residual
generator, obtained using (7), is:

ro(k) =
(
I −H(q−1, θn)

)
y(k)−G(q−1, θn)u(k) (20)

that has been derived taking into account the input/output form
of the observer (12).

When considering model uncertainty located in parameters, the
residual generated by (19) will not be zero, even in a non-
faulty scenario. To cope with the parameter uncertainty effect,
a passive robust approach based on adaptive thresholding can
be used (Puig et al., 2006). Thus, using this passive approach,
the effect of parameter uncertainty in the components ri(k)
of residual r(k) (associated to each system output yi(k)) is
bounded by the interval (Puig et al., 2003):

roi (k) ∈ [ri(k)− σi, ri(k) + σi] i = 1, ..., ny (21)
where:
ri(k) = ŷ

i
(k)− ŷi(k, θn) and ri(k) = ŷi(k)− ŷi(k, θn) (22)

where ŷ
i
(k) and ŷi(k) are the bounds of the system output es-

timation computed component-wise using the interval observer
(7) and obtained according to (16).

4. FAULT DIAGNOSIS USING DYNAMICAL
CLASSIFIER AUDYC AND RESIDUALS

4.1 Overview

The fault diagnosis approach proposed in this paper is based
on using residuals and their uncertainty intervals presented in
previous section combined with a dynamical classifier. The
idea is that this classifier is in charge of tracking the evolution
of the system residuals in the residual space. This allows a
more sensitive, faster detection than using just thresholds. An
additional motivation is the specific characteristic of this water
system: the measurement can change fast within short time.
Therefore with only using the residuals and threshold it would
be either not sensitive enough or would lead to false alarm. The
use of classifiers can compensate for this fast movement, and
acts as a filter by finding the change of the class.

When the residuals leaves the region of normal behaviour
established by the uncertainty bounds a fault is detected. Fault
isolation is achieved when residuals enter in a region of the
residual space corresponding to a given fault signature. The
regions are created by training the classifier using faulty and
non-faulty scenarios created in simulation.

4.2 AUDyC classifier

The classifier AUDyC aims at characterizing on line the free-
fault and faulty modes of the system by Gaussian classes ac-
cording to pertinent indicators, i.e. the features. A Representa-
tion Space is built according to the features, where the classes
are represented. The class of the free-fault mode, denoted Cn,
is determined with fault-free data. Then, the characteristics of
the class, i.e. its center and its covariance matrix, are updated
with each new data. This evolutionary class is denoted Ck.

The update of the classes parameters is performed recursively
on a sliding window of size Nfen for each new observation
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Xk = (x1, x2, ... xn), with n the number of features. The
principle of the procedure is detailed in Lecoeuche et al. (2004).
To detect a modification of the characteristics of the evolution-
ary class, the Kullback-Leiber distance between Cn and Ck is
computed at each sample time. It is denoted dKl(Mk,Mn) and
expressed as:

{
dKl(Mk,Mn) = 1/2(Mk −Mn)T (Σ−1

k
+ Σ−1

n )(Mk −Mn)+

1/2trace(Σ−1
k

Σ−1
n + Σk + Σ−1

n )−D,
(23)

where Mk is the center of the class Ck and Mn the center
of the normal class Cn, Σk and Σn the covariance matrices of
the classes Ck and Cn respectively, D the dimension of the
Representation Space, and trace computes the sum of diagonal
elements of the matrix.

When a fault occurs, the characteristics of the evolutionary
class Ck changes. The class Ck moves in the Representation
Space from the normal class Cn and its shape (ı.e. Σk) can be
modified. These modifications have an impact on the Kullback-
Leiber distance dKl(Mk,Mn). Then, a sensor fault is detected
when the dKl(Mk,Mn) crosses a prefixed threshold th. This
threshold is tuned according to data or expert knowledge on the
system.

4.3 Application to the Cuinchy-Fontinettes case study

Considering the CFR system, there are three sensors that can
be subject to faults. Using the IDZ models associated to the
interval models, three features are defined for each sensor by
means of the residuals and their intervals generated using the
corresponding interval observers presented in previous section:
i.e. rC(k), rC(k) and rC(k) for the sensor in Cuinchy YC ,
rA(k), rA(k) and rA(k) for the sensor in Aire YA, finally,
rF (k), rF (k) and rF (k) for the sensor in Fontinettes YF . The
residuals ri(k) are directly issued from the nominal IDZ model
and the measurements. Thus, three Representation Spaces are
defined for the CFR.

5. RESULTS

A numerical model of the CFR was built using the SIC (Simula-
tion of Irrigation Canals) (Malaterre, 2006) software. SIC uses
a finite difference method to solve the SV equations implicitly.
The cross sections were placed at about each 100 m, using
surveyed data. The discretization time was chosen in order the
Courant-Friedrichs-Levy condition to be kept. After this valida-
tion, the numerical simulator is used to reproduce the scenarios
presented in the following.

The transfer functions were discretized by using zero order
hold, with a sampling time of 300s. The models of the three
water levels were compared to the results of the distributed
solution of the SV equations (by the SIC software) and the bed
slope of the IDZ model was adjusted to represent better the real
data.

According to the IDZ model described in Section 2, the
real behaviour of the CFR system in presence of sensor
faults and additive error noise can be expressed in state
space as (4)-(5) with y = (YC(k), YA(k), YF (k)) and u =
(QC(k), QA(k), QF (k)).

Nominal parameters θn where obtained as explained in Section
2.3 using a fault free scenario rich enough under the identifi-

cation point of view. The interval observer is calibrated as it
was described in Section 3. The scenario used for calibration
corresponds to normal operation of the canal reach: about 10
lock operations per day both upstream and downstream and
changing flow input in the middle of the reach.

As can be deduced from the IDZ equations (3), every sensor
level fault affects only the residuals associated to its level. Then,
the isolation is trivial: when an inconsistency is detected in
one residual, a fault in the level associated to the residual is
concluded.

Once the interval model has been calibrated, different faults
have been simulated in order to verify the effectiveness in fault
detection using directly (21) and using the AUDYC classifier
with the nominal, maximum and minimum residuals.

Figure 2 shows the measured level in Cuinchy and interval
bounds in a fault scenario of -2cm offset level applied at time
t = 5000 minutes. It shows the evolution of the Cuinchy level
(calculated by the SIC simulator) for six days long. The interval
bounds computed by (16). It can be seen when the fault occurs
the ”measurement” leaves the interval.

5000 5500 6000 6500

19.4

19.5

19.6

Time [min]

C
u

in
ch

y 
le

ve
l [

m
]

Fig. 2. Cuinchy level (blue line) and bounds (red dashed line)
and Fault detection test in Fault scenario.

The Kullback-Leiber distance dKl(Mk,Mn) between these
two classes are determined on line and shown in Figure 3, in
continuous blue line for a free-fault scenario and in dashed red
line for fault scenario. The threshold is tuned as 0.08. With this
threshold, a fault of 2cm (0.5%) is detected within 23 samples
(2 hours). Afther the detection there are two intervals of no
detection, while the fault is present.

6. CONCLUSION AND PERSPECTIVES

A sensor fault diagnosis method is proposed based on the com-
bination of model-based approach and dynamic classification.
A white box model of the system is used in combination with
an interval observer to generate residuals for the classifier. The
method is successfully applied to a case study of an inland
navigation reach. This result shows that it is a promising line of
research to combine the model-based and the data-driven FDI
methods.
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Fig. 3. Kullback-Leiber distance dKl(Mk,Mn) between these
two classes - free-fault in blue, fault in red.

ACKNOWLEDGMENT

This work is a contribution to the GEPET’Eau project which is
granted by the French ministery MEDDE - GICC, the French
institution ORNERC and the DGITM.

REFERENCES

A. Akhenak, E. Duviella, L. Bako, and S. Lecoeuche. On-
line fault diagnosis using recursive subspace identification
algorithm of a dam-gallery open channel system. Control
Engineering Practice, In press, 2013.

J.F. Bard. Practical Bilevel Optimization: Algorithms and
Applications. The Netherlands: Kluwer, 1988.

N. Bedjaoui and E. Weyer. Algorithms for leak detection,
estimation, isolation and localization in open water channels.
Control Engineering Practice, 19(6):564–573, 2011.

J. Blesa, V. Puig, and Y. Bolea. Fault detection using interval
LPV models in an open-flow canal. Control Engineering
Practice, 18(5):460 – 470, 2010.

J. Chen and R. J. Patton. Robust Model-based Fault Diagnosis
for Dynamic Systems. Kluwer Academic Publishers, 1999.

M. Chilali and P. Gahinet. H∞ Design with pole placement
constraints: an LMI approach. IEEE Transactions on Auto-
matic Control, 41(3):358–367, 1996.

V. T. Chow. Open-channel hydraulics. McGraw-Hill Book Co.
Inc, New York, 1959.

E. Duviella, J. Blesa, L. Bako, Y. Bolea, M. Sayed-Mouchaweh,
V. Puig, and K. Chuquet. Inland navigation channel model:
Application to the cuinchy-fontinettes reach. In The 10th
IEEE International Conference on Networking, Sensing and
Control, Paris, France, April 10-12. 2013a.

E. Duviella, L. Rajaoarisoa, J. Blesa, and K. Chuquet. Fault
detection and isolation of inland navigation channel: Appli-
cation to the Cuinchy-Fontinettes reach. In CDC 52nd IEEE
Conference on Decision and Control, December 2013b.

T. Eltoft and R.I.P. de Figueiredo. A new neural network
for cluster-detection-and-labeling. Neural Networks, IEEE
Transactions on, 9(5):1021–1035, 1998.

M. Fastenbauer, M. Sattler, and G. Schilk. River information
services for commercial users in the inland waterway sector.
In LINDI 2007. International Symposium on Logistics and
Industrial Informatics, pages 31–36, 2007.

P. M. Frank, S. X. Ding, and B. Köppen-Seliger. Current
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