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Abstract:
Automatic Target Recognition (ATR) is a key element needed to make Mine Countermeasure
missions using robots entirely autonomous. While there has been much progress in applying
ATR algorithms on high-resolution Synthetic Aperture Sonar (SAS) and sidescan sonar data,
performing ATR with a low cost Forward Looking Sonar (FLS) is much more challenging. An
algorithm for the detection of underwater man-made objects in FLS previously developed can
work in real-time although it suffers considerably from typical noise in sonar images and false
alarms. The work presented here shows that ATR algorithms can be exercised on sonar mosaics
built also in real-time instead of raw data coming from the FLS. The use of mosaics can help
the detection of the targets by reducing some noise (including harmonics from other acoustic
devices mounted on the robot) and giving a better contrast to the images to be processed.
Moreover, mosaic images can be useful for post-processing and data analysis. The mosaicking
algorithm also runs in real-time to maintain the performance of the system and to be useful
in real missions. It was tested both on data previously collected and in real experiments with
different set-ups and with different sonars. The wide range of results obtained with different
surface vehicles and in different situations demonstrate the usefulness of the method.

Keywords: mosaicking, forward looking sonar, automatic target detection, acoustic image
processing.

1. INTRODUCTION

Over the last years, sonar imagery has been used as an
alternative to optical imagery due to its higher range and
working conditions. In fact, sonars can be very useful under
conditions of turbidity and lack of illumination, scenarios
where optical cameras fail to provide good images. This is
especially important either in vehicles that lack artificial
light or in surface vehicles as the light attenuation in the
water gives a very limited range to optical cameras.

While Side-Scan Sonars (SSS), Synthetic Aperture Sonars
(SAS), and some Forward Looking Sonars (FLS) provide
high resolution data, Forward Looking Sonars (FLS) with
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lower resolution are often used due to their satisfactory
range resolution and lower cost. Moreover, they are very
useful as their dimensions and power requirements allow
them to be mounted on Remotely Operated Vehicles
(ROVs), Autonoumous Underwater Vehicles (AUVs) and
Autonoumous Surface Vehicles (ASVs) of medium size.
SAS and SSS data can be used in large area surveys to give
a first assessment of the area. After that initial survey, FLS
can be used for a closer inspection to confirm the results
and/or perform some kind of intervention task.

Concerning the high resolution data, since the work by
(Hayes and Gough, 1992), several methods have been
developed to detect man-made objects in SSS and SAS
data, for example, (Reed et al., 2004; Beaujean et al.,
2011). In particular, the target detection algorithm used
in conjunction with the mosaicking algorithm presented
herein is inspired by (Williams and Groen, 2011). All these
methods detect a target in unknown, wide survey areas.
The challenge of detecting targets while analyzing FLS
data in real-time remains. Although there has been work
on detecting obstacles using FLS data like (Martin et al.,
2000; Petillot et al., 2001) and on registering FLS images
Aykin and Negahdaripour (2013), most of the research is
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not focused on detecting and identifying man-made objects
in real-time. Recently, an algorithm working in real-time
was presented but it focus only on obstacle detection,
not specifically target recognition (Karabchevsky, 2011).
(Fallon et al., 2013) presents a SLAM-based algorithm
to reacquire features (targets) but does not recognize
them. The work presented in (Galceran et al., 2012)
deals precisely with real time detection and identification
of man-made objects. It does not need any previous
training but it integrates knowledge about the target to
be searched, particularly, the shape and dimensions of the
object. Since satisfactory results were obtained with that
work, the idea presented here is to use the mosaicked data
instead of the raw frames to further improve the results.

Taking into account previous work on real-time mosaicking
of optical camera data Ferreira et al. (2012), a novel
algorithm for mosaicking of FLS data in real time is hereby
presented. Not all the assumptions assumed for the optical
camera data are valid in the acoustic domain and the
task is much more challenging. However, as the results
will demonstrate, the algorithm works satisfactory for the
applications tested. It will be shown that the mosaics
produced for the FLS data can improve target detection
and recognition and diminish the false alarms rate without
compromising the real-time capability. It can also be useful
for post-processing and data analysis and examples will
be presented in Section 4. This is not the only mosaicking
algorithm that exists for the FLS data. In (Hurtos et al.,
2012), a phase correlation-based mosaicking algorithm was
applied to FLS data with the same kind of data that
was used on this work but it was not concentrating on
the real-time aspect neither in ATR. More recently in
(Hurtos et al., 2013a) an evolution of it was applied
to chain inspection with good results although in this
case a high resolution FLS sonar (DIDSON) was used
with a very limited range. In (Yong, 2011), mosaicking
techniques working close to real-time were investigated for
FLS data in a ship-hull inspection application but not
applied to ATR. To the best of the authors’ knowledge
using mosaicked data for real-time ATR is new in the state
of the art.

The remaining of this paper is organized as it follows.
Section 2 presents the mosaicking algorithm. Section 3 dis-
cusses briefly the detection algorithm and the connection
between the two algorithms. Results obtained with real
data are presented in Section 4. Finally, conclusions and
future work are described in Section 5.

2. MOSAICKING ALGORITHM

One of the main reasons to use mosaics instead of raw data
is the reducing of noise. In real experiments, the authors
verified that a regular pattern of noise was appearing in
the raw data collected by the FLS. Taking into account
that there is an echosounder working at 200KHz onboard
the vehicle used in the experiments and that the FLS is not
detecting only echos at its center frequency (either 450KHz
or 900KHz) but instead has a bandwith ranging from 300
to 600Khz (or 600 to 1200Khz respectively), it is easy to
conclude that that regular pattern comes from the 2nd
harmonic of the echosounder. Figure 1 shows an example
where this pattern appears. The brighter blobs are the

echosounder interference and the target is the rectangular
shape with a clear shadow in the middle of the image.
When this pattern falls into the window of interest defined,
then a false alarm in target recognition can occur since
normally the echo coming from the echosounder is stronger
(and thus brighter) than the one coming from the farther
bottom target. A way of eliminating most of these false
positives is to use mosaics as these ones are a collection
of several raw frames and thus average the scene viewed
resulting that this pattern will appear less often. With
mosaics, not only the false positives are eliminated but also
the natural changes in insonification from frame to frame
and the noise coming from waves or water column particles
reflections are also removed or diminished considerably.

Fig. 1. Raw data depicting a target in the middle and
echosounder interference to the left and right of the
target.

The mosaicking algorithm is based on the one presented in
Ferreira et al. (2012) and updated recently in Ferreira et al.
(2013a). In this work, we apply our mosaicking algorithm
to FLS data. While in the case of mosaicking optical data,
the algorithm was purely based on optical data (with
acoustic altimeters only used in case of failure), here,
other sensors onboard the ASV can be used together with
the acoustic data. Motion estimates are available from a
Differential GPS (DGPS) system for the ASV. In fact, the
vision-based motion estimation algorithm that was used
in (Ferreira et al., 2013a) is redundant in this case. In the
same way, instead of using a magnetic compass, heading
information is available from the same DGPS system. The
DGPS system is not mounted coincidentally with the sonar
head but there is a compensation and the exact GPS
position of the sonar head is available as an input to the
mosaicking algorithm.

The sonar head is mounted in a pole that can go up and
down and has a pan-and-tilt unit. While the pole only
influences in the detection of the target and calculation
of the distance to the bottom target, the pan-and-tilt
unit has to be considered for mosaicking purposes. As in
many works in the literature (Hurtos et al., 2012; Aykin
and Negahdaripour, 2013), the 3D point is projected onto
2D using an orthographic projection as approximation.
This approximation is valid as long as the scene relief
is despicable when compared to the sonar range. This
is true if the elevation angle (φ) is small as cos(φ) ≈ 1
and sin(φ) ≈ 0 for small angles. Typically, in our target
recognition missions, the elevation angle is smaller than
5◦ thus, not violating that assumption. A study on the
effect of this approximation in the images registration
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can be found in (Johannsson et al., 2010). Equation 1
defines the 3D coordinates in spherical coordinates (r, θ, φ)
with r being the sonar’s range and θ and φ the bearing
and elevation angles respectively. Equation 2 presents the
projected 2D point.

P =

[
x
y
z

]
=

[
r cos θ cosφ
r sin θ cosφ
r sinφ

]
(1)

p̂ =

[
u
v

]
=

[
r cos θ
r sin θ

]
(2)

Given the orthographic projected point, an affine transfor-
mation can be used to relate two consecutive frames. The
rotation matrix and translation parameters for the affine
transformation can be directly obtained from the DGPS
and the pan-and-tilt unit with the pan being treated as
a pure rotation around the elevation axis. Skipping the
details, the final relation between two frames can be de-
scribed as in equation 3. For convenience, rewriting Equa-
tion 3 using homogeneous coordinates for the projected
point (u, v, 1) gives us the final formula in Equation 4
with R being the rotation matrix and t a vector with the
translations in x and y directions.[

u2
v2

]
= R

[
u1
v1

]
+ t (3)[

u2
v2
1

]
=

[
R t

01x2 1

] [ u1
v1
1

]
(4)

As in (Ferreira et al., 2012), the motion estimates (now
coming from DGPS instead of the camera) can be used as
initial guess of the point where the the images should be
stitched together to form the mosaic. Then, a correlation
method can be applied in a neighborhood of that initial
guess instead of the full frame to improve computational
efficiency and take advantage of the DGPS information.
This refinement step is particularly important when mo-
saicking large areas while for small areas such as the ones
present in some of the Mine Countermeasures missions,
this is not so critical as the robot moves slowly when
compared to the frame rate obtained. For instance, in
circular missions around a target or in missions where
the robot keeps a fixed distance to the target, the DGPS
estimates can be enough and actually work better as the
environment is practically featureless (with the exception
of the target). However, filtering of the DGPS estimates is
needed to avoid possible jumps in the GPS position. Both
maximum speed and acceleration of the vehicle are taken
into account in this filter.

When the images are put together to form the mosaic
special care has to be taken. Most of the pixels close
to the origin of the sonar head should be discarded as
they do not represent accurately the bottom but include
instead reflections along the water column. Only a valid
region of interest should be mosaicked. When the goal is
to mosaic quasi-static setups or setups where a moving
target is actually close to the sonar head, then the full
area should be used. The blending strategy can not be the
same as the one used for optical cameras. In that case, only
new pixels were added to regions that were empty. For
FLS data that approach does not apply. First, in quasi-
static setups where there is a moving target, no update

would occur and the history of the mission would be lost.
Second, in circular missions, that would mean adding only
pixels in the boundaries and not reducing any noise in
the overlapped areas. In the lawn mowing patterns that
strategy can be used but it is still suboptimal as does not
improve areas that are seen in more than one frame. Due
to the changes in insonification, an object can be clearly
seen in one frame and then not anymore in the next one.
If the blending technique would add only new pixels in a
case where the object was not seen on the previous frame,
then that object could not be seen at all. Hence, a different
approach is here used. The overlapping area between the
mosaic and the frame to be added is computed and then
only on the overlapping area, an average of the mosaic and
the new frame is copied to the mosaic. This ensures that
some of the noise is filtered and gives more importance
to the new frame than what it was done with the optical
camera. This simple technique works well for the purpose
devised. Other more complicated techniques like the ones
described in (Yong, 2011) or recently in (Hurtos et al.,
2013b) including different weights for each of the images or
for each region of the image can be used in a non real-time
context but in this case, the authors chose the simplest yet
effective solution.

2.1 Implementation issues

The mosaicking algorithm described was implemented tak-
ing into account the real-time constraint and the inter-
face with the detection algorithm. The MOOS framework
(Newman, 2007) used onboard the CMRE’s vehicles was
chosen and the mosaicking code is fully integrated with the
code running onboard the vehicles. It is highly configurable
through the use of a simple configurable file without the
need of recompiling the code. The need of a high degree
of flexibility is explained by the different applications and
missions in which the algorithm is tested. It can be used
for at least two different kinds of Forward Looking Sonars
with a different interface, for large scale areas, for a limited
defined area (by starting and ending point), in circular
missions with regular resetting and publishing of the mo-
saic and even for static set-ups. Examples of these different
applications will be shown in the Results section.

3. TARGET RECOGNITION ALGORITHM

The target detection and recognition algorithm is the
one described in (Galceran et al., 2012) with several
improvements. It is a real-time detection algorithm for
FLS raw data that makes the use of integral image
representation to achieve the real-time capability. Targets
are detected by comparing the echo map of a region of
interest and the background map of the same area. Only
pixels that have an echo a certain amount higher than
the background (threshold configured) are considered as
possible targets. The resulting blobs after thresholding
are morphologically analysed taking advantage of prior
knowledge about the kind of objects that are being looked
for. Then, a minimum echo threshold is used to filter
out lower intensity blobs. The target expected location is
given to the target detection algorithm by the results of a
survey using SAS. In the case of a cylinder, its orientation
can be estimated from the SAS data and provided as
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an input to the detection algorithm. Only location and
orientation are provided by the SAS survey not the full
map. Having the orientation of the target, one can search
for the cylinder only when its broadside is visible. This
is especially important in the case of circular missions
around the target as its shape changes with the relative
bearing to the sonar. The maximum deviation from ideal
case where the cylinder is perfectly horizontal on the sonar
frame is parameter configurable and it ranged from 30◦

to 50◦ in the experiments. The final decision of choosing
the target location from the several detections produced
was also improved. The detections are grouped and the
distance from the centroid of each group to the expected
target location is used. In this way, the closer a cluster
of detections is to the target, the most probable is to be
chosen. The Euclidean distance between the shape of each
detection and the ideal shape is calculated and averaged.
Then, the score obtained for each cluster is weighted with
the inverse of mean distance. In this way, a cluster that
has less detections but whose detections are closer to the
real object increases its chances of being chosen. Due to
the modularity of the MOOS framework very few changes
were needed to connect the output of the mosaicking
algorithm with this algorithm. The target detection can be
enabled by the mosaicking algorithm when this produces
and publishes a new mosaic. After performing a detection,
the target detection algorithm will wait for a new mosaic
to analyse. The detections are all saved in a list and the
final decision is taken after either a certain amount of time,
number of mosaics analysed or by request. How often the
mosaicking algorithm publishes a mosaic is configurable
and has to do with the type of mission.

4. EXPERIMENTAL RESULTS

The results here presented are a small subset of the full
results obtained. The range of results selected to be shown
try to represent the flexibility of the algorithm, its possible
applications and usefulness. For a more complete insight
on the full results including mosaics obtained with another
kind of sonar (Reson Seabat) and a ROV without access to
DPGS, please refer to (Ferreira et al., 2013b). Therefore,
the results show not only the improvement in ATR but
also some other capabilities of the mosaicking algorithm.
All the results here shown were obtained with BlueView
sonars mounted either on a fixed pole or onboard the ASVs
Gemellina and Gulliver from CMRE. The algorithm can
run at a frame rate between 1Hz and 4Hz depending only
on the number of mosaics saved for post-processing and
data analysis.

4.1 Improving target contrast

Before going through the results for the target recognition
it is useful to show a comparison between the kind of
raw data one can expect from the sensor and the mosaic
produced after the collection of some frames. The data
here presented was obtained with a BlueView P450-130
with a Field of View (FOV) of 130◦ and working at
450KHz and the sonar was mounted onboard the ASV
Gemellina. The data was collected in Marciana Marina,
a marina in the Island of Elba, during the ANT’11 trial
conducted by NATO Undersea Research Centre (NURC),

currently CMRE. Figure 2 shows partial views of both the
raw data and the mosaic. As it can be easily seen, the
mosaic improves the contrast between a possible target
and the background and gives a better definition of the
shadow. It also allows the user to see details hardly seen
on the raw data such as the long mooring rope on the right
of the possible target. While in the raw data it is hard to
understand that there is a mooring rope present on the
scene due to the several interruptions in the image, in the
mosaic it is very clear and thus identifiable.

Fig. 2. On the left, a detail of a raw frame. On the right,
the same area represented on the mosaic.

4.2 Improving target recognition

The primarily use of the mosaicking algorithm is the au-
tomatic target recognition. Therefore, preliminary results
from Multinational AutoNomous Experiment (MANEX’13)
are hereby presented as that was the best and most recent
example of application of the algorithm. MANEX’13 was
conducted in late October 2013 off the coast of the Is-
land of Elba. The sonar is the same as in the previous
section but the ASV is the new Gulliver, a catamaran
also from CMRE which is slightly bigger than Gemellina.
Typical missions executed for target reacquisition are:
circling around the bottom target or keeping a distance to
that target. An initial information of the position of the
target is given by an AUV with an onboard SAS system
as in a typical mission scenario. In this case, results are
shown for a circular mission. Figure 3 represents a good
detection of the target even in hard conditions such as
the presence of the echosounder interference. There are
two visible echosounder blobs, one on the right close to
the target and one farther on the left. Comparing with
Figure 1, the improvement is clear as most of the blobs are
filtered out in the mosaic. It is not possible to show the
same detection for the raw data because the algorithm runs
either with one or the other. To assess the improvement
that mosaicking can bring to the target detection and
recognition algorithm, quantitative results were obtained
in terms of false positives and true positives detection rates
both for mosaic and raw data and are presented in Table
1. Percentages of true and false detections are calculated
with respect to the total number of frames analysed. In this
case, the mosaicking algorithm was publishing a mosaic
to the detection algorithm each 20 frames which means
that the number of frames analysed is 20 times less than
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in the case of raw data being used. There is a tradeoff
in how much one is able to wait for a detection and
the area covered by the mosaic. For instance, another
criteria used for publishing mosaics is a maximum heading
span of the mosaic. If a mosaic is published each 30◦ of
maximum heading difference between the last frame and
the initial frame, the number of mosaics produced is 3
times smaller the one obtained with a 10◦ of maximum
heading difference. In the case of circular missions, the
object shadow and echo change with the sonar’s angle of
incidence. Therefore, it is mandatory to produce a mosaic
after a defined maximum heading difference or a maximum
number of frames in order not to have considerable changes
of the object shape or else artifacts can deteriorate the
performance.

The results of Table 1 show that using mosaicking one can
get a higher ratio of true detections over false positives.
The percentage of false positives is slightly smaller for
the mosaic data but the false positives ratio decreases
considerably due to the elimination of noise coming from
echosounder harmonics mainly. The number of detections
is small as mosaics are published only each 20 frames.

Table 1. Correct and False Detections [%],
their Ratio and Total correct detections

Correct [%] False [%] Ratio Total correct

raw data 40.2% 23.4% 1.71 255

mosaic data 38.4% 15.3% 2.5 15

Therefore, an analysis of the influence of the publishing
rate parameter was performed. Table 2 shows the dif-
ferent true detections and false positive rates and the
ratio between them for different publishing rates, namely
publishing a mosaic each 5, 10 and 20 frames, and the raw
data results for the same dataset.

Table 2. Correct and False Detections [%],
their Ratio and Total correct detections for

different publishing rates

Correct [%] False [%] Ratio Total correct

raw data 40.2% 23.4% 1.71 255

mosaic data (20) 38.4% 15.3% 2.5 15

mosaic data (10) 29.5% 11.2% 2.63 21

mosaic data (5) 39.7% 14.6% 2.71 60

As it can be seen, the ratio between correct detections
and false positives increases with the rate of publishing
mosaics. The number of detections increases also to 60
which is as much as one can get with the raw data pro-
portionally. The best case for the true detections is when
a mosaic is published each 5 frames and although that
does not correspond to the minimum false positives, it still
beats the false positives percentage in the raw data (14.6%
against 23.4%). As expected, the mosaicking algorithm
can improve the ATR by decreasing the noise level and
eliminating several false positives without compromising
the true positives detection rate. The algorithm can run
between around 1Hz and 4Hz depending on the quan-
tity of data (mosaics) saved for post-processing and data
analysis. The real-time capability is important because
the results from the ATR are used in real-time and in
the loop to start the next phase of the mission, namely,
sending a small Unmanned Underwater Vehicle (UUV) to
the identified target.

Fig. 3. An example of a correct detection in a mosaic even
in the presence of noise.

4.3 Post-processing and data analysis

Finally, it is also important to show the usefulness of
the mosaics in the post-processing and data analysis
phase. The data here presented was collected using a
BlueView P450-45 FLS with a 45◦ FOV and working at
450KHz during the Breaking the Surface 2014, the 5th
International Interdisciplinary Field Training of Marine
Robotics and Applications. The sonar was mounted on a
pole fixed to the pier but the same results apply to the case
where the sonar is mounted in a ASV. In this particular
setup, besides a target on the sea bottom, there is a small
UUV moving towards the bottom target while the ASV
is stopped. Mosaicking this quasi-static scene (only the
UUV is moving) can give the history of the mission in a
very simple way without the need of replaying the whole
sonar file. Details that can not be seen in the raw data (or
are hardly noticeable), are easily detected looking to the
produced mosaics. Namely, the case where the UUV misses
the target and goes forward over the shadow of the bottom
target. In the raw data, this is a very difficult situation to
detect because the shadow prevails while in the mosaic it
is very clear where is the UUV during the whole mission.
Figure 4 represents this situation where the UUV missed
the target and ended up his mission only after it in the
shadow region of the bottom target.

5. CONCLUSIONS

The wide range of results show the effectiveness of
the method. Several conclusions can be drawn. at best
2.71/1.71 often more than 10% First, mosaicking of FLS
data can be done in real-time with satisfactory results. The
noise present in the raw data is filtered, the false positives
percentage is decreased (about 10%) and the ratio between
true positives and false positives is increased at best 58%.
Second, in featureless environments, image registration
does not work properly and either GPS data should be
used or other techniques to register the images, namely
in the frequency domain should be investigated. Relying
on the navigation info from the autonomous robot and
using only positional data to estimate the displacement
between frames can give useful mosaics for the purpose of
Automatic Target Recognition. As it was shown, mosaics
can be used not only in real-time operation but also for
post-processing and data analysis in a much easier way
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Fig. 4. Mosaic of a quasi-static setup with a bottom target
and an UUV in the shadow of the bottom target.

than replaying the whole sonar file and looking at all the
frames.

As future work, a method of registering the images in
featureless environments should be found without compro-
mising the real time capability. On the side of the auto-
matic target recognition algorithm, the morphologic filter
should be improved to detect targets with a large range
of orientations. Currently, using the ratio of the principal
axis versus the smaller axis did not work properly due to
the difficulty of estimating the smaller axis in irregular
blobs such as the ones detected by the BlueView sonar. It
is worthwhile to test it first on data obtained by a higher
resolution sonar where the theoretical assumptions about
the shape of the object are closer to the real detections and
then try to transpose the results to the BlueView data.
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