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Abstract: An online detector for time-variant oscillation in a univariate time-series is proposed.
This paper is motivated by the fact that it is still an open issue to implement the real-
time oscillation detector which is applicable to non-linear, non-stationary and intermittent
oscillations. The proposed procedure is based on Intrinsic Time-scale Decomposition (ITD)
and contains an improved iteration termination condition of ITD. A novel hypothesis test with
an improved statistic of variation coefficient enables the online monitoring of the time-variant
oscillations. Simulation examples and industrial applications are provided to demonstrate the
effectiveness of the online detector.
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1. INTRODUCTION

An oscillatory process variable is one of the most common
abnormal phenomena in process industries. The conse-
quence of oscillations may include fluctuations of product
quality, increased consumption of energy and raw mate-
rials, and compromised stability and safety (Wang et al.
[2013]). Automatic detection of oscillation can help the op-
erators to focus their attention on control loops that might
have performance problems and has become a standard ac-
tivity in control performance assessment (Srinivasan et al.
[2007]).

Existing oscillation detection techniques for a single time
series can be divided into off-line and on-line techniques.
Most of the existing methods are off-line, including In-
tegral Absolute Error (IAE) method (Hägglund [2005]),
the auto-covariance function (ACF) method (Thornhill
et al. [2003]) and spectral envelope method (Jiang et al.
[2007]). More recent methods provide off-line solutions for
detecting oscillating time series with non-stationary trend
and non-linearity, including wavelet transform (WT), dis-
crete cosine transform (DCT) and the empirical mode
decomposition (EMD) (Matsuo et al. [2003];Wang et al.
[2013];Srinivasan et al. [2007]).

On the other hand, a prompt indication of the oscillation
presence in real time is crucial for the instant compensa-
tion of the negative effects of oscillations. Although most of
the off-line techniques can be implemented on-line with the
help of a moving supervision window, an improper window
size may delay the detection of oscillation and it has
not been adequately addressed on the sample-by-sample
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inspecting of every single period of oscillation (Thornhill
and Horch [2007]). Hägglund [2005] firstly designed a real-
time window-free oscillation detector which utilizes the
IAE between two consecutive instances of zero crossings of
a time series. This approach, however, cannot distinguish
the oscillation frequencies. Salsbury and Singhal proposed
an auto-regressive and moving-average (ARMA) model
method with identification of undamped poles for online
oscillation detection (Salsbury and Singhal [2005]). It is
only applicable to time series containing single oscillations.

To deal with the multi-oscillating signal, wavelet (Matsuo
et al. [2003]) and DCT (Wang et al. [2013]) are commonly
adopted as pre-specified dictionary matrices for sparse
representation of the signal. Wang et al. [2013] proposed a
modified version of DCT to realize the online DCT with an
adaptive supervision time window to approximate the real-
time behavior of oscillations. However, it is contradictory
to depict the instantaneous information and the slowly
oscillating component at the same time with a determined
supervision window length. In addition, wavelet and DCT
do not preserve the nonlinear features of the process
variable which may be helpful to determine the oscillation
are caused by valve stiction or other reasons. The online
implementation of EMD is based on a finite size of moving
window of the inspected variable. Too short supervision
window size will result in distorted IMFs, which renders
the interpretation of the oscillation mode a difficult task.

A desirable online oscillation detector should have the
following features: (i) Applicability to intermittent, non-
linear and mean-nonstationary oscillations, (ii) Rapid and
efficient computations, (iii) Responsive and online imple-
mentation with statistic monitoring and analysis. To meet
these above requirements, this paper introduces a real-time

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6686



oscillation detector based on an improved Intrinsic time-
scale decomposition (ITD). ITD is specifically formulated
for non-linear and non-stationary signals. It can decom-
pose a complex signal into several Proper Rotation Com-
ponents (PRCs) and a residual (Frei and Osorio [2007]).
For the sake of online oscillation detection, this article
improves the original ITD by introducing a rapid backward
redecomposition procedure as well as a revised oscillation
hypothesis test on the zero-crossings of PRCs.

The rest of the article is organized as follows. The original
ITD is introduced in Section 2. The oscillation detector is
proposed in Section 3. A numerical example and industrial
cases are discussed in Section 4 and 5. A conclusion is made
in Section 6.

2. INTRINSIC TIME-SCALE DECOMPOSITION

Given a time series Xt, define the baseline-extracting
operator L and proper-rotation-extracting operator H,
which extracts Xt into a baseline signal Lt in a manner
that causes the residual Ht to be a proper rotation. More
specifically, Xt can be decomposed as

Xt = LXt + (1− L)Xt , LXt +HXt = Lt +Ht (1)

let {τk, k = 1, 2, ...} denote the local extrema positions of
Xt, and τ0 = 0. Suppose that Lt has been defined on τk
and Xt is available for [τk, τk+2]. For simplicity, let Xk

and Lk denote Xt(τk) and Lt(τk), respectively. A piece-
wise linear baseline and proper rotation of Xt on interval
[τk, τk+2] can be decomposed as follows:

LXt = Lt = Lk +

(
Lk+1 − Lk
Xk+1 −Xk

)
(Xt −Xk) , (2)

HXt = Ht = (1− L)Xt = Xt − Lt, t ∈ (τk, τk+1] (3)

Lk+1 = λ

[
Xk +

(
τk+1 − τk
τk+2 − τk

)
(Xk+2 −Xk)

]
+(1− λ)Xk+1

(4)
λ is typically selected around 0.5. The baseline Lt is
constructed as a linearly transformed contraction of Xt in
order to make the residual function Ht monotonic between
{τk}, a necessity for Ht to be proper rotations. It is a
single-wave analysis in combination with morphological
features of the signal, which allows a rapid and efficient
implementation of the decomposition in real-time.

Once the input signal is decomposed into Lt and Ht, the
process can be repeated by using the baseline signal Lt
as an input. The iteration continues until a monotonic
baseline signal – the ’trend’ is obtained. The iterations
decompose the raw signal into a sequence of proper rota-
tions. The overall procedure can be expressed as

Xt = HXt + LXt = HXt + (H+ L)LXt

=
(
H (1 + L) + L2

)
Xt =

(
H
p−1∑
k=0

Lk + Lp
)
Xt,

(5)

where HLkXt is a proper rotation extracted at k+1th

iteration, and LpXt is the monotonic baseline signal rep-
resenting the trend of Xt, also known as the residual of
intrinsic time-scale decomposition.

3. PROPOSED ONLINE OSCILLATION DETECTOR

The main idea of the proposed oscillation detector is to
isolate the oscillation modes of a time series via modified

ITD procedure for online implementation, and to detect
the oscillatory behaviors with a hypothesis test on coeffi-
cient of variation (CV) of each PRC.

3.1 Modified ITD for online implementation

Online oscillation detector requires a rapid and efficient
algorithm to deal with real-time measurement data. ITD
provides a solution with single-wave analysis which can be
performed online.

A slow but regular oscillation component requires more
samples to be discovered, while oscillations with shorter
periods should be detected much earlier which have been
oscillating for periods in the same samples length. In oscil-
lation detection methods with moving supervision window,
e.g. EMD and DCT, longer window is required to discover
the slow-oscillating component, which sacrificed the speed
in detecting the short-period or intermittent behavior of
oscillations. In real-time implementation of an oscillation
detector, it is desired to individually capture each oscilla-
tion mode of process variable as soon as possible.

Recall the iteration procedure as Lk+1Xt = (H+ L)LkXt,
whose termination condition is that LpXt to be mono-
tonic. A time series containing multiple oscillation or
random walking trend may distort the monotonic base-
line LpXt with instantly coming real-time measurements,
consequently inducing unexpected local extrema in LpXt

which violates termination condition. A further decompo-
sition results in extraction of more low-frequency PRCs
which is usually unnecessary for oscillation detection.

To this end, the original ITD is improved for real-time
oscillation detection in two folds: (i) the modified itera-
tion procedure and termination condition, specifically for
oscillation detection purpose is proposed to improve the
quality of PRCs and non-stationary trend description, (ii)
the PRC extraction procedure via ITD is updated into a
new version - ITD with online backward redecomposition
- to meet the requirements of real-time application.

Modified Procedure of ITD The first modification to
ITD relates to its termination condition. Original ITD
procedure requires a monotonic residual to ensure that
all proper rotations with all corresponding local extrema
have been extracted in PRCs. It is unnecessary for os-
cillation detection purpose since some random walking
trend with few extrema is not relative to oscillation mode.
An oscillation index criterion is adopted to substitute the
original termination condition on monotonicity. Only if
the residual is considered to contain a potential oscillating
behavior should be further decomposed. The oscillation
index should be robust to the most frequent types of
uncertainties in the signal, especially to those time-variant
oscillation patterns.

A peak-based approach is recommended to define the half-
periods and oscillation peaks (Zakharov et al. [2013]).
Given a residual signal r(k) = LpXt(k) and a possible
integer upper-bound for the half-period length d. The
symbol m+

i will be used for the location of the maximum
in the i-period, while m−i will be used for the location
of the minimum in the same period. The search for the
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values m+
i and m−i , with i = 1,2,..., is made according to

the following formulas:

m+
1 = arg max

k=1,..,2d
r(k), (6)

m±i = m±i + arg max
k=d/2,..,d

r(m∓i + k) (7)

Similarity of two subsequent periods Tm+
i and Tm−i is

evaluated using the correlation coefficient C(i) , where
Tm±i = m±i −m

±
i−1. Re-sample Tm+

i and Tm−i to ensure
they are in the same length.

Iosc (d) = max {θ : θ 6 C (i) for 80% of i} (8)

Iosc = maxdIosc (d) (9)

If the index is below 0.70, it is typically impossible to
recognize any oscillations in the residual and it can be
confirmed that the signal is non-oscillating. Hence, the
termination condition of ITD is modified as the oscillation
index Iosc of the residual r(k) is under 0.70.

The other modification to ITD is on the iteration proce-
dure. Using the notation Hλ

t to denote the dependence
of Ht in the equation on the parameter λ, an identity is
derived as Hλ

t = (0.5/λ)H0.5
t . It is proved that λ simply

determines the amplitude of the PRC extracted at each
iteration, which means the frequency distribution of an
PRC remains unchanged with the variety of λ. Therefore,
larger λ will decrease the number of PRC. In industrial
applications, λ should be adjusted according to the noise
level. The default parameter λ is 0.5, which is applicable
to the most common types of industrial data. It is rec-
ommended to choose λ = 0.45 for low noise level, and
λ = 0.55 for high noise level.

Backward Reconstruction Intrinsic Time-scale Decom-
position is naturally available for online signal analysis.
For a finite length of time series, iteration of ITD is ceased
by the termination condition, resulting in a finite number
of PRCs. However, the decomposition level is unidentified
with constantly up-coming data. In order to determine
the decomposition depth of ITD and achieve the prompt-
ness of the oscillation detector, a so-called backward re-
decomposition (BR) procedure is developed. It ensures
the efficient computation in isolating different frequency
components – especially the slow-oscillating component.
Short-period oscillations are prior to be inspected than the
long-period ones, without the constraints of supervision
window length. This is a significant advantage over the
Hilbert transform based approaches, which require longer
windows of data and are not suited for single waves or
short oscillations. BR utilizes the following propositions of
ITD (Frei and Osorio [2007]),

Proposition 1. Ht is a proper rotation on the interval
[τ1, τN ] for any N > 1. For a PRC LkXt at the kth level of
ITD, it shares the same local extrema with HLkXt when
the decomposition iteration applied to LkXt.

Proposition 2. HLi+1Xt on [τk, τk+1] is obtained through
a linear transformation, with only necessity that LiXt on
[τk, τk+2] and Li+1Xt(τk) are available.

An illustration of the online ITD method is basically
presented in Frei and Osorio [2007]. Proposition 1 shows
the ability of ITD to preserve the extrema locations of
original time-series in the decomposed PRCs. Those local

Conduct the decomposition until residual is updated at mth interation*

Load real-time data  x(t) between new-coming local 

extrema interval [    ]

Set decomposition depth of ITD as m

Decomposition depth 

m=m+1

Implement Backward Reconstruction.

New residual is constructed as              .*

Oscillation index Iosc<0.7
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END
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Fig. 1. Flowchart of Backward Redecomposition procedure

extrema represent relational oscillating behaviors. Propo-
sition 2 indicate the irrelevance of history data (before
τk) in defining baseline and rotation signal on [τk, τk+1].
Therefore, a proper rotation can be computed between
times of successive extrema as soon as the segment has
been obtained. In other words, a PRC extracted at pth
iteration – HLp−1Xt on [0, τpk ] always remains unchanged
once it is constructed no matter what up-coming data
after τpk behaves, where τpk denotes the last local extrema
(except endpoint) of the pth PRC .

BR procedure is implemented to identify the decomposi-
tion level of online ITD. Decomposition depth of ITD is in-
creased when the current residual component at mth level
LmXt does not satisfy the modified termination condition.
A further decomposition on the previous history data on
the current residual of ITD – LmXt on the interval [0, τpk ],
which is in reverse direction (backward) to the up-coming
real-time data. A flowchart is presented in Figure 1 for
illustration of the backward redecomposition procedure.
τp+1
k denotes the position of the last local extrema (except

for the endpoint) in Lp+1Xt. τ0 denotes the begin time of
implementing the oscillation detector, usually τ0 = 0. The
new-coming extrema from original real-time data x(t) are
identified as τk.

3.2 Testing Statistic Design for real-time monitoring

In practice, an oscillation is considered to be regular if the
standard deviation σT of the zero-crossing period T (i) is
less than one third of its mean value µT (Thornhill et al.
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[2003]). A hypothesis test is proposed based on coefficient
variable η, defined as η = µT /σT , which measures the
variability relative to the mean. A time series is concluded
to be oscillatory if its coefficient variable satisfies

η > 3. (10)

It has been used as a fundamental step in the oscillation
detection method. However, the basic test needs some
improvement in real-time applications. Estimation of η̂
highly depends on the number of zero-crossings, because
η > 3 depicts the asymptotic behavior of mass data.

The first improvement on the hypothesis test is increasing
robustness of the detector to noisy PRCs. Noise segment
may induce spurious zero-crossings which significantly de-
crease η̂. As a result, some oscillation patterns may fail
to be detected. A clustering procedure should be imple-
mented before zero-crossings are reported to hypothesis
test. It is noted that only the minor waves in PRCs
with small amplitudes and periods should be removed.
The significant behaviors in PRC may indicate a time-
variant feature of an oscillation. To this end, a clustering
procedure is developed in combination of periods T (i)
and amplitude A(i) for single waves of PRC. Some waves
(T (k), A(k)) should be concluded as spurious ones in a
PRC and excluded from zero-crossing maps if the following
inequalities holds,

T (k) < µT − σT , A(k) < µA − σA. (11)

µ and σ are the mean and standard deviation of the
corresponding sequence.

The second improvement is taking short-time oscillation
behavior into consideration. Thornhill recommended at
least ten samples of T (i) for the hypothesis test, because
fewer than four samples would yield unreliable estimates
of µT and σT . It extended the warming up time for the
detector to determine an oscillation. Since intermittent
behavior is successfully extracted via ITD and preserved
in PRCs, it is desirable to revise the hypothesis test to be
incorporate the number of periods into consideration. The
revised hypothesis test is based on the coefficient variable
estimation (Gulhar et al. [2012]), with (1-α)100% confi-

dence interval is
√
N−1√

χ2
N−1,1−α/2

µ̂T
σ̂T

< η <
√
N−1√

χ2
N−1,α/2

µ̂T
σ̂T

,

where N is the number of zero-crossing periods T (i), µ̂T
and σ̂T are estimated mean and standard deviation from
zero-crossing periods T (1), T (2), .., T (N) in a finite length.
Therefore, the revised hypothesis test based on the η̂ is
defined as its lower bound is less than 3. An oscillation is
detected if the following inequality holds,

η̂ =

√
N − 1√

χ2
N−1,1−α/2

µ̂T
σ̂T

> 3 (12)

In order to achieve the promptness and robustness of
detecting intermittent oscillation behaviors, it is recom-
mended to choose no more than ten zero-crossings. It is
noted that parameter N does not affect the ITD pro-
cedure, as a result, a prior indication for short-period
oscillation is still available. A flowchart is presented in
Figure 2 for illustration of calculating the statistic η̂ for
a single PRC.

Obtain the last N zero-crossings from pth PRC

Identify their periods and amplitudes as {T(i),A(i)}

Calculate mean and standard deviation as

Exclude {T(k),A(k)} from 

the zero-crossing sequence

Recalculate            from the 

updated sequence

Calculate statistics for monitoring pth PRC as

Report          value for the pth PRC

For k=1,2, ,N    

does any {T(k),A(k)} satisfy

T(k)<             & A(k)<            ?

N

Y
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p
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ˆ ˆ,T T

2

1,1 /2

ˆ1

ˆ

p
T
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N
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Fig. 2. Flowchart of statistic η̂ calculation for PRC

3.3 Implementation of the online oscillation detector

The underlying idea of the oscillation-detection procedure
is to conclude that an oscillation is present if the η̂ of an
extracted PRC exceeds the limit, which in result satisfied
η̂ > 3. Given the real-time measurement of a time series
x(n) as shown at the top of Figure.3, the online oscillation
detector is implemented in the following steps:

Step 1. Load real-time measurement data x(n) until a new
local extrema point of x(n) is identified at n = τk.

Step 2. Extract PRCs of x(n) via modified ITD with BR
procedure. Let PRC at pth level be xp(n).

Step 3. Apply the real-time oscillation monitor to the
updating PRCs. Calculate real-time statistic η̂p for the
xp(n).

Step 4. If η̂s of one or more PRCs are detected to exceed
the limit as η̂pi(nk) > 3, it is concluded that an oscillation
mode is detected in xpi(n) at n = nk.

Step 5. Go back to Step 1 and repeat.

4. NUMERICAL SIMULATION

In this section, a numerical simulation example is pre-
sented to illustrate the proposed oscillation detector. This
example focuses on the most common time-variant feature
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Fig. 3. Example. Mean-nonstationary data with its PRCs
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Fig. 4. Oscillation monitoring charts on Example

of oscillations in industrial control loops – non-stationary
trend. It explains the necessity of modified procedure of
ITD in real-time applications. A time series x1(n) with
an oscillation A(n) and a non-constant mean w(n) is
generated, as shown in Figure 3.

x1(n) = w(n) +A(n),
w(n) = v(n)/(1− 0.98z−1), A(n) = 2.0 sin(0.4n).

v(n) is a white noise sequence with σ2
v = 1.0. w(n) is

the response of a loop with a closed-loop pole on the
stability boundary, excited by v(n). A(n) is an external
disturbance. The monitoring procedure is presented in
Figure 4. A PRC is concluded to be oscillatory, since its
η̂ significantly exceeded the limit at n=300. Noise and
trend are also extracted via the modified ITD, whose
η̂s denied the possibility of oscillation existence. α is 0.5
as default. The revised termination condition successfully
stopped the iteration at residual x41(n). It is not possible
to find oscillations in x41(n) due to its oscillation index,
even though the residual is not monotonic.

5. CASE STUDIES

Industrial examples are presented to illustrate the online
application of the proposed oscillation detector.

Case 1. This case presents a multi-oscillating process vari-
able y1(n) from a control loop. It illustrates the importance
of backward redecomposition mechanism in the prompt-
ness of the real-time detector. y1(n) contains a slow but
principal oscillation. There is also a weak oscillation from
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Fig. 5. Case 1. Control loop with multiple oscillation
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Fig. 6. Oscillation monitoring charts on Case 1
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Fig. 7. Case 2. Control loop with decreasing performance

a possible external disturbance. The time trend of y1(n)
is shown on top of Figure 5. With modified ITD, short-
period oscillations can be extracted and identified much
earlier than long-period ones. A real-time monitoring of η̂s
in Figure 6, captured the oscillation behavior as soon as it
exceeded the limit. It explains the promptness of proposed
detector. The external disturbance with short oscillating
period is detected much earlier than the principal oscilla-
tion. Moreover, it proved that the clustering procedure of
η̂ increased the robustness in detecting oscillation mode in
noisy PRC y11 .

Case 2. The second case presents a process variable with
time-variant frequency and amplitude. y2(n) is collected
from a loop with decreasing performance due to a sticky
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Fig. 8. Oscillation monitoring charts on Case 2

valve. It illustrates the effectiveness of the proposed oscilla-
tion detector in monitoring the slowly growing oscillatory
data. The time trend of y2(n) is shown on top of Figure
7. The valve was operating in good condition at first.
In n=200, some failure in the control valve may occur,
leading to a larger variance of the process variable. During
n=200-700, the sticky action of valve is gradually more
serious with growing amplitudes of oscillation. The stiction
with its non-linear behavior can be visually discovered.
The monitoring procedure is presented in Figure 8. The
principal PRC of y2(n) is extracted and confirmed to be
oscillatory successfully.

6. CONCLUSIONS

This paper introduced a real-time oscillation detector tech-
nique with an modified Intrinsic Time-scale Decomposi-
tion. Modified ITD automatically decomposes the real-
time measurement into several proper rotation compo-
nents and a non-oscillating residual. ITD preserves the
non-linearity features of the data. The detector enables
rapid computation for online applications. Hypothesis test
is revised with clustered η̂ provides a robust monitor to the
unexpected behaviors. It is prompt to individually detect
multiple oscillations. A numerical example and case stud-
ies verified the detector in monitoring process variable of
time-variant features. It is promising to utilize the detector
to measure how the oscillation behaves in industrial loops.
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