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Abstract: A novel subspace covariance-based identification method that achieves consistent
system estimates in the presence of highly-colored noise without requiring the use of weighting
matrices has been derived recently. However, the use of Fourier transform in the computation of
correlation functions requires the need to include the estimation of initial and final conditions.
In this article we propose a solution to get unbiased estimates regardless of initial or end effects.
Moreover, to further improve the model order estimation a filter-based solution is considered.
This results in a new covariance-based algorithm that uses frequency weights computed with
limit conditions in mind. A simulation example illustrates the algorithm performance.

1. INTRODUCTION

Time domain Subspace-based State-Space IDentification
methods - referred to as 4SID methods - are a popu-
lar class of methods to identify state-space models of
Linear Time-Invariant (LTI) systems from experimental
input-output data. Compared to the Prediction Error
Method (PEM) (Ljung, 1999), the 4SID methods are at-
tractive because they estimate a state-space realization di-
rectly from input-output data without requiring canonical
parametrizations and non-linear optimizations (Gustafs-
son, 2002). They are based on robust numerical tools such
as the QR-factorization and the Singular Value Decompo-
sition (SVD) (Golub and Van Loan, 1996).

These methods can be stated in the framework of (Van Over-
shee and De Moor, 1995) which interprets the 4SID meth-
ods in terms of the estimation of the range space of a
weighted extended observability matrix. Several studies
have shown that the most popular 4SID methods only
differ from the choice of weighting matrices (see, e.g.,
(Jansson and Wahlberg, 1998)). In the literature several
works have studied the impact of those weightings on
the asymptotical performance of the methods (Gustafsson,
2002; Jansson and Wahlberg, 1995; Bauer, 2005). The
weighting matrices may also be chosen to specify a certain
solving basis. Orthogonal (Peternell, 1995) and balanced
basis (Chou and Maciejowski, 1997) or orthogonalized
data (Chiuso and Picci, 2004) can be used to improve the
numerical properties of the identification problem. Finally,
weighting matrices can influence the estimation of the
range of the weighted extended observability matrix and
consequently the order of the identified model (Van Over-
schee and De Moor, 1996a). A different approach, based

on the identification of q-Markov COVariance Equivalent
Realizations (COVER), was suggested in (King et al.,
1988). This algorithm uses both impulse response and
autocorrelation sequences of multivariable linear systems
and can be used for a realization, or model reduction.

In (Miller and de Callafon, 2010), a method which uses
input-output covariance data was used. The algorithm
formulation is similar to popular 4SID methods. However,
this one is attractive as it provides consistent estimates
without using weighting matrices even in presence of col-
ored noise (Miller and de Callafon, 2010). It is also different
from the approach suggested in (King et al., 1988) since
this method is not aiming at finding models that cover
the q-Markov parameters, but focuses on correlations be-
tween signals to minimize the effect of noise conditions.
However, this method presents two main drawbacks. First,
it uses Fourier transform and inverse Fourier transform
to compute the correlation function estimates. Because of
this implementation aspect, the identification results are
mathematically exact only if the initial and final conditions
are estimated during the identification. Second, there is no
mean to improve the model order selection. Indeed, with-
out weighting matrices, the range space of the extended
observability matrix only depends on the data and cannot
be influenced. In this article, we suggest two solutions to
circumvent these two limitations. The proposed solutions
lead to a new subspace-based algorithm where the estima-
tion is carried out via covariance function where frequency
weights are computed with limit conditions in mind, still
allowing the use of short data sequences in the covariance
based realization algorithm.

In Section 2, we first review the identification problem.
Then, it is shown how the bound effects can be considered
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with the same algorithm formalism. Taking them into
account results in a general formulation of the algorithm
and in improved performance when initial and final system
states are not zero. In Section 3, it is shown that the
same algorithm can be derived with filtered covariance
functions. This enables to retain the system dynamics
only in a certain frequency band of interest. This results
in a model order reduction. In this article, the term
model order reduction is used instead of model reduction
often associated to the balanced reduction (Datta, 2003)
which yields to a reduced model with different properties.
Differences between the two approaches will be discussed
in Section 3. The algorithm based on filtered covariance
functions is given in Section 4. Finally, Section 5 shows
the impact of the two improvements derived in this article
through a simulation example.

2. IDENTIFICATION FROM COVARIANCE DATA

2.1 Formulation of the identification problem

Consider a discrete, linear, time-invariant system de-
scribed in state-space form as

xk+1 = Axk +B uk (1)

yk = C xk +Duk + vk , (2)

with xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny are the state, input
and output vectors, respectively, and where A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu are the system
matrices. The vector vk ∈ Rny is a possible colored
noise and is assumed to be stationary (Ljung, 1999). We
assume that the representations given by (2) are minimal
descriptions of stable, controllable and observable systems.

The identification problem considered hereafter consists in
estimating first the system order of the system and then
the state space matrices (A, B, C, D). But instead of
working with the raw input and output data, we consider
in this article covariance functions estimates. For any
quasi-stationary signals sk and wk, the cross-covariance
function Rsw(τ) is defined as (Ljung, 1999)

Rsw(τ) = lim
N→∞

1

N

N−1∑
k=0

E{sk+τ w
T
k } w. p. 1 , (3)

where E denotes the expectation.

The input signal uk is chosen to be a quasi-stationary
signal (Ljung, 1999). Since the system is assumed to be
stable, the state xk and the output yk are also quasi-
stationary signals. Thus, the correlation functions Ryu(τ),
Rxu(τ), Ruu(τ) and Rvu(τ) exist and are defined as in
Eq. (3), respectively. They can be expressed in terms of
the state-space matrices (A,B,C,D) as

Rxu(τ + 1) = ARxu(τ) +BRuu(τ)

Ryu(τ) = C Rxu(τ) +DRuu(τ) +Rvu(τ)
. (4)

If the noise vk is uncorrelated with the input uk, Rvu(τ) =
0. Therefore, using correlation functions instead of raw
input and output data offers the advantage of reducing
the effect of the noise. This holds even in the presence of
colored noise.

2.2 Estimating the correlation function

The theoretical definition for covariance functions given in
Eq. (3) implies an infinite number of samples. Practically,

only a finite number of samples are used to estimate covari-
ance functions from real experimental data. A proposed
estimate form for Rsw(τ) is (Ljung, 1999)

R̃sw(τ) =
1

N

N−1∑
t=0

s(t+ τ)wT (t) . (5)

This estimate is slightly different from the true covariance
function Rsw(τ). Looking at the expected value of this
covariance estimate, we would like to have

lim
N→∞

E{R̃sw(τ)} = Rsw(τ) w. p. 1 . (6)

If this is the case, it is called a “consistent” estimate.
Actually, its expected value verifies (Ljung, 1999)

E{R̃sw(τ)} =
N − |τ |
N

Rsw(τ) w. p. 1 , (7)

where N−|τ |
N is a weighting factor with the property that

limN→∞E{R̃sw(τ)} = Rsw(τ). The proposed estimate
is asymptotically unbiased. It can be noticed that the
proposed estimate is also unbiased if |τ | << N . Moreover,
as the time shift τ gets larger, a fewer samples are used
when calculating the covariance and the estimate would
be biased and exhibit more variance. For these reasons,
we will use a slightly different estimate given by

R̂sw(τ) = ω(τ) R̃sw(τ) , (8)

where ω(τ) is a rectangular window defined by

ω(τ) =

{
1 if |τ | ≤ τmax
0 if |τ | ≥ τmax

. (9)

τmax is chosen to verify τmax << N so that the estimate
R̂sw(τ) is an unbiased estimate.

2.3 Initial and end effects

The estimate R̃sw(τ) is not directly computed as a convo-
lution product. The following relation is used instead

R̃sw(τ) = F−1{S(ω)W (ω)} , (10)

where F−1 denotes the inverse Fourier transform and S(ω)
and W (ω) are the Fourier transform of the considered
signals s(t) and w(t) respectively. It is indeed computa-
tionally more efficient to compute first the Fourier trans-
form of the time domain signals and then take the inverse
Fourier transform of their product Orfanidis (1996). In the
time domain, the Fourier transform of a signal is based on
the integration of the signal over the whole (infinite) time
scale. Of course, in a practical experiment, the signals are
only available on a limited time interval [t0, t1]. When the
signals are non-zero outside this interval or are not peri-
odic, one has to integrate corrective terms in the Fourier
analysis.

Inspired by the solution suggested by Pintelon et al.
(1997) for the identification of single-input single-output
systems in the frequency domain, we derive in the sequel a
solution to integrate these corrective terms in the problem
formulation. We note t0 = 0 and t1 = (N − 1)∆t with
∆t the sampling period. If xk designates the samples of
the state vector at the times k ∆t and N the number of
samples, the Discrete Fourier Transform (DFT) X(ωl) for
the frequency ωl (l = 0, · · · , N − 1) is defined as

X(ωl) =

N−1∑
k=0

xk e
−jωlk∆t with ωl =

2 π l

N ∆t
. (11)
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Similarly, the DFT of xk+1 is given by

F{xk+1} =

N−1∑
k=0

xk+1 e
−jωlk∆t . (12)

Using the change of variable K = k+ 1, this latter can be
rewritten as

F{xk+1} =

N∑
K=1

xK e
−jωl(K−1)∆t

= ejωl∆t
(N−1∑
K=0

xK e
−jωlK∆t − x0 + xN e

−jωlN∆t
)
.

(13)

Remarking that the sum is the same as in Eq. (11) and
that e−jωlN∆t = 1, Eq. (13) becomes

F{xk+1} = ejωl∆tX(ωl)− ejωl∆t∆x , (14)

with ∆x = x0 − xN . Taking the inverse DFT, the
real state xk+1 is equal to the calculated state x̃k+1 =
F−1{F{xk+1}} plus an additional term

xk+1 = x̃k+1 +
1

N

N−1∑
l=0

∆x ej2πl(k+1)/N . (15)

Replacing x(t+1) in Eq. (2) by this expression, the correct
state-space representation that has to be considered is
given by

xk+1 = Axk + B̄ ūk (16)

yk = C xk + D̄ ūk + vk , (17)

with B̄ = [B ∆x], D̄ = [D Dx] and ūk =
[
uTk νTk

]T
.

This shows that initial and end effects can easily be taken
into account without changing the identification problem
formulation. It can indeed be achieved by only adding to
the real system a fictitious input νk defined as

νk =
1

N

N−1∑
l=0

ej2πl(k+1)/N =

{
1 if k = N − 1

0 if k < N − 1
. (18)

The state-space formulation implies to add the vector Dx

to the matrix D. This additional term can be seen as
the influence of modes that are outside the considered
frequency-band upon the bound conditions.

2.4 Subspace identification from covariance data

Using the estimates R̂ūū, R̂yū, R̂xū to write the algorithm
which was introduced in (Miller and de Callafon, 2010)
should improve the identification results since the bias
introduced by bound effects is avoided. The main steps
of this algorithm are adapted in order to take into account
the bound effects and are reviewed in this subsection. In
the rest of the article, we note nū = nu + 1.

Adapting traditional subspace identification methods to
covariance functions involves the following relation

Ryū = Γ Rxū + T Rūū + Rvū , (19)

where Ryū ∈ Riny×lnū is a block-Hankel matrix made of l

block-columns of i length sequences of R̂yū(τ) as

Ryū = 
R̂yū(0) R̂yū(1) . . . R̂yū(l − 1)

R̂yū(1) R̂yū(2) . . . R̂yū(l)
...

...
...

R̂yū(i− 1) R̂yū(i) . . . R̂yū(i+ l − 2)

 . (20)

This block-hankel matrix is expressed as a function of
the block-Hankel matrices Rūū ∈ Rinū×lnū and Rvū ∈
Rinv×lnū (defined in a similar way than Ryū), the extended
observability matrix Γ ∈ Riny×nx and the block-lower-
triangular-Toeplitz matrix T composed of the system
Markov parameters (Verhaegen and Verdult, 2007).

The goal of 4SID methods is first to estimate the system
order from the rank of Γ. In order to estimate the rank
of Γ, the propagation of the cross-covariance of the state
with the input must be isolated by projecting Ryū onto
the orthogonal complement of the input auto-correlation
block-Hankel matrix Rūū. The lnū × lnū right projection
matrix Πūū is defined as in (Miller and de Callafon, 2010).
This one preserves the rank of Γ if the input signal is
persistently exciting (Katayama, 2005) and if the condition
l > (i+1)nū+nx is fulfilled (Miller and de Callafon, 2010).

If Rvū = 0, the order of the system can be determined
by examining the rank of Ryū Πūū. In practical situations,
this condition is not strictly verified and Rvū Πūū can be
a full-rank matrix. However, the effect of the noise on
the data is expected to be low compared to the system
dynamics influence. A likely value for nx can therefore
be determined by searching for a drop-off in the singular
values of Ryū Πūū. The value of nx is given by the place
of the singular value σnx immediately prior to the drop-
off. Consequently, the goal is to find the matrix Q that
minimizes the least-squares problem

εnx = min
rank(Q)=nx

‖Q−Ryū Πūū‖2 . (21)

The matrix Qnx that minimizes Eq. (21) is (Golub and
Van Loan, 1996)

Qnx
= Unx

Σnx
V Tnx

, (22)

where Σnx
= diag(σ1, σ2, . . . , σn) contains the first nx

singular values of Ryū Πūū. An estimate of the system

extended observability matrix Γ - denoted Γ̂ - and an
estimate of the state response - denoted R̂xū Πūū - is found
from a factorization of Qnx

as

Qnx
= Γ̂ (R̂xū Πūū) . (23)

A possible and common choice is

Γ̂ = Unx
Σ1/2
nx

, R̂xū Πūū = Σ1/2
nx

V Tnx
. (24)

Once the order nx and the observability matrix estimate
Γ̂ are estimated, the next step of the algorithm is to
estimate the system matrices A and C. The most popular
way to estimate these two system matrices uses the shift-
invariant structure of the extended observability matrix
Γ̂ (Van Overschee and De Moor, 1996a). In (Miller and
de Callafon, 2010) a method that uses the shift-invariant
property of the output data is used to estimate the system
matrix A. From Eq. (19), this one starts by remarking that

the shifted matrix
−→
Ryū - defined as Ryū shifted by a single

column to the left - can be expressed as
−→
Ryū = ΓARxū +

−→
T
−→
Rūū +

−→
Rvū , (25)

where
−→
Rūū,

−→
Rvū

−→
T are defined as Rūū, Rvū and T

respectively shifted by a single column to the left. The

effects of the shifted input matrix
−→
Rūū are removed by

using the projection Πūū (Miller and de Callafon, 2010).

Hence, given Γ̂ and R̂xū from Eq. (24), the matrix Â that
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best estimates the true system matrixA is found by solving
the following least squares problem

min
rank(Â)=nx

‖Γ̂ Â R̂xū Πūū −
−→
Ryū Πūū‖2 . (26)

The solution of the above problem is given by

Â = Γ̂†
−→
Ryū Πūū(R̂xū Πūū)† , (27)

where Γ̂ and R̂xū Πūū are given by Eq. (24). (.)† represents
the pseudo-inverse. Finally, an estimate of C is then found
from the first ny rows of Γ and the system matrices B and
D are estimated via a least squares problem (Verhaegen
and Verdult, 2007).

3. FILTERING THE COVARIANCE FUNCTIONS

As described in the previous Section, the model order is
chosen from a SVD calculation of Ryū Π. If one tries to
select a matrix of rank η = nx − j with j ≥ 1, the error
when solving the least-squares problem becomes (Golub
and Van Loan, 1996, Th. 2.5.2)

εη = ‖Qη −Ryū Π‖2 = ση+1 > εnx , (28)

because the position η + 1 is located before the drop off.
For this reason, it is not possible to choose a lower order
without obtaining biased results.

Although initially motivated by the desire to pre-whiten
the data (Viberg, 1995), the use of weighting matrices
in 4SID methods also modifies the range space of the
extended observability Γ. Thus, they can be used to influ-
ence the model order estimation. In (Van Overschee and
De Moor, 1996b, Ch. 5), it was shown that a proper choice
of weighting matrices leads to a frequency-weighted bal-
anced state-space basis in which model reductions can be
performed. This corresponds to the technique of frequency
weighted model reduction given in (Enns, 1984a). Based on
the balanced reduction, the frequency weighted reduction
consists in introducing input and output frequency weights
to enhance certain frequency bands in the balancing pro-
cedure.

In our case, as shown in (Miller and de Callafon, 2010), the
algorithm does not require the use of weighting matrices
to provide consistent estimates. However, similarly to the
approach mentioned above, additional weighting matrices
could be used to improve the estimate of a reduced order
model. Using a filter is another possibility that has the
advantage to avoid the choice of such weighting matrices.
A non-causal filter (given in terms of the forward time-
shift operator q) can indeed be applied to the correlation

functions R̃ūū(τ) and R̃yū(τ) as

R̃ūū,f (τ) = F (q) R̃ūū(τ) (29)

R̃yū,f (τ) = F (q) R̃yū(τ) . (30)

Noting U(ωl) and Y (ωl) the Fourier transform of u(t)

and y(t) respectively, the filtered estimates R̃ūū,f (τ) and

R̃yū,f (τ) are given by

R̃ūū,f (τ) = F−1{φ̃uu,f (ωl)} (31)

R̃yū,f (τ) = F−1{φ̃yu,f (ωl)} , (32)

where the operator F−1 is the inverse Fourier transform
and the filtered spectral density estimates φ̃uu,f (ωl) and

φ̃yu,f (ωl) are given by

φ̃uu,f (ωl) = F (ωl)U(ωl)U(ωl)
∗ (33)

φ̃yu,f (ωl) = F (ωl)Y (ωl)U(ωl)
∗ , (34)

with F (ωl) defining the frequency response of the chosen
filter.

Choosing a non-causal filter F (q) such that its frequency
response F (ωl) is equal to 1 if ωl ∈ [ωmin, ωmax] and
equal to 0 elsewhere yields to apply a frequency band
selection. Using such a filter, the influence on the data
of poles located outside the selected frequency band is
reduced. The corresponding singular values of Ryū Π are
consequently considerably decreased. Hence, the drop-off
appears after a smaller number of singular values and
a model of lower order can be identified. If the system
dynamics over the entire frequency range is not of interest,
this filter is a way to focus on a frequency band of interest.
It enables to identify a model that will fit with the system
response in this frequency band regardless of the system
dynamics at other frequencies.

Compared to a balanced reduction which is a common
way to perform a model reduction, the approach presented
here is slightly different. The balanced reduction indeed
truncates the less controllable and observable states. The
obtained results are therefore not necessarily similar since
the truncation operation is done regardless the frequency
location of poles. The frequency weighted generalization
of the balanced truncation introduced in (Enns, 1984b)
includes frequency weighting to emphasize states in a
certain frequency band. If the weighted matrices are cho-
sen to emphasize the same frequency band, then similar
results should be obtained but via a multi-step procedure.
Equivalent results with 4SID methods can be obtained
with a particular choice of the weighting matrices as shown
in (Van Overschee and De Moor, 1996a) in a one-step
procedure. But in these methods only causal filters are
used and frequency weighting approaches suffer from the
difficulty arising when one wants to obtain an accurate
frequency band selection. Methods based on the frequency-
limited grammians calculation (Gawronski and Juang,
1990) circumvent this problem. But this approach requires
the knowledge of the full system. The algorithm proposed
in this article aims at providing the same simplicity of use
with the advantage to get a model of reduced order in a
one step procedure from measurement data.

The use of the filter F (q) offers a second advantage for the

identification algorithm. It reduces the noise so R̃yū,f (τ)
can more easily be truncated using the temporal window
ω(τ). Hence, less data points can be considered.

4. ALGORITHM BASED ON FILTERED
COVARIANCE FUNCTIONS

Let R̂yū,f (τ) and R̂ūū,f (τ) be the filtered estimates of
the cross covariance function Ryū,f (τ) and Rūū,f (τ). They
are calculated from the measured input-output data ū(t)
and y(t) and can be expressed in terms of the state-
space matrices the same way as the non filtered covariance
functions in (4).

Hence, the algorithm described in Section 2.4 can be
formulated using the filtered covariance functions by first
writing
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Ryū,f = Γ Rxū,f + T Rūū,f + Rvū,f (35)
−→
Ryū,f = ΓARxū,f +

−→
T
−→
Rūū,f +

−→
Rvū,f . (36)

The matrices Ryū,f , Rxū,f , Rūū,f , Rvū,f ,
−→
Ryū,f , Rxū,f ,

−→
Rūū,f ,

−→
Rvū,f are defined as in Eq. (20) using the filtered

convariance functions. The projection Πūū,f onto the or-
thogonal complement of the filtered block-Hankel matrices

Rūū,f and
−→
Rūū,f is defined similarly to the non filtered

projection. Depending on the applied filter and regarding
to the system mode frequencies, the influence of some
modes on the filtered data may not be seen or may be
very low. In this situation, a significant drop-off in the
singular values of Ryū,f Πūū,f is after the first η singular
values. The position η is given by

η = nx − (2c+ r) , (37)

where c is the number of complex modes and r the number
of real modes whose influence are not significant in the
filtered data. Hence, the matrix Qν that minimizes the
least-squares problem

εη = min
rank(Q)=ν

‖Q−Ryū,f Πūū,f‖2 , (38)

is obtained from the SVD of Ryū,f Πūū,f and given by

Qη = Uη Ση V
T
η . (39)

In this situation the residual error εη is small and the
estimation of a model of reduced order η does not lead
to undesirable results.

As a consequence, the objective which is not to find the

best captures (Â, ˆ̄B, Ĉ, ˆ̄D) but to identify the reduced
system (Af , B̄f , Cf , D̄f ) of order η that best estimates
the system dynamics in the selected frequency band can
directly be achieved from the data matrix R̂yū,f Πūū,f .
An estimate of the extended observability matrix of the
reduced system - denoted Γ̂f - and of the filtered state
response - denoted Rxū,f are indeed first given by a
factorization of Qη as

Qη = Γ̂f (Rxū,f Πūū,f ) , (40)

where a possible choice is

Γ̂f = Uη Σ1/2
η , Rxū,f Πūū,f = Σ1/2

η V Tη . (41)

Then, using the shift-invariant property as shown in Sec-
tion 2 leads to the reduced state-matrix estimate Âf . The

matrix Ĉf is found from the first ny rows of Γ̂f . Finally,

the input matrices B̂f , D̂f and the initial state-input cor-

relation R̂xū,f (τ0) are retrieved from a sequence of input-
output correlation by solving a least squares problem.

5. ILLUSTRATIVE EXAMPLE

The covariance-based algorithm is applied to the identi-
fication of a flexible aircraft structure during flight tests.
The reduced model used to illustrate the improvements of
the algorithm presents the characteristics of an aeroelastic
model of aircraft structure. It is a 6th order model with 1
input and 4 outputs. The 3 modes are low damped modes
with the specificity that the second and third one have
very closed frequency and damping values. The results
shown in this Section are obtained with short excitations
used during flight tests. Typically, the used excitations
are 0.2 s pulse. The outputs are corrupted by a non-
white noise obtained from an appropriate simulation of the

background noise that affects flight tests. The accuracy of
the identification is evaluated by the criterion

J(θ) =
1

N

N∑
k=1

(y0k − ŷk(θ))2 , (42)

where θ is the vector of parameters, y0k the output vector
of the true system and ŷk(θ) the output vector of the
identified system.

The system comes back to its equilibrium state 50 seconds
after the excitation. To show the impact of bound effects
on the results, identification procedures with different
record duration - noted d - are launched and no filter
is applied to the data. For each value of d, 100 Monte-
Carlo simulations of the noise were realized. Figure 1 shows
the mean values of the identification results obtained with
and without bound conditions integration as a function
of the duration d. We can see that when the bound

Fig. 1. Influence of bound effects on identification results.

effects are explicitly taken into account, a shorter duration
can be considered without deteriorating the identification
accuracy. In the case simulated here, it leads to even better
results because the output signal energy is decreasing with
time.

Now we consider the case d = 15 s for which the mean sig-
nal to noise ratio is 19 dB. We want a 4th order model that
represents the dynamic behaviour of the two close modes
only. A filter that selects the frequency between fmin = 2.5
Hz and fmax = 5 Hz is applied to the covariance functions.
Results are compared with mode values estimated by a two
step model reduction: first a 6th order model is identified
without filter and is reduced by using a frequency limited
balanced reduction performed with the MOdel REduction
Toolbox (Poussot-Vassal and Vuillemin, 2012). Estimated
modes in these two cases are shown on Fig. 2. Without

Fig. 2. Locations of the two identified modes with
the frequency-limited balanced reduction (left) and
with the filtered covariance-based 4SID identification
(right). The system modes are represented by the red
circles.

filter, the system is not well-identified. Particularly, the
third mode dynamic is hardly captured by the algorithm.
Consequently, the third mode is still not well estimated
after the reduction step. Conversely the filtered covariance-
based subspace identification provides better results in a
one step procedure thanks to the frequency band selection.
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Moreover, it can be seen in Fig 3 that the reduced order
models identified fit the system dynamics in the selected
frequency band. Fig 4 shows the impact of the filter on

Fig. 3. Bode-plot of the reduced order models (red) and of
the high order system (blue).

singular values for one of the 100 simulations. When the
filter is used, the drop-off is clearly seen after the fourth
singular value.

Ryū,f Πūū,f

RyūΠūū

Fig. 4. Singular values of Ryū Π and Ryū,f Πūū,f .

6. CONCLUSION

In (Miller and de Callafon, 2010), a subspace identification
algorithm based on correlation functions has been intro-
duced. This algorithm provides consistent estimates even
when data are corrupted by colored noise. In this article,
we have presented two improvements for this method.
First, we have integrated bound effects in the algorithm
formulation. This improves the identification accuracy
when the system is not at an equilibrium state at the
beginning and final time considered for the identification.
Second, we have shown that the model order selection
can be improved by making use of non-causal filters. This
results in a new covariance based algorithm that uses
frequency weights computed by taking into account initial
and final conditions. Both solutions respect the initial
algorithm formalism and are therefore easy to implement.
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