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Abstract: This study concerns the effect of model accuracy on closed loop performance for active
damping of vibrations. The system, a viscoelastic cantilever beam, is represented by Euler-Bernoulli
beam equations. Standard LQG is used for control design, requiring finite order models. Two such
models are produced, one based on truncated modal analysis, and one based on numerical fit of the
frequency response. It is found that all controllers stabilize the system and attenuates vibrations, but
controllers based on the numerically fitted model perform notably better than those based on truncated
modal analysis.
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1. INTRODUCTION

In automatic control there are two assertions that are often
stated as being true, and usually taught to students in the
introductory control course already. The first “truth” is: “the
better model, the better performance of the closed loop system”.
The second “truth” is: “feedback allows a good performance
in spite of model errors/uncertainties”. Although these two
statements do not exclude each other — they both are really true
in many senses — they do somehow point in opposite directions
concerning the requirements on the model.

The purpose of the present study is to test these two assertions
for a more demanding control problem. The control objective
is to suppress vibrations in a viscoelastic cantilever beam ac-
tuated by piezoelectric elements. The physical model of such
a beam is a distributed parameter system, i.e. it is governed
by partial differential equations (PDEs). However, almost all
model based controller design techniques are based on models
expressed as ordinary differential equations (ODEs) of finite
order. From that perspective PDEs are usually considered as
being of infinite order. In order to enable the use of such con-
troller design techniques any PDE model must be approximated
by some finite order ODE. In this work two different low order
models of the cantilever beam are used for control design,
and the corresponding closed loop systems are compared and
evaluated. The two models are reflecting the two assertions
mentioned above, in the following sense: The first model is
made to have its frequency response as close as possible to
that of the true system. The second model is obtained with the
aid of a rather “simple” (not theoretically, but in practice) but
physically motivated approach, with only minor adjustments
to match the frequency response of the true system, and thus
resulting in a more “rough” model.

The paper is organised as follows. In Section 2 the Euler-
Bernoulli beam equation is presented. This is a PDE, and in
Section 3 it is used to derive the theoretical, physical model
of the beam. This theoretical model is then regarded as the
true system to be used in comparisons and evaluations of

the obtained models and controllers. In Section 4 the two
methods for obtaining finite order models of the true system
are presented, and the resulting models are compared to the
true system. The two models are then used for controller design
in Section 5, where the standard LQG technique is used in a
straightforward manner. In Section 6 the different controllers
are applied to the true system and the corresponding closed loop
systems are compared and evaluated.

2. THE EULER-BERNOULLI BEAM

The simplest distributed model for describing bending vibra-
tions in an elastic beam is the Euler-Bernoulli beam equation
(E-B equation), see e.g. Meirovitch (1997):

∂2

∂x2

(

EI
∂2

∂x2
w(t, x)

)

+ ρA
∂2

∂t2
w(t, x) = f(t, x). (1)

Here w(t, x) is the vertical deflection of the centerline of the
beam at time t and in the point x, see Figure 1. Furthermore,
ρ is the density, and A is the cross-section area of the beam.
The product EI represents the bending stiffness (E is the
Young’s modulus of elasticity and I is the area moment of
inertia about the normal of the x-z-plane as in Figure 1), which
in general depends on x. In simple cases, like here,EI is piece-
wise constant (w.r.t. x), turning the two second order partial
derivatives in (1) into one fourth order partial derivative with
respect to x. In (1) f(t, x) represents the distribution of external
forces acting on the beam. Cases in which these forces are
distributed pointwise, like the force F (t) in Figure 1, may be
handled in different ways. One possibility is to let f(t, x) be
a sum of Dirac’s delta functions. This is used in the derivation
of the model structure in Section 4.2. Another way is to set
f(t, x) ≡ 0, and to let the external forces enter the system in
terms of boundary and compatibility conditions. This approach
is used in the remaining part of this section and in Section 3.

A simple way of solving (1) is to utilize the Fourier transform
(w.r.t. time), and to solve the resulting ODE. This also offers a
convenient way of taking damping into account.
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As described above, the basic form (1) of the E-B equation is
valid for an elastic beam, i.e. the beam is totally undamped,
and this is due to the idealizations and simplifications used
in the derivation of (1). However, all real beams are more or
less damped, and in a more realistic treatment it is sometimes
relevant to take this damping into account. For viscoelastic
materials damping may be accounted for by letting the Young’s
modulus of elasticity be complex-valued and frequency depen-
dent, and this is then referred to as the complex modulus — see
e.g. Hillström (2001) and the references therein.

Introduce the notation ŝ(ω) for the Fourier transform of a
generic signal s(t), and let E(ω) denote the complex modulus.
The Fourier transformed version of the E-B equation is then

E(ω)I
d4

dx4
ŵ(ω, x)− ω2ρAŵ(ω, x) = 0, (2)

i.e. an ODE in x. The solutions of (2) are

ŵ(ω, x) = rT (ω, x)c(ω) (3)

where rT (ω, x) =
[

eλ1x eλ2x eλ3x eλ4x
]

and c(ω) =

[α(ω) β(ω) γ(ω) δ(ω)]
T . Here λk, k = 1, . . . , 4 are the roots

of the characteristic equation,

E(ω)Iλ4 − ω2ρA = 0 ⇔ λk = ik−1

(

ω2 ρA

E(ω)I

)
1

4

, (4)

where i =
√
−1. Although not spelled out explicitly here it is

understood that λk = λk(ω) ∈ C for k = 1, . . . , 4, i.e. they are
frequency dependent and complex-valued.
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z
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Fig. 1. Cantilever beam with piezoelectric elements (shaded).

3. THE DISTRIBUTED MODEL

The system under consideration in this study is a cantilever
beam, as depicted in Figure 1, i.e. the beam is clamped at
one end and free at the other end. The beam, which has a
rectangular cross-section, is made of a viscoelastic material,
and it has two piezoelectric elements attached onto it. These
are placed at the same x-position but at opposite sides of the
beam, and are used as actuators. By putting an electric voltage
over them they will tend to expand or contract, and thereby
generate a bending moment on the beam. The voltage over the
piezoelectric elements (the same over both elements, but with
opposite signs) is the input to the system. The beam is also
affected by a disturbance force, F (t) in Figure 1, acting in the
z-direction at the free end of the beam (at x = L).

The system is modeled using the Fourier transformed E-B
equation (2). In order to handle the effect of the piezoelectric
elements, the beam is split spatially into three segments along
the x-axis, with interfaces in x1 and x2 according to Figure 1.
Each segment is governed by an equation (2). The properties of
the beam are listed in Table 1.

Entity Notation Value
Beam length [m] L 0.59

Beam width [m] b 0.01

Beam thickness [m] hb 0.002

Beam density [kg/m3] ρb 1183

Piezo. length [m] x2 − x1 0.0318

Piezo. thickness [m] hp 0.00066

Piezo. density [kg/m3] ρp 7878

Piezo. Young’s modulus [N/m2] Ep 5.70 · 10
10

Piezo. position [m] x1 0.202

Table 1. Properties of the beam and the piezoele-
ment.

The complex modulus of the viscoelastic material is modeled
using a so called standard linear solid model (see Hillström
(2001))

Eb(ω) =
MR

2

(

1 + iωτǫ1
1 + iωτσ1

+
1 + iωτǫ2
1 + iωτσ2

)

,

where MR = 4.029 · 109 [N/m2], and the time constants

τǫ1 = 4.369 · 10−3, τσ1 = 2.954 · 10−3,

τǫ2 = 450.9 · 10−6, τσ2 = 365.8 · 10−6,

all in [s]. These values were experimentally determined in
Hillström et al. (2003).

The system is described by three fourth order ODEs (one for
each segment),

[E(ω)I]k
d4

dx4
ŵk(ω, x)− ω2 [ρA]k ŵk(ω, x) = 0 (5)

for k = 1, 2, 3, so that

ŵ(ω, x) = ŵ1(ω, x) for 0 < x < x1,

ŵ(ω, x) = ŵ2(ω, x) for x1 ≤ x ≤ x2
and ŵ(ω, x) = ŵ3(ω, x) for x2 < x ≤ L.

The deflections ŵk(ω, x), k = 1, 2, 3, are coupled by the
boundary conditions

ŵ1(ω, 0) = 0,
d

dx
ŵ1(ω, 0) = 0,

M̂3(ω,L) = 0, T̂3(ω,L) = −F̂ (ω), (6)

and the compatibility conditions

ŵk(ω, xk) = ŵk+1(ω, xk),
dŵk

dx
(ω, xk) =

dŵk+1

dx
(ω, xk),

M̂k(ω, xk) = M̂k+1(ω, xk), T̂k(ω, xk) = T̂k+1(ω, xk), (7)

for k = 1, 2. Here M̂k(ω, x) is the bending moment and
T̂k(ω, x) is the transversal force. The control input, i.e. the
voltage û(ω) applied to the piezoelectric elements, enters the
system through M̂2 (see Norlander (2011)), and the disturbance
force F̂ (ω) enters through T̂3, as seen from (6). Since every
ŵk(ω, x) is governed by its corresponding ODE (5), with
solution in accordance with (3), we have

ŵk(ω, x) = rTk (ω, x)ck(ω), (8)

where rTk (ω, x) is determined by the corresponding character-
istic equation (4), and ck(ω), k = 1, 2, 3, are determined jointly
from the boundary and compatibility conditions (6) and (7). The
deflection depends linearly (affine) on the external inputs, the
control signal û(ω) and the disturbance force F̂ (ω), i.e.

ŵ(ω, x) = Ĥu(ω, x)û(ω) + ĤF (ω, x)F̂ (ω). (9)

A derivation of (9) is found in Norlander (2011).
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In this study it is not the deflection, w, but rather the strain, ǫ,
that is measured, by a strain gauge. In contrast to the actuators,
i.e. the piezoelectric elements, the strain gauge is very small
and light and its influence on the beam is considered negligible.
Therefore it is neglected in the model.

The strain is related to the deflection according to ǫ̂(ω, x) =

−h(x)
2

d2

dx2 ŵ(ω, x), where h(x) is the thickness of the beam at
position x. The strain gauge is placed on top of one of the
piezoelectric elements, at xs = (x1 + x2)/2. The measured
strain is thus y(t) = ǫ(xs, t), and it is regarded as the output of
the system.

From input to output the system is described by

ŷ(ω) = Ĝu(ω)û(ω) + ĜF (ω)F̂ (ω), (10)

where

Ĝα(ω) = −h(xs)
2

· d
2

dx2
Ĥα(ω, xs), α = u, F.

In this study two different ways of finding approximate, low
order models for model based control design are used. For this
reason the coupled ODEs (5), together with the boundary and
compatibility conditions (6) and (7) etc, finally resulting in (10),
are regarded as a reference and are referred to as the true system.

4. FINITE ORDER MODELS

Two methods for obtaining low order models will be compared
here. Method 1 is a rather ad hoc approach, while Method
2 is based on modal analysis of the E-B equation (1). The
system is very resonant, and as it is of infinite order there are
infinitely many resonant modes; see Figure 2. The purpose of
feedback control of this beam is to dampen the vibrations due
to these resonances, and in particular the vibrations caused by
a disturbance force acting on the tip of the beam, at x = L
as shown in Figure 1. However, any implementable controller
must be of finite order, implying that only a finite number of the
resonances can be attenuated. As is apparent from the Bode plot
from F to y, the right graph in Figure 2, the resonance peaks
are decreasing with increasing frequency. Therefore it seems
reasonable to try to suppress the first few peaks — that would
have the biggest impact. This also indicates that the model used
in the control design should have a good fidelity in a frequency
range covering at least the resonant modes of interest. In this
study the ambition is to suppress the first three resonance peaks.

Due to the resonant nature of the beam, both methods used
here are based on model representations in form of sums
of second order systems with a small damping ratio, were
every term represents one resonant mode/peak. Let Gu

n(s, θ
u
j )

and GF
n (s, θ

F
j ) denote the approximate, finite order models

of Ĝu(ω) and ĜF (ω) respectively. The index n indicates the
number of modes in the models (i.e. the order of the models is
2n), while θuj and θFj represents the parameter vectors for the
model from method j = 1, 2. This means that

GF
n (s, θ

F
j ) =

n
∑

k=1

ψj,k

s2 + 2ζj,kωj,ks+ ω2
j,k

, (11)

where ψj,k, ωj,k, ζj,k ∈ R, k = 1, . . . , n, are the elements of
θFj (and likewise for Gu

n(s, θj)). (The index j indicates which
method that is used — for brevity it is omitted in the sequel.)

4.1 Method 1

The idea behind method 1 is to have the frequency response
of the model as close as possible to the true system, in the
frequency range of interest. In this sense method 1 is equivalent
to the “Ad-hoc Approach” presented in Nauclér et al. (2005),
where the criterion

V (θ) =

N
∑

m=1

∣

∣

∣
Ĝ(ωm)−Gn(iωm, θ)

∣

∣

∣

2

W (ωm) (12)

is (numerically) minimized. Here W (ωm) is a frequency-
dependent weight, andGn(s, θ) is a rational function with arbi-
trary but predefined degrees of the numerator and denominator
polynomials. In this study the model is obtained in two steps.

Motivated by the proposed structure in (11), the first step is to
model each mode

γk(s) =
1

s2 + 2ζkωks+ ω2
k

, k = 1, . . . , n,

i.e. to determine the natural frequency ωk and the damping
ratio ζk of each mode. This is easily performed with the
criterion (11) in a narrow frequency interval containing the
peak corresponding to the mode k. In this first step no account
is made for the order of the sought model — each mode is
modeled individually.

Given the individual modes the model can be parameterized as

Gn(s, θ) =

n
∑

k=1

ψkγk(s) = ΨT
nΓn(s),

with ΨT
n = [ψ1 . . . ψn] and Γn(s) = [γ1(s) . . . γn(s)]

T .

The second step is to find the linear combination of the modes
that fits the best to the true frequency response, using the
criterion (12) and minimizing over Ψn. This is an LS problem
and the solution is obtained by solving the corresponding
normal equation, see e.g. Söderström and Stoica (1989).

In this work GF
n (s, θ

F
1 ) is modeled exactly as described above,

which means that its magnitude will have a roll off of second
order for high frequencies. However, as is evident from Figure
2 (upper left graph), Ĝu(ω) is not strictly proper (but still
proper). Due to this a feedthrough term is added to Gu

n(s, θ
u
1 ),

which is easily handled by letting ΨT
n = [ψ0 ψ1 . . . ψn] and

Γn(s) = [1 γ1(s) . . . γn(s)]
T for this case.

4.2 Method 2

Method 2 is used in e.g. Moheimani et al. (2003), and is based
on modal analysis of the E-B equation (1), see e.g. Meirovitch
(1997). This approach is based on the assumption that the
solution to (1) is separable, and can be written as w(t, x) =
φ(x)q(t), which, when put into (1), leads to an eigenvalue
problem. As a consequence of this the solution of (1) can be
expressed as the infinite sum

w(t, x) =

∞
∑

k=1

φk(x)qk(t),

where φk(x) are the eigenfunctions for the eigenvalue problem,
and the shapes of these depend on the boundary conditions of
(1). The eigenfunctionsφk(x) are orthogonal, and by exploiting
this property the PDE (1) transforms into an infinite number of
decoupled second order ODEs in q(t),

q̈k(t) + ω2
kq(t) = fk(t), k = 1, 2, . . . , (13)
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where ω2
k, k = 1, 2, . . . are the eigenvalues, and fk(t) is the

inner product of f(t, x) and φk(x). By taking the Laplace
transform of (13) , the solution of (1) can finally be written as

W (s, x) =

∞
∑

k=1

φk(x)

s2 + ω2
k

F (s). (14)

See Meirovitch (1997) for a thorough analysis of the method.

In Method 2 a finite order model of the system is simply
obtained by truncating the infinite sum (14), i.e. keep the modes
of interest and omit the remaining ones. The advantage is that
the resonant modes are expressed explicitly in the sum, but
also that the so obtained model is valid for all of the beam
— the dependence of the spatial coordinate x remains in the
finite order model. This, however, is due to the knowledge of
the eigenfunctions φk(x), and explicit expressions for these are
easily obtained only for very simple conditions of the beam in
terms of geometry, homogeneity etc. As indicated above this
modal analysis approach is valid for the elastic case, where the
resonant modes are totally undamped.

In a more realistic case, like the one in this study, the method
is not applicable unless the system is approximated with a
simpler model (w.r.t. geometry, homogeneity etc) for which
the modal analysis is more easily performed. To account for
damping the denominators in the individual terms in (14) can be
complemented with a damping term, so that the denominators
become s2 + 2ζkωks + ω2

k, where ζk is the damping ratio for
mode k. The damping ratios ζk then must be chosen in some
appropriate way.

In this particular case the following simplifications are made in
order to perform the modal analysis: The beam is assumed to be
homogeneous, which means that the effect of the actuators, the
piezoelectric elements, is neglected. Hence, A, ρ, E and I are
assumed to be constant all over the beam. Also, the damping
ratios were all set to the same value, ζk = ζ for all k. Since it
is the strain, ǫ, that is measured and regarded as output, rather
than the deflection, w, the system will finally be modeled as

Y (s) = Gu
n(s, θ

u
2 )U(s) +GF

n (s, θ
F
2 )F (s) (15)

with

Gu
n(s, θ

u
2 ) = Cu

n
∑

k=1

φ(xs) [φ
′

k(x2)− φ′k(x1)]

s2 + 2ζωks+ ω2
k

,

GF
n (s, θ

F
2 ) = CF

n
∑

k=1

φ′′k(xs)φk(L)

s2 + 2ζωks+ ω2
k

,

where xs = (x1+x2)/2 as previously,φ′(x) and φ′′(x) denotes
the first and second derivatives of φ(x) respectively, andCu and
CF are constants that depend on the geometry and properties of
the (simplified) beam — see Norlander (2011) for a derivation.

It should be noted that the natural frequencies ωk and the
constants Cu and CF are determined by A, ρ, E and I for
the simplified beam. Since the simplified beam is fictional these
properties can be chosen to somehow reflect the correspond-
ing average properties for the actual beam. Here this is ex-
ploited to obtain as good fidelity as possible to the true system
for low frequencies, including the first resonant mode. More
specifically, rather then finding suitable values of A, ρ, E and
I explicitly, ω1 and ζ are chosen to match the first peak in
the frequency response with that of the true system, and Cu

and CF are chosen to obtain correct static gains, i.e. so that
Gu

n(0, θ
u
2 ) = Ĝu(0) and GF

n (0, θ
F
2 ) = ĜF (0). It is stressed

that all the natural frequencies depend on A, ρ, E and I , which
has the consequence that once ω1 is chosen, all the otherωk (for
k = 2, . . . ) are also implicitly determined. Also, the choice of
damping ratio ζ will influence all the resonant modes.

4.3 Comparison of models

For a given number of resonant modes, n, both methods provide
models of equivalent complexity (e.g. model order). However,
Method 1 offers more degrees of freedom, i.e. more parameters
need to be determined, than is the case for Method 2.

In Figure 2 the Bode plots of models with three modes (sixth
order models) are shown together with the Bode plot of the true
system (10). Since the true system is only known in terms of its
frequency response for a finite bandwidth, a model with eleven
modes, obtained with Method 1, is used for time simulations
of the closed loop systems in Section 5. The magnitude of the
absolute model error for this model is also shown in Figure 2.

In the frequency range 0− 300 rad/s, the frequency response of
the model from Method 1 (referred to as model 1 in the sequel)
is barely distinguishable from that of the true system. For the
model from Method 2 (referred to as model 2 in the sequel)
the frequency response is fairly close to the true system in the
F -y-channel, with a slight mismatch of the second and third
resonance peaks. In the u-y-channel model 2 has a significant
exaggeration of the resonance peaks. This is explained by the
adjustment of Cu for a correct static gain in (15).

5. CONTROLLER DESIGN

The purpose of this study is to investigate the effect of the
model on the performance of the closed loop system. It is the
models 1 and 2, as described in Section 4, that are used for
model based control design, and then the corresponding closed
loop systems are compared and evaluated. For the controller
design the standard linear quadratic Gaussian (LQG) control
design technique is employed. More specifically, with the mod-
els in state space form as

ẋ(t) = Ax(t) +Bu(t) +NF (t), (16)
y(t) = Cx(t) +Du(t) + e(t), (17)

the criterion

J = E

[
∫

∞

0

(

Q1y(t)
2 +Q2u(t)

2
)

dt

]

(18)

should be minimized. In the model (16)–(17)F (t) is (as before)
the disturbance force, acting at the free end of the beam, and
e(t) is the measurement noise. Both these are scalar and are
assumed to be random with E[F (t + τ)F (t)] = R1δ(τ),
E[e(t + τ)e(t)] = R2δ(τ) and E[F (t + τ)e(t)] ≡ 0. The
factors Q1 ≥ 0 and Q2 > 0 in (18) are weights that can be
regarded as design parameters.

The resulting controller is the control law u(t) = −Lx̂(t),
where x̂(t) is the estimated state vector obtained from the
Kalman filter

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)−Du(t)). (19)
The feedback gain L (not to be confused with the beam length)
is a row vector which depends on the ratioQ1/Q2. The Kalman
gain K is a column vector which depends on the ratio R1/R2.
Obviously L and K also depend on the model (16)–(17).

See standard textbooks, e.g. Goodwin et al. (2001) and Glad
and Ljung (2000), for more details on LQG control design.
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Fig. 2. Bode plots of the true system and the models obtained by Methods 1 and 2 with 3 modes. Upper and lower graphs shows
the magnitude and the phase respectively, the left and right graphs shows the U − y- and F − y-channels respectively. The
upper plots also show the magnitude of the absolute model error for the model with eleven modes, obtained with Method 1.

The main control objective is to reduce vibrations due to the
disturbance force F in the frequency range 0–300 rad/s, or, put
in another way, to dampen out the three first resonance peaks.

In order to handle the vast difference in magnitude of the
involved signals, these were scaled according to

u = Duus, y = Dyys, and F = DFFs, (20)

and the following scalings were used:

Du = 250, Dy = 10−4 and DF = 1. (21)

The controllers computed depend onQ1,Q2,R1 andR2 (which
can be regarded as design parameters), and on the model used in
the design. Here it is the effect of the model that is investigated,
so for the two models identical sets of Q1, Q2, R1 and R2 are
used. Two cases are considered, denoted case (a) and (b). For
both cases the parametersQ1 = 1,Q2 = 0.001 andR1 = 1 are
used — only R2 differs, according to

case (a): R2 = 1, case (b): R2 = 0.01.

The choice of Q1 and Q2 is considered as a reasonable balance
between disturbance attenuation and control effort, while R1

is motivated by the scaling of F as described above. It is
considered as a realistic scenario that the measurement noise
is of the same magnitude as the measured output y, or slightly
less. This motivates these choices of R2.

In total there are four controllers, referred to as controller 1a,
1b, 2a and 2b, indicating that they are based on model 1 or 2,
and for case (a) or (b) respectively.

6. EVALUATION OF THE CONTROLLERS

The four controllers are evaluated on the true system, in the
sense that the frequency responses of the corresponding closed
loop systems are computed (remember that the frequency re-
sponse of the true system is known). In particular the response
from the disturbance force F to the strain y is of interest, as
it shows how well the disturbance is attenuated by the con-
trollers. This closed loop system can be represented by Y (s) =
GF (s)S(s)F (s), where

S(s) =
1

1 + C(s)Gu(s)
,

is the sensitivity function. Here C(s) is the transfer function of
the controller, and Gu(s) and GF (s) are the presumed transfer
functions for the cantilever beam. The magnitude plots for
GF (s)S(s) are shown in Figures 3 and 4 for the cases (a) and
(b) respectively. The frequency response ĜF (ω) is also shown,
for comparison.

Simulations of the impulse responses ofGF (s)S(s) for all four
controllers have also been performed. The impulse responses
for case (b) are shown in Figure 5. The impulse response of
GF (s), i.e. the open loop system, is also shown for comparison.
Note that the time axis has a logarithmic scale. This rather
unorthodox convention is used merely to be able to visualize
the behavior in different time scales in one plot only. For these
simulations the model with eleven modes was used.

From Figures 3 and 4 it is clear that the controllers 1a and
1b performs better than the controllers 2a and 2b in the in-
tended frequency range, i.e. up to 300 rad/s, including the three
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Fig. 3. The magnitude of the frequency response fromF to y for
the open and closed loop systems for case (a), i.e.R2 = 1.
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Fig. 4. The magnitude of the frequency response from F to
y for the open and closed loop systems for case (b), i.e.
R2 = 0.01.
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Fig. 5. Impulse responses from F to y for case (b).

first resonant modes. For frequencies higher than 300 rad/s
|GF (iω)S(iω)| coincides with |GF (iω)| for the controllers 1a
and 1b. It is interesting though that the controllers 2a and 2b do
have disturbance attenuation for frequencies higher than 300
rad/s and thus perform better than the controllers 1a and 1b in
that range, and particularly so in case (b).

The impulse response simulations support these results, see
Figure 5. The controllers 1a and 1b dampen out the oscillations
within the first few tenths of a second, while the controllers
2a and 2b need several seconds to dampen the oscillations out.

This is still a considerable improvement compared to the open
loop system, which continuous to oscillate for 100 seconds and
more. On the other hand, looking at the very first part of the
impulse response the controllers 1a and 1b have no effect until
after circa 0.01 seconds, but the controllers 2a and 2b actually
attenuates the oscillations slightly from the start already. This is
in line the high frequency attenuation for controller 2 observed
in the magnitude plots, as discussed above.

A quantitative measure of the disturbance attenuation achieved
with the different controllers is the H2-norm of GF (s)S(s).
The computed values of ||GF (s)S(s)||2 are 9.3 · 10−4 and
7.4 · 10−4 for the controllers 1a and 1b, and 1.7 · 10−3 and
6.3·10−4 for the controllers 2a and 2b respectively. For the open
loop system ||GF (s)||2 = 5.2 · 10−3. In the case (a) controller
1 is the most successful, but in case (b) it is instead controller
2 that has the lowest H2-norm. The reason for that is the better
attenuation for controller 2b in the frequency range above 300
rad/s. Still, it could be argued that controller 1b “does the job”
better in the intended frequency range (up to 300 rad/s).

7. CONCLUSIONS

The main conclusion of this study is that it is worthwhile to
endeavor a high accuracy for models used for model based
control in order to achieve a good performance. Another con-
clusion is that Method 2 is functional for producing models for
control design, but that a limited control performance should be
expected.
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