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Abstract: The paper deals with the problem of robust predictive fault-tolerant control for non-
linear discrete-time systems described by the Takagi-Sugeno models. The proposed approach
consists of three steps, i.e. it starts from fault estimation, the fault is compensated with a robust
controller, and finally, when the compensation is not successful then a suitable predictive action
is performed. This appealing phenomenon makes it possible to enlarge the domain of attraction,
which makes the proposed approach an efficient solution for the fault-tolerant control. The
final part of the paper shows an illustrative example regarding the application of the proposed
approach to the two-tank system.
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1. INTRODUCTION

A number of books was published in the last decade
on the emerging problem of the Fault-Tolerant Control
(FTC) (Blanke et al. (2006); De Oca et al. (2012)),
which are based on the Fault Detection and Isolation
(FDI) (Witczak (2007); Chen et al. (2011)). In particular,
the book (Isermann (2011)), which is mainly devoted to
fault diagnosis and its applications provides some general
rules for the hardware-redundancy-based FTC. On the
contrary, the work (Mahmoud et al. (2003)) introduces the
concepts of the active and passive FTC. It also investigates
the problem of performance and stability of the FTC
under imperfect fault diagnosis. In particular, the authors
consider (under a chain of some, not necessarily easy to
satisfy assumptions) the effect of a delayed fault detection
and an imperfect fault identification but the fault diagnosis
scheme is treated separately during the design and no real
integration of the fault diagnosis and the FTC is proposed.
The FTC is also treated in a very interesting work (Noura
and Chamseddine (2003)) where the number of practical
case studies of FTC is presented, i.e., a winding machine,
a three-tank system, and an active suspension system.
Unfortunately, in spite of the incontestable appeal of the
proposed approaches neither the FTC integrated with the
fault diagnosis nor a systematic approach to non-linear
systems are studied.

The proposed approach overcomes the above-mentioned
difficulties and provides an elegant way of incorporating
fault diagnosis (particularly fault identification) into the
fault-tolerant control framework. Moreover, the non-linear
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system is described by the Takagi-Sugeno models (Takagi
and Sugeno (1985)), which are frequently used in the
literature. The proposed approach consists of three steps,
i.e. it starts from fault estimation, the fault is compensated
with a robust controller, and finally, when the compen-
sation is not successful then a suitable predictive action
is performed. The robust controller is designed without
taking into account the input constraints related with
the actuator saturation. Thus, to check the compensation
feasibility, the robust invariant set is developed, which
takes into account the input constraints. If the current
state does not belong to the robust invariant set, then a
suitable predictive control actions are performed in order
to enhance the invariant set. This appealing phenomenon
makes it possible to enlarge the domain of attraction,
which makes the proposed approach an efficient solution
for the fault-tolerant control. Indeed, the presented so-
lution can be perceived as an extension of the recent
developments in this area (Witczak et al. (2013)), which
shows a fault estimation and compensation strategy for
non-linear systems. The novelty of the scheme boils down
to:

• introduction of robustness to exogenous disturbances,
through the H∞ approach,

• introduction of the triple stage procedure: fault es-
timation, fault compensation with robust controller,
and predictive control enhancing the applicability of
the approach,

• extension of the work of (Kouvaritakis et al. (2000))
to the case with exogenous disturbances,

• development of robust invariant set extending the
usual framework proposed by (Kouvaritakis et al.
(2000)).
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The paper is organised as follows. Section 2 presents pre-
liminaries regarding the problem being undertaken. Ro-
bust fault estimation and control approach is proposed in
Section 3. Subsequently, Section 4 presents the develop-
ment of a robust invariant set while Section 5 presents an
efficient robust predictive fault-tolerant control strategy,
which enhances the performance of the overall scheme.
The final part of the paper contains a numerical example,
which shows the performance of the proposed approach.

2. A GENERAL DESCRIPTION OF THE
FAULT-TOLERANT SCHEME

A non-linear dynamic system can be described in a rela-
tively simple way by a Takagi-Sugeno fuzzy model, which
uses series of locally linearised models from the nonlin-
ear system, parameter identification of an a priori given
structure or transformation of a nonlinear model using the
nonlinear sector approach (see, e.g. (Takagi and Sugeno
(1985); ?); Korbicz et al. (2004)). According to this model,
a non-linear dynamic systems can be linearised around a
number of operating points. Each of these linear models
represents the local system behaviour around the operat-
ing point. Thus, a fuzzy fusion of all linear model outputs
describes the global system behaviour. A Takagi-Sugeno
model is described by fuzzy IF-THEN rules. The presented
structure may represent a non-linear system with control-
affine state equation. It has a rule base of M rules, each
having p antecedents, where ith rule is expressed as

Ri : IF s1k is F i
1 and . . . and spk is F i

p,

THEN xf,k+1 = Aixf,k + Buf,k + Bfk + Wwk,
(1)

in which xf,k ∈ Rn stands for the state, is the output, and
uf,k ∈ Rr denotes the nominal control input, fk ∈ Rr

is the actuator fault, i = 1, . . . ,M , F i
j (j = 1, . . . , p)

are fuzzy sets and sk =[s1k, s
2
k, . . . , s

p
k] is a known vector

of premise variables (Takagi and Sugeno (1985); Korbicz
et al. (2004)). Additionally, wk ∈ l2 is a an exogenous
disturbance vector, while:

l2 = {w ∈ Rn| ‖w‖l2 < +∞} , (2)

‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (3)

Moreover, it is assumed that the control limits are given
as follows:

−ūi ≤ ui,k ≤ ūi, i = 1, . . . , r. (4)

where ūi > 0, i = 1, . . . , r are given control limits. Due to
the simplicity of presentation, these limits are symmetrical
around zero but with an appropriate scaling it is relatively
easy to introduce non-symmetrical ones.

Given a pair of (sk,uk) and a product inference engine,
the final output of the normalized T-S fuzzy model can be
inferred as:

xf,k+1 =

M∑
i=1

hi(sk)[Aixf,k + Buk + Bfk + Wwk], (5)

where hi(sk) are normalised rule firing strengths defined
as

hi(sk) =
T p
j=1µF i

j
(sjk)∑M

i=1(T p
j=1µF i

j
(sjk))

(6)

and T denotes a t-norm (e.g., product). The term µF i
j
(sjk)

is the grade of membership of the premise variable sjk.
Moreover, the rule firing strengths hi(sk) (i = 1, . . . ,M)
satisfy the following constraints

M∑
i=1

hi(sk) = 1,

0 6 hi(sk) 6 1, ∀i = 1, . . . ,M.

(7)

The main objective of the subsequent part of the paper
is to design the control strategy in such a way that the
system (5) will converge to the origin irrespective of the
presence of the fault fk. The proposed control scheme is
as follows:

uf,j =

{
−Kxj − f̂k−1 + cj , j = k, . . . , k + nc − 1,

−Kxj − f̂k−1, j ≥ k + nc.
(8)

where:

• nc is the prediction horizon,
• K is theH∞ controller designed to achieve robustness

with respect to exogenous disturbances wk,

• f̂k−1 is the fault estimate, which compensates the
effect of a fault,

• cj is a vector introducing additional design freedom,
which should be exploited when the fault compensa-
tion does not provide the expected results due to the
actuator saturation.

Note that beyond the control horizon nc, cj is set to zero,
which denotes the feasibility of the H∞ control. Thus,
the design of the proposed control strategy boils down to
solving a set of problems:

• to design a robust controller K in such way that a
prescribed disturbance attenuation level is achieved
with respect to xf,k while guaranteeing its conver-
gence to the origin,

• to estimate the fault fk,
• to determine a set of states for which the robust

controller along with the fault compensation (under
the control constraints) is feasible,

• to determine cj in such a way as to enhance a set of
states and, hence make the control problem feasible.

Since the general scheme is given, the remaining part of
the paper is devoted to solving the above-mentioned design
problems.

3. FAULT ESTIMATION AND ROBUST CONTROL

In this section, the fault estimation technique will be
proposed, which along with the robust controller K will
be used to compensate the effect of a fault and feed the
system in such a way that the state xf,k goes to the
origin. Note that the designs of the fault estimator and the
robust controller are realised for the unconstrained case.
Moreover, the free control parameter cj (cf. (8)) is set to
zero.

Let us also assume that the system is controllable and
the matrix B is a full rank one. Thus, following (Gillijns
and De Moor (2007)), it is possible to compute H = B+.
Subsequently, multiplying (5) by H and then extracting
fk gives:

fk = HA(hk)xf,k − uf,k −HWwk, (9)
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while its estimate can be given as:

f̂k = HA(hk)xf,k − uf,k, (10)

with the associated estimation error

εf,k = fk − f̂k = −HWwk. (11)

Note that in order to obtain f̂k it is necessary to have
xf,k+1. Thus, the only choice to compensate fk in (5) is

to use f̂k−1. This determines the above-proposed control
strategy

uf,k = −f̂k−1 −Kxf,k. (12)

Bearing in mind that in any physical system fk is
bounded, without a loss of generality, it is possible to write

f̂k = f̂k−1 + vk, vk ∈ l2, (13)

Thus, (12) can be written in an equivalent form, which will
be used for further deliberations

uf,k = −f̂k + vk −Kxf,k. (14)

Substituting (14) into (5) gives

xf,k+1 = A1xf,k + [I −BH]Wwk + Bvk (15)

with A1(h) =
∑M

i=1 hi(sk)A − BK. The equation (15)
can be equivalently written as:

xf,k+1 = A1(h)xf,k + W̄ w̄k (16)

with W̄ = [[I −BH]W B], w̄k =
[
wT

k , vT
k

]T ∈ l2.

The following theorem constitutes the main result of this
section.

Theorem 1. For a prescribed disturbance attenuation level
µ > 0 for the xf,k, the H∞ controller design problem for
the system (5) is solvable if there exist U , N and P � 0
such that the following LMIs are satisfied: I − P i 0 AiU −BN

0 −µ2I W̄
T
UT

UT (Ai)T −NTBT UW̄ P i −U −UT

 ≺ 0, (17)

i = 1, . . . ,M .

Proof. The problem of H∞ controller design (cf. Li and
Fu (1997); Zemouche et al. (2008)) is to determine the gain
matrix K such that

lim
k→∞

xf,k = 0 for w̄k = 0 (18)

‖xf‖l2 ≤ µ‖w̄k‖l2 for w̄k 6= 0, e0 = 0. (19)

In order to settle the above problem it is sufficient to find
a Lyapunov function Vk such that:

∆Vk + xT
f,kxf,k − µ2w̄T

k w̄k < 0, k = 0, . . .∞, (20)

where ∆Vk = Vk+1−Vk. Indeed, if w̄k = 0 then (20) boils
down to

∆Vk + xT
f,kxf,k < 0, k = 0, . . .∞, (21)

and hence ∆Vk < 0, which leads to (18). If w̄k 6= 0 then
(20) yields

J =

∞∑
k=0

(
∆Vk + xT

f,kxf,k − µ2w̄T
k w̄k

)
< 0, (22)

which can be written as

J = −V0 +

∞∑
k=0

xT
f,kxf,k −

∞∑
k=0

µ2w̄T
k w̄k < 0, (23)

Knowing that V0 = 0 for xf,0 = 0, (23) leads to (19).

Selecting the Lyapunov function as

Vk = xT
f,kP (hk)xf,k, (24)

where

P (hk) =

M∑
i=1

hi(sk)P i, (25)

the inequality (20) becomes

∆V + xT
f,kxf,k − µ2w̄T

k w̄k =

xT
f,k

[
A1(hk)TP (hk)A1(hk) + I − P (hk)

]
xf,k+

xT
f,k

[
A1(hk)TP (hk)W̄

]
w̄k+

w̄T
k

[
W̄

T
P (hk)A1(hk)

]
xf,k+

w̄T
k

[
W̄

T
P (hk)W̄ − µ2I

]
w̄k < 0.

(26)

It can be easily shown that (26) is equivalent to[
A1(h)TP (h)A1(h) + I − P (h) AT

1 P (h)W̄

W̄
T
P (h)A1(h) W̄

T
P (h)W̄ − µ2I

]
≺ 0.

(27)
Applying Theorem 3 of (Oliveira et al. (1999)) to (27)
and then substituting A1(hk)U = (A(hk) − BK)U =
A(hk)U −BN , gives (17), which completes the proof.

Finally, the design procedure boils down to solving (17)
with respect to U , N and P , and then calculating

K = NU−1. (28)

The objective of this section was to provide a fault esti-
mation and compensation scheme without taking into the
account the control limit. It is obvious fact that in the
presence of faults, disturbances and control limits the set
of the states that can be reached from xf,k is significantly
smaller that the one obtained without these unappealing
phenomena. Thus, the objective of the subsequent section
is to provide a useful description of such a set, while the
Section 5 presents an on-line optimisation strategy that
can be used for enlarging this set.

4. DERIVATION OF A ROBUST INVARIANT SET

As it was mentioned in the previous section, in order
to maintain a desired system behaviour, the idea of an
invariant set of state variables is to be employed (Blanchini
(1999)).

In this section the ellipsoidal bounding will be used for
describing the robust invariant set for

xf,k+1 = A1(hk)xf,k + W̄ w̄k (29)

with an additional assumption that:

w̄T
kQ
−1w̄k ≤ 1, Q � 0. (30)

The proposed ellipsoidal bounding strategy can be per-
ceived as an inner approximation of the exact invariant
set (Gilbert and Tan (1991)). An obvious drawback to
the proposed approach is that the obtained set is smaller
than the exact one. However, the simplicity of the ellip-
soidal description will make it possible to use it for on-
line optimisation, which will be described in Section 5. In
particular, Exf

is a robust invariant set for (29) if

xk ∈ Exf
=⇒ xk+1 ∈ Exf

. (31)
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Thus, the ellipsoidal robust invariant set is given by

Exf
= {xf |xT

f P (hk)xf ≤ 1}, P (hk) � 0. (32)

The above definition implies the following constraints:

xT
f,kP (hk)xf,k ≤ 1 (33)

xT
f,k+1P (hk)xf,k+1 ≤ 1 (34)

which by applying the S-procedure along with (30) yield
the following coupled constraint

(xT
f,kA1(hk)T + w̄T

k W̄
T

)P (hk)(A1(hk)xf,k + W̄ w̄k)− 1+

γ(1− xT
f,kP (hk)xf,k) + β(1− w̄T

kQ
−1w̄k) =

xT
f,kA1(hk)TP−1A1(hk)xf,k + xT

f,kA1(hk)TP (hk)W̄ w̄k+

w̄T
k W̄

T
P (hk)A1xf,k + w̄T

k W̄
T
P (hk)W̄ w̄k − 1 + γ

− γxT
f,kP (hk)xf,k + β − βw̄T

kQ
−1w̄k ≤ 0

with γ > 0 and β > 0. The above inequality can be
described in a matrix form:[
A1(h)TP (h)A1(h) − γP (h) A1(h)TP (h)W̄ 0

W̄
T
P (h)A1(h) W̄

T
P (h)W̄ − βQ−1 0

0 0 γ + β − 1

]
� 0

(35)

From (35), it is obvious that

γ + β ≤ 1⇒ β = 1− γ ⇒ 0 ≤ γ ≤ 1. (36)

This leads directly to:[
A1(hk)T

W̄
T

]
P (hk)

[
A1(hk) W̄

]
+

[
−γP (hk) 0

0 −(1 − γ)Q−1

]
� 0,

0 ≤ γ ≤ 1,

(37)

which using by Theorem 3 of (Oliveira et al. (1999)) can
be written as−γP i 0 (Ai

1)TUT

0 −(1− γ)Q−1 W̄
T
UT

UAi
1 UW̄ P i −U −UT

 � 0, (38)

i = 1, . . . ,M, 0 ≤ γ ≤ 1.
Note that for a fixed 0 ≤ γ ≤ 1, the inequality (38)
becomes the usual LMI. Another strategy is to formulate
(38) as a generalised eigenvalue optimisation problem.
Both of them can be efficiently solved with the numerical
packages like Matlab.

5. EFFICIENT PREDICTIVE FTC

The robust fault-tolerant control presented in Sec. 4 is
based on the idea of estimating the fault, and then com-
pensating it with a suitable increase or decrease of the
control feeding the faulty actuator. In spite of the in-
contestable appeal of the proposed approach, its main
drawback is that it does not take into account the fact
that all actuators obey some saturation rules. Thus, the
idea behind the approach presented in this section is as
follows: when a saturation of a faulty actuator appears
then perturb (or modify) the control strategy of the re-
maining actuators in such a way as to increase the robust
invariant set and to make the overall control problem
feasible. The subsequent part of this section is devoted
to the implementation of such a strategy.

Thus, the objective of the subsequent part of this section
is to develop a suitable control strategy that takes into

account the actuator saturation. For this purpose, the
efficient predictive control scheme introduced by Kouvar-
itakis et al. (2000) is utilised. In particular, the proposed
scheme is suitably extended to cope with the external
disturbances, and hence, achieving robustness.

It can be easily shown that the input constraints (4) for
the ith input are (cf. (8))

−ūi ≤
[
−KT

i 1
] [ xf,k

ci,k − f̂ i,k−1

]
≤ ūi, i = 1, . . . , r (39)

where Ki stands for the ith row of K. Thus, predictions at
time k are generated as follows Kouvaritakis et al. (2000):

zk+1 = Z(hk)zk + W̃ w̄k. (40)

where

W̃ =

[
W̄
0

]
, Z =

[
A(hk)−BK BT

0 M

]
, (41)

M =

[
0(nc − 1)r × r I

0r × r 0r × (nc − 1)r

]
, (42)

zk =

[
xf,k

ωk

]
, ωk =

 ck
ck+1

. . .
ck+nc−1

 , T = [Ir×r 0 . . . 0] .

(43)

Note that the stability (in the H∞ sense) of the au-
tonomous system (40) is guaranteed by the stability of
A(hk)−BK. Following Kouvaritakis et al. (2000), it can
be pointed out that if there exists robust invariant set
Exf

(cf. (32)) for (29), then there must exist at least one
robust invariant set Ez for (40). Thus, (38) can be easily
adapted for (40), which gives the robust invariant set for
the proposed fault-tolerant predictive scheme:−γP i 0 (Zi)TUT

0 −(1− γ)Q−1 W̃
T
UT

UZi UW̃ P i −U −UT

 � 0, 0 ≤ γ ≤ 1,

(44)

Since the robust invariant set for (40) is given then it
is possible to introduce the input constraints (39). The
easiest way to do this is to suitably scale ωk in (40) as
follows, i.e. ωk is replaced by:

ω̄k =

ck − f̂k−1
ck+1

. . .
ck+nc−1

 , (45)

Thus, constraints (39) can be described as follows

−ūi ≤
[
−KT

i eTi
]
zk ≤ ūi, i = 1, . . . , r (46)

where ei is the ith column of the identity matrix, or
equivalently

|
[
−KT

i eTi
]
zk| ≤ ūi, i = 1, . . . , r (47)

For zk ∈ Ez , the above inequality implies∣∣∣ [−KT
i eTi

]
zk

∣∣∣ =
∣∣∣ [−KT

i eTi
]
P (hk)

1
2P (hk)

1
2 zk

∣∣∣ ≤∥∥∥ [−KT
i eTi

]
P

1
2

∥∥∥∥∥∥P (hk)−
1
2 zk

∥∥∥ ≤∥∥∥ [−KT
i eTi

]
P (hk)

1
2

∥∥∥
(48)
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which is equivalent to[
−KT

i eTi
]
P (hk)

[
−KT

i eTi
]T − ū2

i ≤ 0, i = 1, . . . , r,
(49)

where ei stands for the ith column of the identity ma-
trix. Finally, using Theorem 3 of (Oliveira et al. (1999)),
inequalities (49) can be written in an LMI form[

−ū2
i [−KT

i eTi ](U i
u)T

U i
u[−KT

i eTi ]T P j −U i
u − (U i

u)T

]
� 0, (50)

i = 1, . . . , r, j = 1, . . . ,M .
If the robust invariant set along with input constraints is
described in a form of LMIs, then it is possible to solve
them and simultaneously maximize the invariant set. For
that purpose, various criteria can be selected, e.g.:

• maxmisation of the determinant of P (hk), which
corresponds to the volume of the invariant set,
• maxmisation of the trace of P (hk), which corresponds

to the sum of the axes of the ellipsoid describing
invariant set.

Taking into account the structure of P (hk), which is a
weighted sum of matrices, to maximise the size of the Exf

the following sum of traces should be maximised:

max trace

(
M∑
i=1

(
T zP

iT T
z

))
= (51)

max trace
(

diag
(
T zP

1T T
z , . . . ,T zP

MT T
z

))
(52)

with
xf,k = T zzk, (53)

under the constraints (44) and (50). The algorithm for
computing ck in (40) is also inspired by Kouvaritakis et al.
(2000) and boils down to perform, at each sampling time,
the following minimisation

ω∗k = min
ωk

ωT
kωk, s.t. zT

kP (hk)zk ≤ 1, (54)

which can be equivalently written as:

ω∗k = min
ωk

ωT
kωk, s.t. xT

f,kP 1,1(hk)xf,k+

2xT
f,kP 1,2(hk)ω̄k+

ω̄T
kP 2,2(hk)ω̄k ≤ 1,

(55)

where P 1,1(hk) , P 1,2(hk) and P 2,2(hk) are block par-
titions of P (hk) conformal to the partition of zk =
[xT

f,k ω̄T
k ]T . Thus, if theH∞ control is feasible then ω = 0,

otherwise the solution lies on the boundary of Ez de-
scribed by (55). This means that when ω = 0 is con-
tained in Ez described by (55), then there is no need
for optimisation and the opitimal solution is ω = 0.
Otherwise, as indicated in (Kouvaritakis et al. (2000)), the
above optimisation problem has a unique solution and can
be very efficiently solved with, e.g., the Newton-Raphson
algorithm (Kouvaritakis et al. (2000)). Thus, the structure
of whole robust predictive fault-tolerant control can be
summarized as follows:

Off-line computation:

(1) for a predefined disturbance attenuation level µ > 0,
design a robust controller K by solving (17),

(2) determine the robust invariant set by solving (52)
under the constraints (44) and (50).

On-line computation: for each k,

(1) compute the fault estimate f̂k−1 with (10),
(2) solve the optimisation problem (55),
(3) implement the first element of ωk, i.e. ck.

6. ILLUSTRATIVE EXAMPLE

Let us consider a two-tank system presented in Fig. 1,
which is composed of two-tanks that are fed with two
pumps that provide the liquid into the first and second
tank, respectively. Let us consider a mathematical model

F      = q0 - k h1
dh1

dt

F      = q1 + k h1 - k h2
dh2

dt

Fig. 1. Two-tank system

of a two-tank system

ẋ = Ax + Bu (56)

with

A =

−
k

2F
√
hs1

0

k

2F
√
hs1

k

2F
√
hs2


B =

 1

F
0

0
1

F


(57)

where x = [(h1 − hs1), (h2 − hs2)]T , h1 and h2 are liquid
levels in the tanks, F = 12.566cm2 is tanks cross-section
area, k = 3.667cm5/2s−1 flow constant. The model was
linearised around two different points and discretised using
Euler method. Moreover, the control limit ūi = 0.2, i =
1, 2 was established. The robust controller was designed
with (17) for µ = 0.9 and then the robust invariant set
was computed by solving (52) (for Q = 0.01I) under
the constraints (44) and (50). The computations were
performed for nc = 0, nc = 4 and nc = 8. Exemplary
sets are shown in Fig. 2. From this result it is evident
that the size of the invariant set can be suitably enlarged
with nc. If the controller and the matrix P underlying
the robust invariant set are given, then it is possible to
proceed to the on-line implementation of the proposed
approach. In the sequel nc = 4 was used. The fault
scenarios being considered are related to the 10% decrease
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Fig. 2. Exemplary invariant sets for nc = 0, nc = 4 and
nc = 8

of the performance of either first or second actuator. The
results related to the first fault are shown in Fig. 3, while
Fig. 4 presents the effects of the second fault. From these
results, it is clear that the proposed FTC outperforms the
usual robust control scheme without the FTC mechanism.
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Fig. 3. Set point, state for the FTC (solid line) and state
without FTC (dash-dot line) for the first fault
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Fig. 4. Set point, state for the FTC (solid line) and state
without FTC (dash-dot line) for the second fault

7. CONCLUSIONS

The contribution of the paper can be divided into a few im-
portant points: extension of the efficient predictive control
to the robust case with exogenous external disturbances
acting on the system, development of robust fault esti-
mation and compensation scheme, and an integration of
the developed schemes within a unified robust predictive
fault-tolerant control framework. It is worth to note that
the framework was also suitably extended to non-linear
systems that can be described with the Takagi-Sugeno
models. All the proposed approaches can be efficiently
implemented, i.e. the off-line computations boils down
to solving a number of linear matrix inequalities while
the on-line computation reduces to the application of the
Newton-Raphson method. The proposed approach was
applied to the benchmark example of the two-tank system.
The achieved results show the high performance of the
approach.
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