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Abstract: Bilaterally coupled models are a genuine tool for modeling interconnected physical
systems. It is shown that identification problems in bilaterally coupled systems can be recast
into a closed-loop identification problem. When all measured signals are subject to sensor noise
a closed-loop errors-in-variables problem results, for which an attractive non-parametric and
instrumental-variable solutions are presented. The developed methods are applied to an example
from oil reservoir engineering, being the estimation of reservoir dynamics from measurements
at the well bore.
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1. INTRODUCTION

Many physical systems can effectively be described in the
form of two-port systems or bilaterally coupled systems.
Exchange of energy between different systems is then typi-
cally described by two physical variables that describe the
interaction, see e.g. also port-Hamiltonian systems. Bilat-
eral coupling of systems is also a general tool for describ-
ing concatenated systems as in transportation networks,
and is currently also the main paradigm in dealing with
decentralized and distributed control systems as reflected
in Figure 1. Through bilateral couplings, systems can be
connected to form large scale interconnected dynamic net-
works. In robust control problems, the considered system

G1

C1

G2

C2

Gr

Cr

Fig. 1. Decentralized control system.

connections are often represented in the form of linear
fractional transformations (LFT), which is fully equivalent
to the bilaterally coupled form.

While state estimation and (distributed) control problems
are now commonly addressed in this setting, problems of
? The work of Arne Dankers is supported in part by the National
Science and Research Council (NSERC) of Canada and the work of
Mehdi Mansoori is supported in part by Dana Energy Company.

identification of the dynamic modules are mostly restricted
to be analyzed in more simple system configurations, i.e.
open-loop or closed-loop.

Identification in more complex structured dynamic net-
works has recently attracted more attention. In Materassi
and Innocenti [2010], Sanandaji et al. [2011], Dankers
et al. [2012] the problem of identifying the structure of
a dynamic network has been addressed, while in Van den
Hof et al. [2013], Dankers et al. [2013] the identification
of particular dynamic modules (sub-systems) has been
addressed for a known interconnection structure.

In this paper we will address the general identification
problem for bilaterally coupled systems. It will appear that
this identification configuration can be casted into a “clas-
sical” closed-loop identification setting, for which standard
methods exist. However when the measured signals are all
measured under the influence of (sensor) noise, an errors-
in-variables (EIV) problem occurs, which in a closed-loop
setting does not have easy and standard solutions. E.g. a
so-called direct method for closed-loop identification will
generally not provide consistent estimates if all measured
variables are contaminated with sensor noise.

Here we will develop a non-parametric and an instrumental
variable (IV) method that can solve the particular EIV-
problem in closed-loop. Both methods have the advantage
that they are algorithmically very simple.

The step from bilaterally coupled system to a EIV-closed-
loop configuration is illustrated for the case of a well-
testing situation in oil reservoir engineering, where mea-
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sured well pressures and flows are used to identify char-
acteristics of the underlying oil reservoir. This example
is cast into the described EIV setting, and identification
results are shown to illustrate the presented identification
method.

The rest of the paper is structured as follows. First
bilaterally coupled systems are introduced and cast into
an identification framework. Then the generalized non-
parametric and IV methods are presented to handle the
related EIV-identification problem. Subsequently a well
test example is given to illustrate the results.

2. IDENTIFICATION IN BILATERALLY COUPLED
SYSTEMS

The system setup that we consider in this paper is reflected
in Figure 2, composed of two inputs u1, u2 and two outputs
y1, y2, where the output signals are contaminated with
additive disturbance signals v1, v2, being realizations of
stationary stochastic processes. Identification of the linear
time-invariant components Gji, i, j = 1, 2 on the basis of
measured data u1, u2 and y1, y2 is a standard multivariable
open-loop identification problem.
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Fig. 2. System configuration in bilateral form.

When to of such systems get connected, as sketched in
Figure 3, we can simply equate the signals at the connec-
tion node, i.e. y2 = u3 and u2 = y3, and a concatenated
system occurs. Now the identification of particular trans-
fers becomes more involved, in particular because of the
“loop” that connects the transfers G22 and G33. Several
different identification problems can be formulated now.
In this paper we will particularly focus on the problem of
identifying G33 on the basis of measurements y2, y3 at the
interconnection node. This transfer G33 can be interpreted
as the load that is connected to the original system. To this
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Fig. 3. Bilaterally coupled systems.

end we isolate the parts of the interconnected network
that are relevant for the identification of G33 into the
structure that is given in Figure 4. In this diagram we
have removed the effect of y1, while we have assumed that
the port at node 4 is not connected to any other system
(no load). The result is now a more or less standard closed-
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Fig. 4. Bilaterally coupled systems recast in closed-loop
form for identification of G33.

loop configuration where the to-be-identified object G33 is
positioned in the forward path between u3 and y3, and
where G22 acts as a feedback “controller”. The additional
input signal u1 then can be given the interpretation of a
reference signal.

For the identification ofG33 on the basis of measured u3, y3
and possibly u1 several closed-loop identification methods
are available Ljung [1999], ranging from direct methods
that only use measured signals u3, y3, to indirect methods
that also utilize the “reference” signal u1. Solutions for
this problem are typically available when signals u3, y3
(and possibly u1) can be measured free from measure-
ment/sensor noise. In the next section we will focus on this
identification problem for the situation that all measured
signals are subject to sensor noise, turning the problem
into an errors-in-variables problem.

3. CLOSED-LOOP ERRORS-IN-VARIABLES
IDENTIFICATION

In this section the identification of a closed-loop system is
considered where noisy measurements of the input, output
and reference are available. The identification setup is
shown in Fig. 5.

This is can be seen as an extension of the open loop Errors-
in-Variables (EIV) framework to a closed-loop setting. The
open loop EIV identification problem has been extensively
studied (a survey paper is Söderström [2012]). In general,
given only noisy measurements of the input and output
of a system operating in open loop, the dynamics of the
plant are not identifiable. Using some prior knowledge, the
problem may become identifiable [Söderström, 2012].

In Söderström et al. [2013] various closed-loop EIV data
generating systems are considered. In all the systems
investigated in that paper, a noise-free reference signal is
assumed to be known. Thus, the case we study here is a
slight generalization of that one.
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Fig. 5. Closed-loop data generating system with sensor
noise

As in the open-loop case, the presence of the sensor noise
does not have trivial consequences for the closed-loop
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identification problem. In fact, none of the closed-loop
identification methods presented in Forssell and Ljung
[1999] will result in consistent estimates of the plant
if there is sensor noise on either the input and/or the
reference.

In the following subsections, two methods are presented to
obtain estimates of G33. First a non-parametric method is
presented. It is based on obtaining an estimate of the cross
power spectral densities of the data. Secondly, a (para-
metric) instrumental variable (IV) method is presented.
Before studying the methods, the data generating system
is formalized.

3.1 Closed-Loop Errors-in-Variables System

The equations for the system shown in Fig. 5 are:

y2(t) = G21(q)u1(t) +G22(q)u2(t) + v2(t)

y3(t) = G33(q)u3(t) + v3(t)

where q denotes the shift operator (i.e. q−1u(t) = u(t −
1)) and each v denotes process noise, which is modeled
by a stationary stochastic process with rational power
spectral density. The variable u1 is an external variable,
usually referred to as the reference in control systems. It
may possible to (indirectly) influence this variable. The
variables u1, u2 and u3 are measured with noise:

ũi(t) = ui(t) + si(t), i = 1, 2, 3,

where s1, s2 and s3 denote the sensor noise (or error),
that is assumed to be a stationary stochastic process
with rational power spectral density (it is not necessarily
assumed to be white noise). Note that ỹ3 = ũ2 and
ỹ2 = ũ3.

The transfer function G33 is assumed to be a rational

function, i.e G33(q) =
B0

33(q)

A0
33(q)

where A0
33 and B0

33 are

coprime polynomials in q.

The data generating system is assumed to satisfy the
following conditions.

Assumption 1. Conditions on the noise.
The variables s1, v1 and r0 are uncorrelated to the sensor
noise s2 and s3, and process noise v2 and v3. 1 2

In the following two subsections it will be shown how to
obtain estimates of G33 using only ũ1, ũ2, and ũ3.

3.2 Non-Parametric Method

In this section it is shown that a non-parametric estimate
of G33 can be obtained directly from the cross power
spectral densities of the available signals. In particular,
it is shown that

G33(ω) =
Φỹ3ũ1(ω)

Φỹ2ũ1
(ω)

(1)

where Φỹ3ũ1
is the cross power spectral density of ỹ3 and

ũ1, and Φỹ2ũ1
is the cross power spectral density of ỹ2 and

ũ1. This method is suggested in Söderström et al. [2013]
for the case where u1 is measured noise free. Here we show
that the method works, even when a noisy measurement
of u1 is available.
1 s1 is uncorrelated to s2 if the cross-correlation between s1 and s2,
Rs1s2 (τ) is zero for all τ .

The cross power spectral density of Φỹ3ũ1 is the Discrete
Time Fourier Transform of the cross-correlation of ỹ3 and
ũ1, which is equal to:

Rỹ3ũ1(τ) = Ē[ỹ3(t)ũ1(t− τ)] (2)

where Ē[·] denotes the expected value operator in a
quasi-stationary framework and is defined as Ē :=

limN→∞
1
N

∑N−1
t=0 E and E is the expected value operator

[Ljung, 1999]. Expressing ỹ3 in terms of u1 results in:

Rỹ3ũ1
(τ)= Ē

[(
G33(q)S(q)G21(q)u1(t) + S(q)G33(q)v2(t)

+ S(q)v3(t) + s3(t)
)(
u1(t− τ) + s1(t− τ)

)]
(3)

where S denotes the sensitivity function S = 1
1−G22G33

.

By Assumption 1, (3) can be simplified to:

Rỹ3ũ1(τ) = Ē
[
G33(q)S(q)G21(q)u1(t) · u1(t− τ)

]
(4)

Thus, by taking the Discrete Time Fourier Transform of
(4) the cross power spectral density of ỹ3 and ũ1 is:

Φỹ3ũ1
(ω) = G33(ejω)S(ejω)G21(ejω)Φu1

(ω) (5)

where Φu1
(ω) is the power spectral density of u1.

By the same reasoning, it can be shown that the cross
power spectral density of ỹ2 and ũ1 is:

Φỹ2ũ1
(ω) = S(ejω)G21(ejω)Φu1

(ω). (6)

Thus it is clear from (5) and (6) that (1) holds.

An estimate of Φỹ2ũ1 can be obtained using ỹ2 and ũ1
by calculating the periodogram [Ljung, 1999]. Essentially
this means an estimate of Φỹ2ũ1 can be obtained using the
Discrete Fourier Transform (DFT) of ỹ2 and ũ1:

Φ̂Nỹ2ũ1
(ω) =

1

N
Ỹ2(ejω)Ũ1(e−jω)

where Ỹ2(ejω) and Ũ1(e−jω) denote the N point DFT of
N samples of ỹ2 and ũ1 respectively.

In the signal processing and identification literature, pe-
riodograms are often smoothed using smoothing windows
such as Bartlett or Hamming windows [Ljung, 1999].

In the following section a method is presented to obtain a
parametric estimate of G33.

3.3 Basic Closed-Loop Instrumental Variable Method

In the following text, the Basic Closed-Loop Instrumental
Variable method of Gilson and Van den Hof [2005] will be
presented. In Gilson and Van den Hof [2005] they suppose
that noise free measurements of u1, y2 and y3 are available.
We show that even in the presence of sensor noise, the
method still results in consistent estimates of G33.

The model is a parameterized rational function:

G33(q, θ)=
B33(q, θ)

A33(q, θ)
=
q−nk(b330 + b331 q

−1+ · · ·+ b33nb
q−nb)

1 + a331 q
−1 + · · ·+ a33na

q−na

where the parameter vector is θ=[a331 · · · a33na
b330 · · · b33nb

]T.
The following regressor will be very useful:

φT33(t)=[−ỹ3(t−1) · · · −ỹ3(t−na) ũ3(t) · · · ũ3(t−nb)]
The output ỹ3 can now be expressed as

ỹ3(t) = B0
33(q)ũ3(t) +

(
1−A0

33(q)
)
ỹ3(t)

−B0
33(q)s2(t) +A0

33(q)
(
v3(t) + s3(t)

)
= φT33(t)θ033 + v̆3(t) (7)
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where B0
33 and A0

33 denote the true numerator and denom-
inator of G33, θ033 denotes the true parameters, and

v̆3(t) = −B0
33(q)s2(t) +A0

33(q)
(
v3(t) + s3(t)

)
. (8)

The IV estimate of θ033 is defined as [Gilson and Van den
Hof, 2005]

θ̂IV = sol
{ 1

N

N−1∑
t=0

z(t)
(
ỹ3(t)− φT33(t)θ

)
= 0
}
,

where z(t) is a vector of so called instruments. If∑N−1
t=0 z(t)φT33(t) is nonsingular, then

θ̂IV =
( 1

N

N−1∑
t=0

z(t)φT33(t)
)−1(N−1∑

t=0

z(t)ỹ3(t)
)
. (9)

An expression of θ̂IV in terms of θ0 can be obtained by
substituting (7) into (9):

θ̂IV = θ0 +
( 1

N

N−1∑
t=0

z(t)φT33(t)
)−1(N−1∑

t=0

z(t)v̆3(t)
)
. (10)

Thus, θ̂IV → θ0 as N → ∞ with probability 1 (i.e. it is
consistent) if the following conditions hold:

(a) Ē[z(t)φT33(t)] is nonsingular,
(b) Ē[z(t)v̆3(t)] = 0.

where Ē[·] = limN→∞
1
N

∑N−1
t=0 E[·] and E is the expected

value operator [Ljung, 1999].

The choice of the instrumental variable z is critical with
respect to the consistency of the estimates. Consider

z(t) = [ũ1(t) · · · ũ1(t− na − nb)]T .
By Assumption 1 and (8), Condition (b) is met. Conse-
quently, consistent estimates of G33 are possible using this
instrument. Note that, by (9), in order to calculate the

estimate θ̂IV only a linear regression needs to be evaluated.

In the following section, it is shown how the data generat-
ing system 5 could arise in a practical situation. Then both
the parametric and non-parametric identification methods
presented are applied to simulated data.

4. WELL TEST ANALYSIS

Well test analysis is the standard procedure to extract
information about dynamic properties and geological fea-
tures of an underground hydrocarbon reservoir from flow
and pressure measurements. The test involves producing
from a well based on a sequence of planned wellhead flow
rates and recording the pressure and flow rate at the
bottom hole of the well. Conventionally, either the step
or impulse response of the reservoir is calculated by de-
convolution. Then the impulse response (or step response)
is used to estimate the physical parameters of the reservoir
Gringarten [2008]. The well test analysis problem can be
seen as a system identification which first a dynamical
model is identified based on the measurements. Then,
the identified model is utilized to estimate the physical
parameters of the reservoir using the frequency responses
of the physics based model and the identified model. Here,
we only consider estimating the average permeability but
estimation of other parameters such as skin factor can be
included the proposed procedure. In order to apply the

identification method the causal structure of the system
needs to be known. Therefore in the following sections,
first it is shown how the well and reservoir can be modeled
as a bilaterally coupled system and the causal structure is
derived. Then the identification methods of the previous
sections are applied to a simulated data set. Finally the
identified model is used to obtain an estimate of the
permeability of the reservoir.

4.1 Modeling The Well Test Process

For simplicity, a homogeneous reservoir connected to the
surface with a vertical well is considered. The production
system is comprised a convective flow in the well bore and
diffusive flow in the reservoir that interact with each other
at the bottom hole of the well; see Fig. 6.

Fig. 6. A cylindrical homogeneous reservoir with a vertical
well

The reservoir and well bore shown in Fig. 6 are modeled
as two bilaterally coupled subsystems. First the equations
for the well bore and then the reservoir are presented.

Consider modeling the well bore. The flow of a single-phase
liquid in the well bore is governed by the water-hammer
equations [Chaudhry, 1987]. Thus, the equations for the
flow rate q(z, t), and pressure p(z, t), at the depth z and
time t are

ρa2

A

∂q(z, t)

∂z
+
∂p(z, t)

∂t
= 0, (11)

A

ρ

∂p(z, t)

∂z
+
∂q(z, t)

∂t
+Rq(z, t)−Ag = 0, (12)

where g (9.81 m/s−2) is the acceleration due to gravity;
A (m2) is the cross sectional area of the well; a2 =
K/[ρ+KDρ(eE)−1] (m/s) is the velocity of the water-
hammer wave; R = 32ν/D2 (s−1) is the laminar flow fric-
tion effect;, and the remaining parameters are defined in
Table 1. Solving the equations in the Laplace domain leads
to a hyperbolic equation with two boundary conditions. At
each side of the well bore only one of the variables can be
the boundary condition, therefore in accordance with the
well testing configuration the flow rate at the well head
and the pressure at the bottom hole (denoted qwh and pbh
respectively) are taken as the boundary conditions. This
results in the following equations:[

Pwh(s)
Qbh(s)

]
= W

[
Qwh(s)
Pbh(s)

]
, (13)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4659



where Pwh(s) and Pbh(s) are the Laplace transforms of
the pressure at the well head and bottom hole respectively,
Qwh(s) and Qbh(s) and the Laplace transforms of the flow
rate at the well head and bottom hole respectively, and

W11 =
ρµa2

sA
tanhµL W12 =

1

coshµL

W21 =
1

coshµL
W22 = − sA

ρµa2
tanhµL.

This is the model of the well.

Table 1. Well bore and Reservoir Properties

Model Parameters Parameter Values

Reservoir boundary, (re) 3000 m
Well radius, (rw) 0.1 m
Reservoir height, (H) 50 m
Pipe internal diameter, (D) 0.1 m
pipe wall thickness,(e) 16 × 10−3m
Well length, ( L) 2000 m
Permeability of rock, (k) 200 mD
Porosity of rock, (φ) 0.2
Viscosity of fluid, (µ) 0.01 Pa.s
Total compressibility, (Ct) 7.25×10−9 Pa−1

bulk modulus elasticity of the fluid, (K) 1.5×109 Pa
kinematic viscosity of the fluid,(ν) 1.11×10−5 m2 s−1

Density of fluid, (ρ) 900 Kgm−3

Young’s Modulus of elasticity, (E) 200×109Pa

Now consider modeling the reservoir. A reservoir consists
of porous rock filled with fluid. The reservoir is modeled as
a cylinder, with fluid flowing radially toward the well bore.
The outer edge of the reservoir is called the outer bound-
ary. The intersection of the well bore and the reservoir is
called the sandface. In this situation, the radial flow rate
q(r, t) and pressure p(r, t) in the reservoir at radial distance
r from the symmetry axis, satisfy the diffusivity equation
and Darcy’s law [Lee, 1982]

1

r

∂

∂r
r
∂p(r, t)

∂r
=

1

η

∂p(r, t)

∂t
(14)

q(r, t) = −2πrkh

µ

∂p(r, t)(t)

∂r
(15)

with η = k/φµct is the hydraulic diffusivity; and the
remaining parameters are defined in Table 1.

Solution of the elliptic diffusivity equation in the Laplace
domain requires two boundary conditions which are chosen
to be the flow rate at the sand face and the pressure at the
outer boundary (denoted qsf (t) and po(t) respectively).
This leads to [

Psf (s)
Qo(s)

]
= R

[
Qsf (s)
Po(s)

]
(16)

in which R is a 2× 2 matrix with

R11 =
µ

2πkhrw
√

s
η

I0eK0w − I0wK0e

I0eK1w + I1wK0e
,

R12 =
I0wK1w + I1wK0w

I0eK1w + I1wK0e
,

R21 =
re
rw

I1eK0e − I0eK1e

I0eK1w + I1wK0e
,

R22 =
2πkh

µ
re

√
s

η

I1wK1e − I1eK1w

I0eK1w + I1wK0e
.

(17)

where I and K are modified Bessel functions of the
first and second kind and Iij = Ii(rj

√
s
η ) and Kij =

Ki(rj
√

s
η ).

The model of the production system is obtained by con-
catenating the bottom hole side of the well bore model to
the sand face side of the reservoir model by coupling qbh(t)
to qsf (t) and psf (t) to pbh(t) as shown in Figure 7.

W21 +

+ W12

W11 W22

qwh

pbh

qbh

pwh

R21 +

+ R12

R11 R22

po

qo

psf

qsf

Fig. 7. Bilaterally coupled reservoir and well bore model

From a well test analysis point of view, the parameters are
conventionally estimated from R11 that we identify.

To this end, we isolate the parts of the network shown in
Fig. 7 that are relevant for the identification of R11 into
the structure that is given in Fig. 8. We have removed R12

from the network because it has a very small gain.

4.2 Data generating system

Formulating the corresponding system identification prob-
lem for the well test analysis requires using measurement
devices in the correct positions in the model. In a typical
production setup, (see Figure 6), the wellhead flow rate
and the bottom hole pressure and flow rate are measured.
Both sensor and process noise are present in the data. The
process noise is due to phenomena such as turbulence,
sudden well bore reservoir condition change, two phase
flow occurrence, etc. It is assumed that the well head
measurement does not have process noise. In Figure 8 the
model is shown with all measurement devices and noise
terms.

W21

W22

+
qbh

vq

R11
pbh

+

vp+ ++

qwh
m

qwh0

Choke setup

qbh
m pbh

m

qwh

ṽq ṽq ṽp
bh

bh

bh

bhwh

Fig. 8. Bilaterally coupled reservoir/well bore with mea-
surements

The transfer function R11(z) can be identified consistently
using the identification methods developed in section 3.1.

The estimated transfer function R11(z, θ̂) is then used to
obtain an estimate of the permeability k. Let R11(s, k)
be a continuous-time model defined by (17) where only
k is a free parameter, and all other parameters in (17)
are assumed to be known. To compare a continuous-time
and discrete-time transfer function it is easiest to move
to frequency domain. Thus the estimate of k is found by

minimizing the difference between R11(z, θ̂) and R11(s, k):
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k̂=arg min
k

1

M

M∑
m=1

∥∥∥R11(jωm, k)−R11(ejωm, θ̂)
∥∥∥W (ωm)

(18)

where W (ωl) is a user defined weighting function, and ω1

and ωM define the frequency range of interest.

5. RESULTS AND DISCUSSION

To simulate the system, the discrete approximation of
transfer functions in (13) and (16) are used. The system
is excited with a PRBS signal with the clock parameter of
3600 seconds; i.e. the surface choke to be in one state for
at least for one hr. Practically it is not feasible to change
the surface choke setting too often. Colored process noise
of 30 and 34 dB are added to bottom hole flow rate and
pressure measurements respectively. White sensor noise of
40, 27, and 40 dB are added to wellhead flow rate, bottom
hole flow rate and bottom hole pressure measurements
respectively. The SNR of qbh is considered to be the lowest
von Schroeter et al. [2004]. A dataset with N = 500000
and Ts = 1 sec is used. Both the non-parametric and
IV methods are applied to the simulated data set. The
results are shown in Fig. 9. The high variance of the non-
parametric estimate at high frequency is due to the fact
that the system is not excited at these frequencies. For
the IV estimate the data was resampled by a factor of 9
in order to remove the higher frequency content from the
data. In addition low-pass prefilters were used to put extra
weighting on the lower frequencies.

Fig. 9. Parametric and non-parametric estimates of R11

The reservoir module R11 has a diffusive behavior which
results in a low pass frequency response. The identified
model captures this behavior for ω = [2π×10−5−1×10−1]
rad/sec. The lower bound is chosen as a rule of thumb
to be five times the lowest available measured frequency,
and the higher bound is chosen till the frequency which
the frequency response shows a smooth behavior. The
estimation results for the average permeability k is 199.9
mD which is quite close to the true value.

6. CONCLUSIONS

Bilaterally coupled systems are useful to model many
physical systems where there is an exchange of energy.
In this paper we have presented an identification method
that can be used to identify modules in bilaterally-coupled
systems. The method results in consistent estimates even
in presence of sensor noise, which is often present in

practical situations. The method allows us to use noisy
measured data to do well test analysis.
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