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Abstract: Active fault isolation of parametric faults in closed-loop MIMO systems are
considered in this paper. The fault isolation consists of two steps. The first step is group-
wise fault isolation. Here, a group of faults is isolated from other possible faults in the system.
The group-wise fault isolation is based directly on the input/output signals applied for the fault
detection. It is guaranteed that the fault group includes the fault that had occurred in the
system. The second step is individual fault isolation in the fault group. Both types of isolation
are obtained by applying dedicated auxiliary inputs and the associated residual outputs.
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1. INTRODUCTION

Fault diagnosis can be divided into two groups, passive
based methods and active based methods. In the first
group, the fault diagnosis is based on passive observations
of the systems. There exist various methods for both deter-
ministic or stochastic based diagnosis, see e.g. Basseville
and Nikiforov [1993], Blanke et al. [2006], Campbell and
Nikoukhah [2004], Chen and Patton [1998], Gertler [1998],
Gustafsson [2000] for mention some of the books in the
area of passive fault diagnosis. Methods based on an active
approach, the diagnosis is still based on observations of the
system, but auxiliary inputs are injected to get a faster
diagnosis of faults in the system or get a diagnosis at a
specified time, i.e. when an auxiliary input is injected at
the system. The area of active fault diagnosis (AFD) has
not been investigated so much as passive based methods.
Some relevant references in the area of active fault diag-
nosis are e.g. Ashari et al. [2011, 2012], Campbell and
Nikoukhah [2004], Kerestecioglu [1993], Niemann [2006],
Simandl and Puncochar [2009], Zhang [1989].

It is here important to point out that there are some
differences between the two types of diagnosis methods.
The active methods can be applied when the faults in
the system occurs as changes of parameters or dynamic in
the system, i.e. parametric faults or multiplicative faults.
It will then be possible to see a change of the signature
from the auxiliary input in the outputs from the systems.
In the case of additive faults, active methods cannot be
applied. Additive faults will not change the signature from
the auxiliary input in the output from the system. On
the hand, passive based methods can handle both types
of faults. However, using a passive method, parametric or
multiplicative faults will first be detected when a signal is
injected to the system, so it is possible to see an effect
from the fault. This input signal can be a disturbance
or reference input etc. Active fault diagnosis is therefore

relevant when we need to have a guarantee for detection
and isolation of a change in the system due to parametric
faults within a certain time after it has occurred.

The main focus in this paper is isolation of parametric
faults in MIMO systems by using active methods. One
of the main challenges in connection with fault diagnosis
in MIMO systems is the selections of input and output
directions. The fault detection problem for MIMO system
has been considered in Niemann and Poulsen [2014]. The
main result from this paper is an analysis of the design
of optimal auxiliary inputs and associated residual signals
such that it is possible to detect all parametric faults in
the system.

The isolation problem is a two steps problem, divided into
a group-wise fault isolation followed by individual fault
isolation. The group-wise fault isolation step is to isolate
a group of faults including the fault that had occurred
in the system. For the individual fault isolation problem,
both gain and phase information will be used. Different
faults will give different signature in the complex plane
that can be used for fault isolation.

The rest of this paper is organized as follows. In Section 2,
the system set-up is given together with some preliminary
results for active fault diagnosis. Active fault detection for
MIMO systems is shortly described in Section 3 following
by Section 4 where active fault isolation for MIMO systems
is considered. An example is given in Section 5. The paper
is closed with a conclusion in Section 6.

2. SET-UP

The needed system set-up and the applied set-up for
active fault diagnosis (AFD) are shortly introduced in the
following.
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2.1 System set-up

The dynamic system is given by:

ΣP :











z = Gzww + Gzdd + Gzuu

e = Geww + Gedd + Geuu

y = Gyww + Gydd + Gyuu

(1)

where d ∈ Rrd is an external disturbance input vector,
u ∈ Rm the control input signal vector, e ∈ Rre is the
external output signal vector to be controlled and y ∈ Rp

is the measurement vector. Further, w ∈ Rk and z ∈ Rk

are external input and output vectors. The connection
between z and w is given by:

w = θz

where θ is a diagonal matrix represents the parametric
faults in the system. θi, i = 1, · · · , k, in the diagonal of
θ represent the k single parametric faults in the system.
θ = 0 represent the fault free case. For further description
of the fault modeling, see e.g. Niemann [2012].

Closing the loop from w to z in ΣP by θ, the system can
be realized as an upper linear fractional transformation
(LFT) in θ given by

ΣP,θ = Fu(ΣP , θ)

where ΣP,θ is given by

ΣP,θ :

{

e = Ged(θ)d + Geu(θ)u

y = Gyd(θ)d + Gyu(θ)u
(2)

It is assumed in the rest of this paper that only a single
fault can occur at the time.

The system is controlled by a stabilizing feedback con-
troller given by:

ΣC : { u = Ky (3)

2.2 Active fault detection

We will in this paper use an AFD approach based on a
closed-loop setup for the detection and isolation described
in e.g. Niemann [2006, 2012], Poulsen and Niemann [2008].
The AFD set-up includes a nominal feedback controller.

The set-up is based directly on the Youla-Jabr-Bongiorno-
Kucera (YJBK) parameterization and the dual YJBK
parameterization.

Before the setup is given, the coprime factorization of the
nominal system Gyu from (1) and the stabilizing controller
K from (3) are given. These are:

Gyu = NM−1 = M̃−1Ñ , N,M, Ñ , M̃ ∈ RH∞

K = UV −1 = Ṽ −1Ũ , U, V, Ũ , Ṽ ∈ RH∞

(4)

where the eight matrices in (4) must satisfy the double
Bezout equation given in e.g. Tay et al. [1997].

It is now possible to give a parameterization of all con-
trollers that stabilize the system in terms of a stable matrix
transfer function Q, i.e. all stabilizing controllers are given
by, Tay et al. [1997]:

K(Q) = (Ṽ +QÑ)−1(Ũ +QM̃), Q ∈ RH∞ (5)

The above controller parameterization can be realized as
a lower LFT in the parameter Q:

K(Q) = Fl

((

UV −1 Ṽ −1

V −1 −V −1N

)

, Q

)

= Fl(JK , Q) (6)

Equivalently, it is possible to derive a parameterization in
terms of a stable matrix transfer function S of all systems
that are stabilized by one controller, i.e. the dual YJBK
parameterization. The parameterization is given by Tay
et al. [1997]:

Gyu(S) = (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞ (7)

An LFT representation of (7) is given by:

Gyu(S) = Fl

((

NM−1 M̃−1

M−1 −M−1U

)

, S

)

= Fl(JG, S)

(8)

Further, S is given as an upper LFT by, Tay et al. [1997]:

S = Fu(JK , Gyu(S)) (9)

The matrix transfer function S is a function of the system
variations. Here variations in the system in terms of the
parametric faults described by θ, i.e. S = S(θ) will be
considered. Assuming that θ = 0 is the nominal value of
θ, then there exist the following simple relation, Niemann
[2003]:

S(θ) = 0, for θ = 0 (10)

This connection between the YJBK and the dual YJBK
parameterization in (6) and (9) is a central element in
the active fault diagnosis approach described in Niemann
[2006, 2012], Poulsen and Niemann [2008]. By testing if
S(θ) is zero or non-zero, parametric faults can be detected.
From (9) we have that S is given directly as the matrix
transfer function between the lower inputs and outputs of
JK . This is shown in Fig. 1.

ΣP,θ

JK

✲ ✲

✲

✛

✛✛

yu

d e

ηε

Fig. 1. The setup for AFD in closed loop system. The
auxiliary input vector is η and the external output
vector is ε, i.e. the residual vector.

It has been shown in Niemann [2006, 2012] that ε is
a residual vector satisfying the decoupling conditions.
ε can be used as a residual vector in connection with
AFD. Therefor S is the matrix transfer function between
the auxiliary input η and the residual output ε. As
a consequence of the important of S(θ) for both fault
detection, isolation and also estimation, it is called the
fault signature matrix, Niemann [2006, 2012]. This name
will be used in the following.

From the set-up that is shown in Fig. 1, the closed-loop
system is given by:

ΣP,K :

{

e = Ped(θ)d + Peη(θ)η

ε = Pεd(θ)d + S(θ)η
(11)

where the matrix transfer functions can be found in
Niemann [2012], Niemann and Poulsen [2014].
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3. ACTIVE FAULT DETECTION

An explicit expression of the dependence of θ in S(θ) is
given as, Niemann [2003], Niemann and Poulsen [2014]:

S(θ) = M̃Gywθ(I−(Gzw+GzuUM̃Gyw)θ)
−1GzuM (12)

Based on this explicit equation for S(θ) given in (12)
together with the focus of detecting small parametric
faults in closed-loop systems, it is possible to make a
Taylor expansion of the fault signature matrix around the
nominal value θ0 = 0 for obtaining a linear function of the
parametric faults θi, i.e. S(θ) is given by:

S(θ) ≈
k
∑

i=1

(

∂

∂θi
S(θ)|θ=0

)

θi (13)

Let the system matrices Gyw and Gzu be partitioned into
k columns and k rows, respectively, given by:

Gyw = [(Gyw):,1 · · · (Gyw):,k]

Gzu =







(Gzu)1,:
...

(Gzu)k,:







(14)

The Taylor expansion in (13) is then given by, Niemann
and Poulsen [2014]:

S(θ) ≈ M̃

k
∑

i=1

(Gyw):,i(Gzu)i,:Mθi =
k

∑

i=1

S̄iθi (15)

where S̄i = M̃(Gyw):,i(Gzu)i,:M .

As auxiliary inputs, periodic inputs are applied. It turns
out in Niemann and Poulsen [2014] that it will not in
general be possible to detect all faults just using a single
auxiliary input vector. Instead a number of auxiliary
inputs need to be applied. The single inputs are given by:

η = hv sin(ωt) = vη̄ (16)

where v ∈ Rm, the input direction, h ∈ R, the gain and ω,
the frequency need to be selected. η̄ is a scalar input. The
design of the single parameters in (16) can be developed
by using a singular value decomposition (SVD), of S̄i. Let
the maximal gain through S̄i be given by σmax(S̄i) and
it is obtained at the frequency ωi. Further, the associated
input and output directions for σmax(S̄i(ωi)) are given by
vi and ui, respectively. This gives the following auxiliary
input ηi:

ηi = hivi sin(ωit) = viη̄i (17)

where hi is a scalar constant to be designed. The design of
hi can be done with respect to the effect from the auxiliary
input is allowed in the external output e in the nominal
case. For simplifying the following fault isolation, it will be
assumed that all hi = 1. This is without loss of generality.
Further, it is assumed that the given frequency ωi is inside
a relevant frequency range. Further, the optimal residual
signal ε̄i with respect to the given auxiliary input in (17)
is given by

ε̄i = ui = σmax(S̄i(ωi))θi sin(ωit+ φii) (18)

where ui ∈ Rp is the output direction, φii is the phase lag
through S̄i(ωi) with respect to θi.

The organization of the auxiliary inputs and which are
needed is discussed in Niemann and Poulsen [2014].

4. ACTIVE FAULT ISOLATION

The isolation step consists of two steps, a group-wise fault
isolation followed by isolation in the fault group.

4.1 Group-wise Fault Isolation

For simplifying the following group-wise fault isolation,
it will in the following be assume that we have k set of
auxiliary inputs and associated residual signals given by
(η̄i, ε̄i). This is without loss of generality. Some of the
signal sets (η̄i, ε̄i) might be identical or almost identical.

Given an auxiliary input η̄i and the associated residual
signal ε̄i. Further let the fault θj occur in the system. Using
the linear approximation of S given in (15), the residual
signal ε̄i is then given by:

ε̄i = uiS̄jviθj η̄i

= [ ui,1 · · · ui,p ]







S̄j,11 · · · S̄j,1m

...
...

S̄j,p1 · · · S̄j,pm













v1,i
...

vm,i






θj η̄i

=

p
∑

r=1

m
∑

t=1

ui,rS̄j,rtvt,iθj η̄i

= Ψije
jφijθj η̄i

(19)
where Ψij is the fault signature gain and φij is the phase
shift of the transfer function from η̄i to ε̄i with respect to
fault θj . Including the auxiliary input η̄i from (17) in the
above equation gives:

ε̄i = Ψije
jφijθj sin(ωit) (20)

Based on ε̄i given above, we will use the following illustra-
tion signal:

δi(t) =

√

(
∫

si(t)dt

)2

+

(
∫

ci(t)dt

)2

(21)

where si(t) and ci(t) are given by:

si(t) = ε̄i sin(ωit), ci(t) = ε̄i cos(ωit) (22)

The illustration signal given by (21) will be a linear
function of the fault signature gain Ψij .

All fault signature gains can be calculated with respect to
input/output sets (η̄i, ε̄i) and the parametric faults in the
system. Based on these gains, Table 1 can be given.

Table 1. The fault signature gains Ψij with
respect to input/output sets (η̄i, ε̄i) and the

parametric fault θj .

Input/output θ1 · · · θi · · · θk

(η̄1, ε̄1) Ψ11 · · · Ψ1i · · · Ψ1k

...
...

. . .
...

...
(η̄i, ε̄i) Ψi1 · · · Ψii · · · Ψik

..

.
..
.

..

.
. . .

..

.
(η̄k , ε̄k) Ψk1 · · · Ψki · · · Ψkk

Based on Table 1, we can setup the fault signature gain
matrix given by:
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Ψ =









Ψ11 · · · Ψ1k

...
. . .

...

Ψk1 · · · Ψkk









(23)

A large gain Ψij in Table 1 or in (23) indicate that the
associated auxiliary input η̄i and the associated residual
signal ε̄i are sensitive to the parametric fault θj . A small
gain indicates that residual signal is insensitive to the
associated fault. Due to the design of the auxiliary input
and the associated residual signal, Ψ will have a diagonal
structure with the largest elements in the diagonal.

In the case when Φ has full rank, i.e.

rank(Ψ) = k (24)

then it is possible to isolate all faults directly from the
applied k residual signals. This will not in general be the
case. Instead, group-wise fault isolation can be done based
on Table 1.

Assume that fault θj had occurred in the system. The
effect from this fault will be seen in one or more residuals
signals. It will at least be able to see it in residual signal
ε̄j but also in others residual signals depending on the
fault signature gains in column j. From Table 1, it can
be decided which residual signals that are interesting in
connection with fault θj .

Let’s define the fault group in which the fault had oc-
curred. The fault group needs to be defined out from the
residual signals or the illustrations signals after a fault has
been detected. A number of non-zero residual signals (or
illustration signals) will be the result due to the gains given
in Table 1. Select the illustration signal(s) with the largest
increasing rate. The increasing rates are proportional with
the fault signature gains Ψij and the parametric fault θj .
A non-zero residual ε̄i indicate that fault θi might had
occurred. If it is not θi, then there will be at least another
residual signal with at least the same gain.

Assume that the illustration signal δi(t) has the largest
increasing rate given by Γi, i.e.

δi(t) ≈ Γit (25)

From this approximation of the largest illustration signal,
we define a conic sector that includes the group of relevant
illustrations signals. This defines the group of relevant
faults that need to be considered in connection with
isolation of the fault occurred in the system. Let the conic
sector be bounded by the two lines δsec,upper and δsec,lower

given by:
δsec,upper = Γit

δsec,lower = αsecΓit
, t ≥ 0 (26)

where αsec ≤ 1 define the gab in the sector. The selection
of αsec need to be done with respect to the disturbance
in the system as well as with respect to the non-linearity
of the fault signature matrix S(θ). If S(θ) is quite non-
linear, the linear approximation given in (15) is only valid
for small faults.

The conic sector defined in (26) is equivalent with defining
the fault group based on the fault signature gains. The
fault signature gains that give illustration signals inside
the conic section will satisfy

Ψij ≥ αisoΨjj (27)

Without loss of generality, it is assumed that the residual
(illustration) signals are arranged such that the isolated
fault group consist of the faults θ1, · · · , θl, l ≤ k.

4.2 Gain based Fault Isolation

As indicated above in connection with group-wise fault
isolation, it will in some cases be possible for fault isolation
based directly on the fault signature gains. Let the fault
signature gain matrix for the group of isolated faults given
by:

Ψgroup =









Ψ11 · · · Ψ1l

...
. . .

...

Ψl1 · · · Ψll









(28)

If Ψgroup has full rank, i.e.

rank(Ψgroup) = l (29)

then it is possible to isolate all faults in the group directly
from the applied l residual signals. If this is not the case,
phase information need to be applied for the isolates as
described in the following.

4.3 Phase based Fault Isolation

From (20) it has been shown that the transfer function
from an auxiliary input to a residual signal can be written
as the fault signature gain and a phase shift with respect
to a certain fault. Using ε̄i given by (20) in the two signals
si(t) and ci(t) from (22) gives then:

si = Ψije
jφijθj sin(ωit) sin(ωit)

ci = Ψije
jφijθj sin(ωit) cos(ωit)

(30)

Rewriting (30) using some trigonometric relations the two
equations take the following form:

si =
1

2
Ψijθj

(

cos(φij)− cos(2ωit+ φij)
)

ci =
1

2
Ψijθj

(

sin(φij) + sin(2ωit+ φij)
)

(31)

From (31) it can be seen that both si and ci have
a constant component and a periodic component. The
periodic component is zero in average over time. The
constant components are given by:

[

si
ci

]

constant

=
1

2
Ψijθj

[

cos(φij)
sin(φij)

]

(32)

The direction of the constant part of (si, ci) in the complex
plane (si is the real part and ci is the imaginary part)
depend directly on the phase shift φij from the fault
signature matrix as a result of the fault θj . From (32)
we have directly that a unit vector in the complex plane
with respect to fault θj is given by:

qij =

[

cos(φij)
sin(φij)

]

(33)

Table 2 gives the fault signature phases based on (33).

It is possible to set up conditions for isolability of the faults
in the fault group, θ1, · · · , θl. For doing this, let’s define the
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Table 2. The fault signature phases φij with
respect to input/output sets (η̄i, ε̄i) and the

parametric fault θj .

Input/output θ1 · · · θi · · · θl

(η̄1, ε̄1) φ11 · · · φ1i · · · φ1l

...
...

. . .
...

...
(η̄i, ε̄i) φi1 · · · φii · · · φil

..

.
..
.

..

.
. . .

..

.
(η̄l, ε̄l) φl1 · · · φki · · · φll

phase shift matrix with respect to the given fault group.
Let the phase shift matrix Φ be given by:

Φ =

















(

cos(φ11)
sin(φ11)

)

· · ·

(

cos(φ1l)
sin(φ1l)

)

...
. . .

...
(

cos(φl1)
sin(φl1)

)

· · ·

(

cos(φll)
sin(φll)

)

















(34)

Out from the phase shift matrix Φ in (34) we have that the
l faults in the given fault group can be isolated using the
given l set of auxiliary input signals and residual signals,
(η̄i, ε̄i), i = 1, · · · , l if Φ has full rank, i.e.

rank(Φi Φj) = l (35)

This condition is too strong and will not be satisfied in
general. The condition can only be satisfied if it is based
on l different sets of auxiliary input signals and residual
signals. Instead we need to look at the columns in Φ. Let
Φ be partitioned into l columns as:

Φ = [ Φ1, · · · ,Φl ] (36)

It is clear that two faults can be isolated from each other
if:

rank(Φi Φj) = 2, i 6= j (37)

(37) is equivalent with that the two set of residual vectors
has different phase shift. This condition is both necessary
and sufficient for isolating θi from θj based on the given
sets of inputs and output signals. If the condition in (37)
is satisfied for all faults, then it is possible to isolate all l
faults in the given fault group.

In few cases it will not be possible to isolate the parametric
faults based on the fault signature gain or the phase shift as
described above, the auxiliary inputs need to be changes.
This aspect will not be considered in this paper.

5. EXAMPLE

The example is a spring-mass system as shown in Fig. 2.
The system include 5 masses that are connected with 6
springs and 6 dampers. The first and last mass is assumed
to be connected with a spring and a damper to a fixed
ground.

A detailed description of the model is given in Niemann
and Poulsen [2014]. Based on the analysis given in Nie-
mann and Poulsen [2014], only faults in spring no. 2 and 6
(in parameter a2 and a6) and faults in damper no. 2 and
6 (in b2 and b6) are considered here.

Based on the system setup, an SVD analysis of S̄i is then
developed giving the maximal gain of S̄i, the frequency

m1 mN

Fig. 2. Spring mass system with N masses.

ωi where the maximal gain is obtained and the associated
input and output directions. The result of this analysis is
given in Table 3.

Table 3. Data for analysis of S̄i for fault in the
springs and in the dampers.

Fault σmax(S̄i) ωi, [rad/s] Input direction Output direction
vi ui

a2 0.4630 0.5174

(

0.8581
0.5135

)

(

0.9993 0.0376
)

a6 0.1082 0.2306

(

0.3520
0.9360

)

(

0.0328 0.9995
)

b2 0.0108 0.5091

(

0.8588
0.5122

)

(

0.9993 0.0384
)

b6 0.0024 0.2296

(

0.3514
0.9362

)

(

0.0325 0.9995
)

Table 3 gives maximal singular value of S̄i and the asso-
ciated input and output directions with respect to a given
fault.

As a result of of the analysis given in Table 3, we can
see that two sets of (η̄, ε̄) need to be applied for optimal
detection of the four possible parametric faults. The two
sets are given by:

• Optimal auxiliary input and residual vector for de-
tection of faults on a2 and b2:

η2 =

(

0.8581
0.5135

)

sin(0.5174t) =

(

0.8581
0.5135

)

η̄2

ε̄2 = ( 0.9993 0.0376 ) ε

• Optimal auxiliary input and residual vector for de-
tection of faults on a6 and b6:

η6 =

(

0.3514
0.9362

)

sin(0.2296t) =

(

0.3514
0.9362

)

η̄6

ε̄6 = ( 0.0325 0.9995 ) ε

The faults considered in in the four parameters are a
change of 5% change of a2, a6 and a 20% change of b2,
b6, respectively.

The first step is group-wise fault isolation. Let’s consider a
faulty in a2. The two illustration signals δ2 and δ6 based on
the two residual signal ε̄2 and ε̄2 given by (21) are shown
in Fig. 3.

It is clear from Fig. 3 that δ2 is very sensitive to a fault
in a2 (and in b2) and that δ6 is insensitive to a fault in
a2 (and in b2). Considering a fault in a6 (and b6), δ2 will
be insensitive to the fault and δ6 will be very sensitive
to a fault in a6 (and b6). This gives directly a group-wise
isolation of the four possible faults. By using the sets of
signals (η̄2, ε̄2) and (η̄6, ε̄6), we can isolate the two faults
a2 and b2 from a6 and b6.
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0.009
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Length of illustrator signal for pertubation in a
2
 with a a

6
 detector

Time [s]

Fig. 3. Group-wise fault isolation. Illustration signals for
detection of a2 based on (η̄2, ε̄2) (upper curve) and by
using (η̄6, ε̄6) (lower curve).

The last step is an isolation of the faults in the two groups.
In this example, it is possible to isolate the faults in the two
groups by using the phase shift through the fault signature
matrix. We will use the integrals of the two signals si and
ci given by (22) as illustration signals.

Using these two illustrations signals, the isolation of the
two faults a2 and b2 can now be done as shown in Fig. 4.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

δ
s,i

δ c,i

Phase plot with fault in a2 and b2

Fig. 4. Individual fault isolation of faults in a2 and b2. The
two curves (δsi , δci) are given for a2 (the right curve)
and for b2 (the left curve).

It is clear from Fig. 4 it is possible to isolate a2 from b2
due to the large difference in phase shift through the fault
signature matrix. In this case, the two curves are almost
orthogonal on each other which give optimal condition for
a distinction of the effects from the two possible faults. The
same result is obtained for isolation of a6 and b6. This is
shown in Fig. 5.

6. CONCLUSION

In the presented approach for fault isolation in MIMO
systems, the isolation step consists of two parts, a group-
wise isolation followed by an individual isolation of the
single faults in the fault groups. The group-wise fault
isolation is based directly on the applied input and output
signals for fault detection. The individual fault isolation
is based on the phase shift through the fault signature
matrix, that can be used for fault isolation.
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