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Abstract: This paper deals with modelling and control of an injection moulding process.
During the packing phase the pressure in the mould must follow certain trajectories. First
a mathematical model for the packing phase is presented. Therein a characteristic function is
needed which depends mainly on the form of the mould. Since the characteristic function is
hardly determinable it has to be estimated automatically. This is done with cubic basis splines.
The mathematical model turns out to be input to state linearisable resp. differentially flat. So
trajectory planning is easily feasible and a flattnes based controller is presented. Since not every
state variable can be measured an observer is added.

Keywords: Injection moulding; Identification algorithms; Control nonlinearities; Control
technology; Trajectory planning; Feedback linearization; State observers.

1. INTRODUCTION

Injection moulding is the standard method to produce
plastic parts. In the following the process shall be briefly
described (see Rosato et al. [2000]). A turning screw
transports melt into the antechamber in front of the nozzle.
When there is enough melt accumulated it is injected into
the mould by a sudden forward motion of the screw. The
non-return valve closes to prevent the melt from flowing
back. This leaves a residual melt cushion. In this article the
axial movement of the screw is hydraulically performed.
After the injection the melt solidifies under pressure, which
is generated by the axial force onto the screw. When
the melt is fully solidified the so called packing phase
follows. During that the pressure is kept up according to
certain trajectories to produce a good surface finish. The
packing phase is vital for the good optical appearance of
the moulded part (e. g. a faceplate for a cellular phone).
The modelling and control of the packing phase is the main
subject of this article.

In injection moulding one machine has to produce many
different parts and the parameters of the process depend
on the actual shape of the moulding part. It is neither
reasonable nor practically feasible to develop a theoretical
3D model of the behaviour of each individual part. So
an automatic identification is preferable. Prior to this
a mathematical model is introduced. The model with
the identified characteristic function is input to state
linearisable and flat. Therefore flattnes based trajectory
planning and tracking control is employed. Finally an
observer is presented which has linear error dynamics.

There are numerous control strategies available, see e. g.
Havlicsek and Alleyne [1999] and Reischl et al. [2012].
A survey can be found in Chen and Turng [2005] and
references therein. In Lindert et al. [2013] a non-linear

model and a flatness based control strategy are already
presented. This article continues the work. Namely the
identification and the observer are refined.

2. MATHEMATICAL MODEL

The mathematical model consists of the interconnected
models for the mechanical and the hydraulic part. So the
hydraulic part can be replaced by an electromechanical
part if the screw is driven by an electrical drive.

2.1 Mechanical model

The mechanical model (see also Fig. 1) is the simple

mould

screw

x

melt flow

Fig. 1. Sketch of the injection moulding process

equation of linear motion with the axial coordinate x and
the speed v.

ẋ = v (1a)

mv̇ = −fc(x, sgn v) +AP (1b)

One part of the force is applied by the hydraulic pressure P
acting on the effective cross section A of the piston, which
moves the screw. The mass of the screw and all attached
parts is denoted with m. Since we consider short packing
phases shrinkages can be neglected. During the packing
phase the moulding part is almost at rest. Therefore
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friction is of little importance and modelled as Coulomb
friction. The main part of the counterforce is modelled
as the elastic force of a non-linear spring. Summing up
we model the counterforce with the characteristic func-
tion fc(x, sgn v) which depends on x and the sign of the
speed v. Experiments indicate that this is an adequate
assumption.

2.2 Hydraulic model

Due to the high pressure the oil can not be considered to
be incompressible. The derivation of the hydraulic model
is based on the definition of the bulk modulus E (see
e.g. Kugi [2001]). An isotropic process is assumed with
a constant entropy and a constant temperature, thus

E =
∆P

∆ρ

ρ

with the density ρ = mo

V
of the oil, the mass mo of the oil,

and the volume V of the piston chamber. From there one
derives

Ṗ = E

(

ṁo

mo

−
V̇

V

)

.

The volume of the piston chamber is V = Ax + V0, with
the remaining volume V0 at x = 0. One continues

Ṗ = E

(
Qcρ

V ρ
−

Av

V

)

with the volumetric flow Qc flowing into the piston cham-
ber and finally

Ṗ = E
−Av +Qc

Ax+ V0
(2)

The volumetric flow Qc depends on the characteristic
curve g(xv) of the valve and the incoming and the outgoing
pressures. For instance a critically centred three land four
way spool valve has

Qc =

{

g(xv)
√

PS − P , xv ≥ 0

−g(xv)
√

P − PT , xv ≤ 0

with the servo controlled input xv of the valve, the
supply pressure PS and the pressure PT in the tank.
The flow QC may be considered as an input because the
pressures P , PT and PS are measured resp. known and
the known characteristic curve g(xv) may be inverted.
Thereby the static input non-linearity of the servo valve is
compensated.

2.3 Identification of the characteristic function fc with
least square splines

In the mathematical model the constants are sufficiently
well known. But the characteristic function fc of the
moulding part is unknown and analytically complicated.
Add to this that the characteristic function changes with
every moulding part. Thus it is preferable to identify it
automatically. In injection moulding the first couple of
parts of one series are always waste due to the putting into
operation. During the putting into operation the whole
process is brought into a stationary state and it is adjusted
to the particular moulded part. So the first parts are

waste and melted down again. So one can run certain test
trajectories with a preliminary controller.

• The trajectories should extend outside the operating
range which is needed for the moulding part.

• There should be periods in which the sign of the
velocity v does not change.

With the latter one can divide (1b) into two cases

f+
c (x) = AP −mv̇ v > 0

f−

c (x) = AP −mv̇
for

v < 0 .

The two cases shall be separately identified. Since the iden-
tification is done off-line the measurements can be filtered
with a non-causal low-pass filter to suppress measurement
noise. Then it is possible to numerically differentiate x and
obtain v̇ = ẍ. Moreover the product mv̇ only plays a minor
role. The characteristic function is assumed to be smooth,
but nothing more. So least square splines are employed.
First K grid points are chosen. Then a basis is formed of
cubic interpolation spline polynomials p(x) of third order,

pk(xi) =

{
1 for k = i

0 otherwise
k, i = 1 . . .K .

Then an overdetermined system of equations is formed

AP −mv̇ = (p1(x) p2(x) · · · pK(x))







c1
c2
...
cK







(3)

with P , x and v̇ being the vectors of the corresponding
measured values. This equation is doubled for v > 0
and v < 0. They are solved with the least square method.
There must be enough measurements to get an overde-
termined system. Since the sampling frequency is high,
this comes naturally. The identified characteristic function
consist then of two spline polynomials

f±

c (x) =

K∑

k=1

ck pk(x) . (4)

Figure 2 shows an example of such a spline interpolation.
The circles denote the measured values and the continuous
lines are the spline polynomials. If one compares the
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Fig. 2. characteristic function fc(x)
f+
c (x) upper curve and f−

c (x) lower curve

splines f±
c (x) of different injections (Fig 3) one finds that

they the corresponding splines lie approximately parallel
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Fig. 3. interpolated characteristic functions f+

c (x) (v > 0)
of eight different injections

to each other with an offset. This is mainly because of the
non-return valve. In every injection it closes at slightly
different times leaving different residual melt cushions. So
an extra constant cki

is introduced into (3). IfKi injections
are measured they yield

AP ki
−mv̇ki

= (p1(xki
) p2(xki

) · · · pK(xki
))







c1
c2
...
cK






+cki

with ki = 1 . . .Ki. The offset must be the same for v > 0
and v < 0. So the coefficients cki

are not doubled. These
equations are simultaneously solved with the least square

method. The last coefficient is set kKi
= −

∑Ki−1
κ=1 cκ. So

the average value of the coefficients is zero. The varying
offset is estimated later in section 5.

3. EXACT LINEARISATION VIA FEEDBACK

The following considerations are based on Isidori [1989],
initially introduced by Jakubczyk and Respondek [1980].
In there affine-input systems (AI-Systems)

ż = f(z) +

m∑

i=0

gi(z) ui

are defined and the following methods are discussed with
their differential geometric background. Putting eq (1) and
(2) together one derives the AI-System:






ẋ

v̇

Ṗ




 =






v

−fc(x,sgn v)+AP

m

−EAv
Ax+V0






︸ ︷︷ ︸

f(z)

+






0

0
E

Ax+V0






︸ ︷︷ ︸

g(z)

Qc

with the state z defined as z = (x v P )
T

and the
mappings f and g. The flow QC may be considered as
an input (see section 2.2).

The system has a comparatively simple structure. It is
a mechanical system with one degree of freedom, which
is always input to state linearisable. A hydraulic system
drives the mechanical system. So the composite system
is certainly linearisable. To make sure that there exits an
output of relative degree 3, one calculates the distribution

D =
(

g , [f , g]
)

=






0 0

0 − AE
m(Ax+V0)

E
Ax+V0

− vAE
(Ax+V0)2




 , (5)

which is indeed involutive (since the first row is zero). The
squared brackets [ , ] denote the Lie-bracket. Next one
checks, whether the following distribution has full rank:

rank
(

g , [f , g] , [f , [f , g]]
)

=

rank







0 0 E
m(Ax+V0)

0 − AE
m(Ax+V0)

2vA2E
m(Ax+V0)2

E
Ax+V0

− vAE
(Ax+V0)2

D33(z)







= 3 .

This is obviously true for Ax+V0 6= 0, which is technically
no problem. The working stroke of the piston limits x ≥ 0
and V0 > 0 anyway. From eq.(5) it is clear, that any
function of x is a possible output of relative degree 3. So
the output is chosen as zk1 = x, yielding the change of
coordinates Φ(z) and its inverse Φ−1(zk):

zk1 = x x = zk1
zk2 = v v = zk2

zk3 = AP
m

− fc(x,sgn v)
m

P = mzk3+fc(zk1,sgn zk2)
A

(6)
In the new coordinates zk the system appears as






żk1

żk2

żk3




 =






zk2

zk3

α(zk)




+






0

0

β(zk)




Qc (7)

α(zk) = − zk2

m

(
A2E

Azk1+V0
+ ∂fc(zk1,sgn zk2)

∂zk1

)

β(zk) =
AE

m(Azk1+V0)
.

Since we are dealing with a single input system, zk1 = x
may serve as a flat output (Fliess et al. [1992]), which has
a handy physical interpretation. With a(z) = α

(
Φ−1(zk)

)

and b(z) = β
(
Φ−1(zk)

)
we define a new input u

u = a(z) + b(z)Qc and Qc =
−a(z) + u

b(z)
. (8)

When the entire state z is measured, the inputs u and
Qc can easily be converted into each other. With the new
input u the system (7) becomes a linear system

żk1 = zk2 (9a)

żk2 = zk3 (9b)

żk3 = u , (9c)

which can be treated with all known linear methods.

4. TRAJECTORY PLANNING AND TRACKING
CONTROL

The planning and the tracking control is based on the dif-
ferential flatness of the system. See Delaleau and Rudolph
[1998] and chapter one of Rudolph [2003] for an introduc-
tion to this concept.

4.1 Trajectory planning

The flat output x may be chosen freely and arbitrarily.
If x is determined and sufficiently often differentiable all

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5880



other system variables are also determined and they can
be calculated without solving a differential equation. One
uses (9) to calculate zk, then (6) for z and eq. (8) to finally
get the input Qc.

During the packing phase it is important to hold high
pressure levels for certain times and to change them as
fast as possible. At the same time the maximum speed,
acceleration and jerk are limited. Additionally the sign of
the speed v must not change. Especially the latter together
with a too high jerk r causes imperfect appearances. An
increase of pressure has the limits

0 < v < vmax , |v̇| < amax and |v̈| < rmax .

Let T denote the planning time. One starts with given

pressure levels P (0) = P
b
and P (T ) = P

e
. Without loss

of generality we assume that P
b
< P

e
. Next one calculates

the associated positions xb and xe from (1b) as

AP
b
= fc(x

b, sgn v) and AP
e
= fc(x

e, sgn v) .

Between those rest positions the trajectory for zk1 = x
is planned with piecewise polynomials which are continu-
ous and twice differentiable. The latter ensures that the
functions of time z(t) = (x(t) v(t) P (t))

T
of the state are

continuous. The input Qc is allowed to be discontinuous.
If this were not the case the trajectories would have to
be thrice differentiable. We are looking for a planning
procedure which is quick to evaluate and straightforward
to implement on a control unit. So a simple consideration
leads to the strategy to achieve the shortest possible plan-
ning time T .

To reach xe as fast as possible one would probably use
ẋ = const = vmax. But one can not jump to ẋ = vmax

instantaneously. So one has to use ẍ = const = amax until
ẋ = vmax is reached. But ẍ may not jump either. So the
previous steps repeat until a derivative is reached which is
allowed to jump. In this case this is

...
x = r.

This leads to seven polynomials pκ(t) which are defined on
an interval tκ−1 ≤ t < tκ with t0 = 0 and t7 = T :

p1(t) =
rmax

6 (t− t0)
3 + xb

p2(t) =
amax

2 (t− t1)
2 +

1∑

ν=0

g2ν (t− t1)
ν

... =
...

p7(t) =
rmax

6 (t− t6)
3 +

2∑

ν=0

g7ν (t− t6)
ν .

(10)

The leading coefficients are rmax

6 , amax

2 , − rmax

6 , vmax,
− rmax

6 , −amax

2 , and finally rmax

6 . The demand for smooth-
ness yields 3 · 8 = 24 equations at the eight limits t0 . . . t7.
At the same time we have 17 coefficients gκν and seven
ranges tκ − tκ−1. The number of equations matches the
number of unknowns. Because the equations consist of
pκ(t) and its derivatives the coefficients gκν appear linearly
only. So first one eliminates them to calculate the ranges

t1 − t0 = t7 − t6 = amax

rmax

t2 − t1 = t6 − t5 = vmax

amax
− amax

rmax

t3 − t2 = t5 − t4 = amax

rmax

t4 − t3 = xe
−xb

vmax
− vmax

amax
− amax

rmax
.
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Fig. 4. result of the trajectory planning

Since the trajectory starts and ends in a rest position the
terms are rather simple. If the trajectory starts and ends
in arbitrary states zb

k and ze
k their elements would appear

in the ranges. The planning time T = t7 comes off the pro-
cedure along the way. One has to check whether all ranges
are positive. Otherwise the corresponding polynomial is
not needed because the limit is not reached. So on leaves
it out and starts at eqs. (10) again. With the ranges the
coefficients gκν are calculated. The result of the described
procedure for vmax = 0.01, amax = 0.1 and rmax = 40 can
be seen in figure 4.

The above procedure also works when the trajectories
must be thrice differentiable or even n-times. Then one
would have 2n+1 · (n+1) equations, (2n+1−1) ranges and
(2n+1 · n+1) coefficients gκν . So a symbolic calculation
software becomes inevitable.

The above considerations are made for an increase of
pressure (P

b
< P

e
). For a decrease of pressure one simply

reflects the trajectory at the center axis t = T
2 . If the

trajectory does not start and end in a rest position all
initial and terminal values have to be interchanged.

4.2 Tracking controller

The planning does not consider any disturbances or un-
certainties. So a tracking controller is needed to keep the
system close to the planned trajectories. By use of the
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differential flattnes a state-feedback controller is designed
with linear error dynamics. In equation (9) the linearised
system is derived. If the error of the linear system con-
verges to zero, so does the error of the non-linear system.
One defines a tracking error ze = zd1k − z1k = xd − x and
postulates

0 =
...
z e + α2z̈e + α1że + α0ze

0 =
...
xd − ż3k + α2

(
ẍd − z3k

)

+ α1

(
ẋd − z2k

)
+ α0

(
xd − z1k

)
.

From eq. (7) and (8) one gets ż3k = a(z) + b(z)Qc which
yields the controller equation

Qc =
1

b(z)

[ ...
xd − a(z) + α2

(
ẍd−z3k

)

+ α1

(
ẋd−z2k

)
+ α0

(
xd−z1k

) ]

. (11)

The plan for xd is set and z is assumed to be mea-
sured. Therefore zk can be calculated with the transfor-
mation Φ(z), eq. (6).

4.3 Simulation results

The uncertain offset is considered to be the most dis-
turbing factor. For the simulation we take two different
characteristic functions. The mean value characteristic
function is used as the ”true” function whereas the plan-
ning and controlling is done with the function of one
single injection. Figure 5 shows the difference. One can
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Fig. 5. difference between the used characteristic functions

see that the difference is not constant. So there are other
disturbances active as well. The planned trajectories of
figure 4 are taken. It is advisable to let the system start
with a trajectory which is slightly above the initial value x
to avoid negative velocities. So the initial state error is
helpful. The simulation result is shown in figure 6. One
can see, that the controller is stable but the performance
is certainly not satisfactory. The sign of the speed changes
and the desired final values are not met. The controller
has severe problems with these constant disturbances.

5. REDUCED OBSERVER WITH LINEAR ERROR
DYNAMICS

This motivates the development of an observer to estimate
the offset. Add to this that the measurement of speed is
questionable. So a non-linear reduced observer is designed
to estimate the speed v and the offset foff in (1b)

mv̇ = −fc(x, sgn v)− foff +AP . (12)

In addition this adds an integrating part to the controller.
Designing an observer for a non-linear system in general is
still an open task. But this system has a special property
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Fig. 6. Simulation of the system with tracking controller

which simplifies the task a lot. When we consider the sign
of the speed known, the non-linearities appear in measured
variables alone. By designing a reduced observer we can
keep them out of the error dynamics. The observer state ẑo

is defined alike the linear reduced observer (The hat ˆ
denotes an estimated state.)

zo =

(
v
foff

)

+K

(
x
P

)

and ẑo =

(
v̂

f̂off

)

+K

(
x
P

)

.

Then the error is

ze = zo − ẑo =

(
v − v̂

foff − f̂off

)

and by differentiating one gets its dynamics by use of (12)
and (2)

że =

(
AP−fc(x,sgn v)−foff

m

0

)

+

(
k11 k12

k21 k22

)(
v

E−Av+Qc

Ax+V0

)

−

(
AP−fc(x,sgn v)−f̂off

m

0

)

−

(
k11 k12

k21 k22

)(
v̂

E−Av̂+Qc

Ax+V0

)

.

So one chooses k12 = 0 and k22 = 0 and gets the linear
error dynamics

że =

(

k11 − 1
m

k21 0

)

ze .

The characteristic polynomial pc(λ) of the matrix is
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Fig. 7. Convergence of the controlled system with observer

pc(λ) = λ2 − k11λ+
k21

m
which is stable for k11 < 0 and k21 > 0. The observer
is added to the closed loop. In the feedback law (11)
v is replaced with v̂ and fc(x, sgn v) with fc(x, sgn v) +

f̂off . All other settings of the simulation 6 remain the
same. The result can be seen in figure 7. This result is
satisfactory. The key variable P is followed closely. The
sign of the speed v does not change. The comparison
with figure 5 shows that the observer estimates foff quite
well. The simulation indicates that the overall system with
controller and observer is stable, although the stability is
not rigorously proven.

6. CONCLUDING REMARK

The authors would like to mention that for the calculations
in this article there was only open source software used
which is released under GNU General Public License.

The authors would like to thank Jinwei Zhou for prelimi-
nary work.

Currently KEBA AG is working at the implementation
of those methods on an industrial control unit and first
experiments are promising.

ACKNOWLEDGEMENTS

The authors would like to thank KEBA AG for the fruitful
and continuing cooperation.

Support of the present work from the Comet K2 Austrian
Center of Competence in Mechatronics (ACCM) is grate-
fully acknowledged.

REFERENCES

Zhongbao Chen and Lih-Sheng Turng. A review of current
developments in process and quality control for injection
molding. Adv. Polym. Technol., 24(3):165–182, 2005.
doi: 10.1002/adv.20046.

E. Delaleau and J. Rudolph. Control of flat
systems by quasi-static feedback of generalized
states. Int. J. Control, 71(5):745–765, 1998. doi:
10.1080/002071798221551.
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