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Abstract: In this paper we consider the problem of state estimation for linear discrete-time
non-Gaussian systems with random observation matrices. This is the model for systems with
observation losses due to propagation through unreliable communication channels. Losses may
result from intermittent failures that cause packet dropouts, as in the case of networks, or
fading phenomena in propagation channel, as in the case of wireless networks. These are common
problems in wireless sensor network, or networked control systems. In this paper, we do not make
any assumption about the distribution of the observation matrix, thus encompassing a great
variety of possible scenarios. We derive the quadratic estimate of the state by means of a recursive
algorithm. The solution is obtained by applying the Kalman filter to a suitably augmented
system, which is fully observable. The augmented system is constructed as the aggregate of the
actual system and the observable part of a system having as state the second Kronecker power of
the original state, namely the quadratic system. To extract the observable part of the quadratic
system we exploit the knowledge of the rank of the corresponding observability matrix. This
approach guarantees the internal stability of the estimation filter.

Keywords: Uncertain linear systems, Kalman filters, Nonlinear filters, Quadratic filtering,
Non-Gaussian processes.

1. INTRODUCTION

The problem of state estimation for linear systems has
been widely studied due to its crucial role in many scien-
tific applications, ranging from engineering to economet-
rics. For linear Gaussian systems the well-known Kalman
filter (Kalman, 1960) provides the optimal state estimate
in the minimum mean square error sense. However, in
many situations the hypothesis of Gaussianity does not
represent a realistic statistical description of the system,
and should be removed (Spall and Wall, 1984; Spall, 1985;
Wu and Chen, 1993; Spall, 2003). In the non-Gaussian
case, the minimum mean square error estimation, is in gen-
eral an infinite dimensional problem (Zakai, 1969), whose
solution cannot be easily computed numerically. In this
case the Kalman filter provides the suboptimal affine esti-
mate, offering a good compromise between computational
simplicity and goodness of the estimate. Unfortunately,
in many other cases this procedure is unsatisfactory, and
more accurate approaches, such as polynomial algorithms
(De Santis et al., 1995; Carravetta et al., 1996), are needed.

Another quite common case where the Kalman filter loses
its optimality is when the system is characterized by un-
certain observations or when system model parameters
are not known exactly. These conditions translate into
observation and state transition matrices that are random.
In particular, in this paper we focus on the problem of state
estimation for system with random observation matrices.

This is the model, for example, of communication systems
where the channel undergoes random interruptions or is
affected by fading phenomena. More in general, uncertain
observations are quite common in networked control sys-
tems, where the state of a remote plant is estimated from
measurements carried through a lossy network (Hespanha
et al., Jan.). Such systems can be described as linear dy-
namic systems with deterministic parameter matrices and
state-dependent measurement noise (De Koning, 1984).
Thus, the assumptions of the Kalman filter are violated
and the Kalman filter recursive estimate cannot be derived
directly.

In De Koning (1984) and Luo and Zhu (2008) the linear
minimum variance state estimation is derived under some
mild conditions, for linear discrete system with random
state transition and measurement matrices. It is in the
form of a modified Kalman filter.

In Nahi (1969) the problem of observation losses is in-
vestigated and the optimal linear state estimator is de-
rived under the assumption that the sequence of packet
dropouts, modeled as a Bernoulli process, is independent.
The estimator has a recursive structure very similar to the
Kalman filter. In Hadidi and Schwartz (1979) the result
of Nahi (1969) is generalized investigating the least mean-
square error recursive estimator over the class of linear
filters, when the sequence of packet dropouts is not neces-
sarily independent. The authors show that, in general, the
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optimal linear estimator is not recursive. However, pro-
vided some conditions are met, a necessary and sufficient
condition for the existence of a linear recursive estimator
is given.

In Sinopoli et al. (2004) the statistical performance of the
Kalman filter are investigated assuming that the estimator
knows exactly whether the observation contains the signal
to be estimated or contains noise alone, i.e., whether there
is a packet dropout or not. Uncertain observations are thus
modeled as a Bernoulli process. The statistical convergence
properties of the estimation error covariance are studied
and the authors show that there exists a critical value of
the dropout rate, above which the state estimation error
covariance is unbounded.

In Nakamori et al. (2003a,b) no assumptions on the state-
space model for the signal are made and the problem of
uncertain observation is tackled using covariance informa-
tion. In particular in Nakamori et al. (2003a) the linear
estimator is derived using the auto-covariance function
of the signal in a semi-degenerate kernel form, whereas
a quadratic filter is considered in Nakamori et al. (2003b).

In this paper, we consider the case of random observation
matrices, assuming to know only the moments of the
entries up to the fourth order. No assumptions are made
about the distribution of the observation matrices. Note
that, even in the case of linear systems with Gaussian
state and output noise, the presence of random obser-
vation matrices makes the overall system non-Gaussian.
Nonetheless, we assume non-Gaussian state and output
noise. Under these hypotheses, the Kalman filter or the
linear filter in Nahi (1969) are no longer optimal and
it is necessary consider better suboptimal estimates. In
this regard, polynomial algorithms (De Santis et al., 1995;
Carravetta et al., 1996; Fasano et al., 2013) are more
accurate than the linear one, and preserve the nice features
of easy computability and recursivity. To cope with the
randomness of the observation matrix, we replace it with
its mean and move the state-dependent randomness to the
noise term. Following an approach similar to the one in
Fasano et al. (2013), we construct an augmented system
as the aggregate of the original system and a suitably
devised quadratic subsystem, which is fully observable. We
derive the quadratic estimate of the state by means of a
recursive algorithm obtained by applying the Kalman filter
to the augmented system. Since this last is fully observable,
the internal stability of the estimation filter is guaranteed
(Fasano et al., 2013).

The paper is organized as follows. In Section 2, we present
the system model with non-Gaussian state and output
noise and random observation matrix. Moreover, we con-
struct the augmented system comprising the original sys-
tem and a suitably devised quadratic subsystem exploiting
the results of Fasano et al. (2013). In Section 3, we derive
the quadratic estimate. In Section 4, we evaluate the
performance of the proposed approach by a numerical ex-
ample. Finally, Section 5 follows with concluding remarks.
To improve readability of the paper, some proofs are given
in the Appendix.

2. SYSTEM MODEL

Consider the following class of linear discrete-time systems
xk+1 = Axk + fk , k ≥ 0 (1)
yk = Ckxk + gk (2)

where xk, fk ∈ Rn, yk, gk ∈ R, A ∈ Rn×n and Ck ∈ R1×n.
The initial state x0 and the random sequences {fk}, {gk},
{Ck} satisfy the following conditions for k ≥ 0:

(1) E{x0} = 0, E{fk} = 0, E{gk} = 0,
(2) {fk} is a sequence of independent random vectors,
(3) {gk} is a sequence of independent random variables,
(4) {Ck} is a sequence of i.i.d. 1 random vectors,
(5) {fk}, {gk}, {Ck}, x0 are statistically independent,
(6) the components of x0, fk, Ck, and gk have finite

fourth moments,
(7) E{x[i]0 } = m

(i)
x0 , E{f [i]k } = m

(i)
fk
, E{gik} = m

(i)
gk , for

i = 2, 3, 4, where m(i)
x0 , m

(i)
fk

are known vectors and

m
(i)
gk is a known scalar,

(8) E
{
C

[i]
k

}
= Ci, for i = 1, . . . , 4, where Ci are known

constant vectors,
(9) the pair

(
C1, A

)
is observable, and rankO

(
C2, A

[2]
)

=

rankO
(
C1

[2]
, A[2]

)
.

In condition 7 we make use of the Kronecker power z[i]

(Bellman, 1997), defined as z[1] = z, z[i+1] = z[i]⊗z, where
⊗ is the Kronecker product. Note that since gk is scalar,
g
[i]
k = gik. Condition 6 guarantees the existence of moments
up to the fourth order (Feller, 1968). In condition 9,
O ( · , · ) denotes the observability matrix of the pair within
parentheses.

Hereinafter, we use the following notation to denote cen-
tered quantities

Ẑ = Z − E {Z}
where Z is a random matrix or vector. This notation
improves readability and makes formulas more compact.
Moreover, assuming z a (column) random vector, we
denote by

Σ(i,j)
z = E

{
z[i]z[j]T

}
(3)

and
Σ̂(i,j)

z = E
{
ẑ[i]ẑ[j]T

}
= Σ(i,j)

z − E
{
z[i]
}
E
{
z[j]T

}
(4)

with i, j ≥ 1, the cross-correlation and cross-covariance
matrix, respectively, of the Kronecker powers of z. If z
is a row vector, it is replaced by its transpose within
expectation in formulas (3) and (4). When i = j = 1,
we use

Σz = Σ(1,1)
z (5)

Σ̂z = Σ̂(1,1)
z (6)

to keep the notation simple.

In order to derive the quadratic estimate of the state of
the system (1)–(2), we construct an augmented system
that has as observations both yk and y2k. Towards this end,
we follow Fasano et al. (2013) and derive the augmented
system considering the quadratic Kronecker power of (1)

x
[2]
k+1 = (Axk + fk)

[2]
= A[2]x

[2]
k +m

(2)
fk

+ f
(2)
k (7)

1 Independent identically distributed.
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where f (2)k = Axk ⊗ fk + fk ⊗Axk + f̂
[2]
k , with E{f (2)k } =

0. Introducing the n2 × n2 permutation matrix Π that
guarantees fk ⊗ Axk = Π(Axk ⊗ fk) (Horn and Johnson,

1994), we can write f (2)k = (I + Π)(Axk ⊗ fk) + f̂
[2]
k . This

expression will be useful later in Section 3.

Proceeding in the same way with (2) and taking into
account that y2k = y

[2]
k as yk is scalar, we get

y2k = (Ckxk + gk)
[2]

= C
[2]
k x

[2]
k + g2k + 2Ckxkgk

= C
[2]
k x

[2]
k + g2k + 2Ckxkgk

+ E
{
C

[2]
k

}
x
[2]
k − E

{
C

[2]
k

}
x
[2]
k +m(2)

gk
−m(2)

gk

= C2x
[2]
k +m(2)

gk
+ 2Ckxkgk + Ĉ

[2]
k x

[2]
k + ĝ2k

= C2x
[2]
k +m(2)

gk
+ g

(2)
k (8)

where g(2)k = 2Ckxkgk + Ĉ
[2]
k x

[2]
k + ĝ2k, with E{g(2)k } = 0.

Rearranging (2) in a more convenient form, so that Ck is
moved to the noise term we get

yk = E {Ck}xk + (Ck − E {Ck})xk + gk

= C1xk + Ĉkxk + gk

= C1xk + g
(1)
k (9)

where g
(1)
k = Ĉkxk + gk, with E{g(1)k } = 0. Finally,

combining (1), (2), (8), and (9) we get the full-order
quadratic system derived from system (1)–(2)

xk+1 = Axk + fk k ≥ 0 (10)

x
[2]
k+1 = A[2]x

[2]
k +m

(2)
fk

+ f
(2)
k (11)

yk = C1xk + g
(1)
k (12)

y2k = C2x
[2]
k +m(2)

gk
+ g

(2)
k (13)

where m
(2)
fk

and m
(2)
gk are deterministic inputs, and the

noise terms, namely fk, f
(2)
k , g(1)k , g(2)k , are zero mean.

By hypothesis the pair
(
C1, A

)
is observable, that is

rankO
(
C1, A

)
= n. However, the augmented system (10)–

(13) is not fully observable, as proved in Fasano et al.
(2013). This is a consequence of the fact that the quadratic
part of the system, comprising (11) and (13), is never
fully observable when n > 1, since rankO

(
C2, A

[2]
)

=

rankO
(
C1

[2]
, A[2]

)
< n2.

Nevertheless, exploiting the results of Fasano et al. (2013),
where a closed form expression of rankO(C1

[2]
, A[2]) is

provided, it is easy to find a coordinate transformation for
extracting the observable part of the quadratic subsystem
in (10)–(13).

Indeed, let r = rankO
(
C2, A

[2]
)
, which is equal to

rankO
(
C1

[2]
, A[2]

)
by hypothesis, and partition the ob-

servability matrix of the pair
(
C2, A

[2]
)
as follows

O
(
C2, A

[2]
)

=

[
R
Q

]
where R ∈ Rr×n2

, Q ∈ R(n2−r)×n2

and rankR = r. Now,
consider the singular value decomposition (SVD) of R

R = UΣV T (14)

where U ∈ Rr×r and V ∈ Rn2×n2

are orthogonal matrices.
Using the coordinate transformation

T = V T (15)
it is easy to verify that the matrices A[2] and C2 become

TA[2]T−1 = V TA[2]V =

[
A(2)

o 0r×(n2−r)

A
(2)
1 A

(2)
2

]
(16)

and
C2T

−1 = C2V =
[
C(2)

o 01×(n2−r)
]

(17)

where A(2)
o ∈ Rr×r, C(2)

o ∈ R1×r and the pair (C
(2)
o , A

(2)
o )

is fully observable.

Denoting by Tr ∈ Rr×n2

the rectangular matrix collecting
the first r = rankO(C2, A

[2]) rows of T , namely
Tr = T (1 :r, :) (18)

using MatlabR© notation, matrices A(2)
o and C

(2)
o in (16)

and (17) become

A(2)
o = TrA

[2]TT
r (19)

C(2)
o = C2 T

T
r . (20)

The key point in the above analysis is the knowledge
of rankO

(
C1

[2]
, A[2]

)
, whose closed form expression is

provided in Fasano et al. (2013) as a function of the
spectrum of A.

It is worth stressing that the knowledge of the (exact) rank
of the observability matrix of the quadratic subsystem is
crucial to extract the observable subspace. Indeed, numeri-
cal computation of the rank of an observability matrix is an
ill-conditioned problem (Paige, 1981). Moreover, iterative
procedures for computing the observable subspace, like
the ones in Rosenbrock (1970), fail to recognize the right
dimension.

3. THE OBSERVABLE QUADRATIC SYSTEM

Using the r × n2 matrix Tr defined in (18), and denoting
by x̃

(2)
k = Trx

[2]
k , the state vector collecting the observ-

able states of the quadratic subsystem, (10)–(13) can be
rewritten as

xk+1 = Axk + fk k ≥ 0 (21)

x̃
(2)
k+1 = A(2)

o x̃
(2)
k + m̃

(2)
fk

+ f̃
(2)
k (22)

yk = C1xk + g
(1)
k (23)

y2k = C(2)
o x̃

(2)
k +m(2)

gk
+ g

(2)
k (24)

where m̃(2)
fk

= Trm
(2)
fk

, f̃ (2)k = Trf
(2)
k , and C(2)

o = C2 T
T
r as

in (20).

Defining the extended state Xk =
[
xTk x̃

(2)T
k

]T
, the

extended input Uk =
[
m̃

(2)T
fk

m
(2)
gk

]T
, and the extended

output Yk =
[
yk y2k

]T , we get the following dynamical
system

Xk+1 = AXk + BUk + Vk (25)
Yk = CXk +DUk +Wk (26)
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where

A =

[
A 0n×r

0r×n A(2)
o

]
, B =

[
0n×r 0n×1
Ir×r 0r×1

]
(27)

C =

[
C1 01×r

01×n C(2)
o

]
, D =

[
01×r 0
01×r 1

]
(28)

Vk =

[
fk
f̃
(2)
k

]
, Wk =

[
g
(1)
k

g
(2)
k

]
. (29)

3.1 State estimate

Equation (25) represents a linear system whose state
evolves in the space Rn+r. Output equation (26) has
the structure we need to calculate the optimal quadratic
estimate for the state vector of system (1)–(2). The noise
sequences {Vk}, {Wk} are zero mean and white. Moreover,
they are mutually orthogonal and orthogonal to the initial

state X0 =
[
xT0 x̃

(2)T
0

]T
. This is a consequence of the

following propositions.
Proposition 1. The random process {Vk} is wide-sense
stationary with zero mean and autocorrelation function

E{VhV T
k } = Qkδh,k (30)

where Qk is defined in (32).

Proof. See Appendix.

Proposition 2. The random process {Wk} is wide-sense
stationary with zero mean and autocorrelation function

E{WhW
T
k } = Rkδh,k (31)

where Rk is defined in (36).

Proof. See Appendix.

Proposition 3. The random processes {Vk}, {Wk} are mu-
tually orthogonal, i.e.,

E{VhWT
k } = 0(n+r)×2

and orthogonal to X0 =
[
xT0 x̃

(2)T
0

]T
.

Proof. The proof is omitted due to space limitations.

The covariance matrix Qk in (30) can be computed by
exploiting conditions 1–7 of Section 2 and using some
Kronecker algebra. We get

Qk =

[
Σfk Σ

(1,2)
fk

TT
r

TrΣ
(2,1)
fk

Qk(2, 2)

]
(32)

with
Qk(2, 2) =

= Tr

{
(I + Π)

[
AΣxk

AT ⊗ Σfk

]
(I + Π) + Σ̂

(2,2)
fk

}
TT
r

where Π is the permutation matrix that guarantees fk ⊗
xk = Π(xk ⊗ fk) (Horn and Johnson, 1994), whereas

Σxk
= E

{
xkx

T
k

}
, Σfk = E

{
fkf

T
k

}
, (33)

Σ
(1,2)
fk

= Σ
(2,1)T
fk

= E{fkf [2]Tk }, (34)

Σ̂
(2,2)
fk

= E
{
f̂
[2]
k f̂

[2]T
k

}
= Σ

(2,2)
fk
−m(2)

fk
m

(2)T
fk

, (35)

consistently with (3)–(4), and m(2)
fk

= E{f [2]k }, as defined

in Section 2. Note that the entries of Σfk in (33), Σ
(1,2)
fk

in

(34), and Σ
(2,2)
fk

in (35) are known by hypothesis since they

are the elements ofm(2)
fk

,m(4)
fk

,m(3)
fk

, respectively, which are
defined in Section 2.

Working in a similar way for Rk in (31), we get

Rk =

[
E{g(1)k g

(1)
k } E{g(1)k g

(2)
k }

E{g(1)k g
(2)
k } E{g(2)k g

(2)
k }

]
(36)

with

E
{
g
(1)
k g

(1)
k

}
=
(
C2 − C1 ⊗ C1

)
E
{
x
[2]
k

}
+m(2)

gk
(37)

E
{
g
(1)
k g

(2)
k

}
=
(
C3 − C1 ⊗ C2

)
E
{
x
[3]
k

}
+m(3)

gk

E
{
g
(2)
k g

(2)
k

}
= 4m(2)

gk
C2 E

{
x
[2]
k

}
+
(
C4 − C2 ⊗ C2

)
× E

{
x
[4]
k

}
+m(4)

gk
−m(2)

gk
m(2)

gk
(38)

where m(i)
gk = E{g(i)k }, for i = 2, 3, 4, and Ci = E

{
C

[i]
k

}
,

for i = 1, . . . , 4, as defined in Section 2, whereas E
{
x
[i]
k

}
,

for i = 2, 3, 4, can be computed recursively.

Now, the optimal linear estimate X̂k of Xk can be com-
puted using the Kalman filter, as follows

X̂0 = E{X0}, P0|0 = E{X̊0X̊
T
0 } (39)

X̂k|k−1 = AX̂k−1 + BUk−1, k > 0 (40)

X̂k = X̂k|k−1 +Kk

(
Yk − CX̂k|k−1 −DUk

)
(41)

Kk = Pk|k−1CT
(
CPk|k−1CT +Rk

)−1
(42)

Pk|k−1 = APk−1|k−1AT +Qk−1 (43)
Pk|k = (I −KkC)Pk|k−1 (44)

where X̊0 = X0 − E{X0}. It is worth stressing that (39)–
(44) provide the optimal linear estimate X̂k as projection
of Xk on the linear space of (n+ r)-dimensional linear
functions of the vector[

1 Y T
1 · · · Y T

k

]T
=
[

1 y1 y
2
1 · · · yk y2k

]T
. (45)

This amounts to the optimal quadratic 2 estimate of Xk

as a function of the observations y1, . . . , yk. The vector
constituted by the first n entries of X̂k, namely x̂k, gives
the required optimal quadratic estimate of the state xk of
the system (1)–(2). The n×n leading principal submatrix
of Pk|k is the corresponding error covariance matrix of the
quadratic estimate.

4. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
approach by a numerical example. Consider the system
(1)–(2), with

A =

[
0.5 1 0
0 0.5 0
0 0 0.7

]
, (46)

Ck =
[
−0.85η

(1)
k η

(2)
k −η(3)k

]
(47)

2 With no cross terms.
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Fig. 1. Comparison of the average MSE of four state
estimation algorithms, with confidence intervals.

where {η(i)k , k ≥ 0}, for i = 1, 2, 3, are independent
Bernoulli processes with parameter γ, i.e., E{η(i)k } = γ.
The state and measurement noises are non-Gaussian,
as they are discrete random processes. In particular,
fk = [ f

(1)
k f

(2)
k f

(3)
k ]T , with i.i.d. components f (i)k ∈

{−0.1, 0.3, 0.9} with probabilities 15/18, 2/18, 1/18, re-
spectively. The output noise gk ∈ {0.05, −0.15, −0.45}
with probabilities 15/18, 2/18, 1/18, respectively. It is
easily verified that E{fk} = 0 and E{gk} = 0. Fig. 2
compares the performance of four different algorithms in
terms of average mean square error (MSE) as a function
of γ. The algorithms considered are: i) the Kalman fil-
ter that uses the knowledge of Ck; ii) the Kalman filter
that uses Ck = C

.
= [−0.85, 1, −1]; iii) the Kalman

filter that uses as observation matrix the average Ck,
namely Ck = E{Ck} = [−0.85γ, γ, −γ]; iv) the proposed
quadratic filter. Note that the first algorithm cannot be
implemented when Ck is stochastic and not know, as is
the case considered in this paper. Thus, it serves as an
ideal reference for comparison with the other algorithms.

The performance has been evaluated averaging the MSE
of the four methods over 100 realizations of N = 2 × 103

points each, for values of γ ranging in the interval [0.4 1].
The average MSE is computed as

MSE =
1

100

100∑
i=1

εi, εi =
1

N

N∑
k=50

∥∥∥x̂(i)k − x
(i)
k

∥∥∥2
where εi is the MSE of the ith realization.

Fig. 1 shows that for γ = 1 all the linear filters, namely
the algorithms i)–iii), have the same performance, since
Ck = E{Ck} = C. In this case, the quadratic filter has
better performance than the Kalman filter because both
have complete knowledge of Ck but, being the noise non-
Gaussian, the Kalman filter is no longer optimal. As γ
decreases, the MSE of the algorithms ii)–iv) increases at
roughly the same rate, and the quadratic filter exhibits
uniformly better performance. It is worthwhile noting
that above a certain threshold for γ, the quadratic filter
outperforms the (ideal) Kalman filter of algorithm i),
which relies on the perfect knowledge of Ck that is not
available when Ck is random.

5. CONCLUSION

In this paper we consider the problem of state estimation
for linear discrete-time non-Gaussian systems with random
observation matrices. This is the model for uncertain ob-
servations resulting from losses in the propagation channel
due to fading phenomena or packet dropouts. This is
common in wireless sensor networks, networked control
systems, or remote sensing applications. In this paper,
we do not make any assumption about the distribution of
the observation matrix, thus encompassing a great variety
of possible scenarios. We derive the quadratic estimate of
the state by means of a recursive algorithm. The solution
is obtained by applying the Kalman filter to a suitably
augmented system, which is fully observable. To extract
the observable part of the quadratic system we exploit the
knowledge of the rank of the corresponding observability
matrix. This approach guarantees the internal stability of
the estimation filter.

Appendix A. PROOFS OF PROPOSITIONS

A.1 Proof of Proposition 1

Proof. From the definition of Vk in (29) it follows

E {Vk} =

[
E {fk}

Tr E{f (2)k }

]
= 0(n+r).

With respect the the autocorrelation function, consider
that

Vk =

[
In 0n×r

0r×n Tr

] [
fk
f
(2)
k

]
= diag (In, Tr)

[
fk
f
(2)
k

]
and in De Santis et al. (1995) it is proved that the

sequence
{[

fTk f
(2)T
k

]T}
is uncorrelated thus implying

that {Vk} is also an uncorrelated sequence. The correlation
(covariance) matrix Qk is computed in (32).

The autocorrelation function is

E
{
VhV

T
k

}
=

 E
{
fhf

T
k

}
E
{
fhf

(2)T
k

}
TT
r

Tr E
{
f
(2)
h fTh

}
Tr E{f (2)h f

(2)T
k }TT

r


with

E
{
fhf

T
k

}
= Σfkδh,k (A.1)

E
{
fhf

(2)T
k

}
= E

{
fh

[
(I + Π)(Axk ⊗ fk) + f̂

[2]
k

]T}

= E
{
fh(xTk ⊗ fTk )

} (
AT ⊗ I

)
(I + Π) + E

{
fhf̂

[2]T
k

}
taking into account that fh and (xk ⊗ fk) are orthogonal,
we get

= E
{
fhf

[2]T
k

}
= Σ

(1,2)
fk

δh,k (A.2)

E
{
f
(2)
h fTk

}
= E

{
fhf

(2)T
k

}T

(A.3)

E
{
f
(2)
h f

(2)T
k

}
=
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exploiting that (xh ⊗ fh) and f̂ [2]k are orthogonal, we get

=
[
(I + Π)

(
AΣxk

AT ⊗ Σfk

)
(I + Π) + Σ̂

(2,2)
fk

]
δh,k (A.4)

A.2 Proof of Proposition 2

Proof. From the definition of Wk in (29) it is easily
verified that

E {Wk} = 02.

The autocorrelation function is

E
{
WhW

T
k

}
=

[
E{g(1)h g

(1)
k } E{g(1)h g

(2)
k }

E{g(2)h g
(1)
k } E{g(2)h g

(2)
k }

]
with
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h g
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}
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]}
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(
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(xh ⊗ xk), we get
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δh,k (A.5)
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(A.7)
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exploiting ChxhCkxk = (Ch ⊗ Ck) (xh ⊗ xk), we get
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