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Abstract: This paper describes the development and performance assessment of a low-cost
stereo vision system for underwater object detection. The system has been conceived as a
prototype to investigate the performance, power consumption, and thermal dissipation tradeoffs
involved in designing an embedded stereo vision unit for underwater operation. The embedded
system has been experimentally assessed in underwater object detection tasks. The system
has proven thermally stable and capable of guaranteeing a level of autonomy of at least two
hours of video acquisition. Several algorithms for mono and stereo image processing have been
evaluated to assess their effectiveness in the underwater environment along with their suitability
in presence of constrained computational and energy resources. Evaluation of the stereo vision
system in detecting simple objects has shown strong limitations of commodity off-the-shelf
sensors when used in underwater perception. Nevertheless, the prototype described in this work
provides insights for development of more advanced vision systems suitable for underwater
vehicles.
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1. INTRODUCTION

Vision technologies have gained increasing consideration
as a major sensing modality in underwater environments,
thanks to high sensor resolution, comparatively low cost,
and rich suite of algorithms made available by mainstream
research. There is indeed a high potential for exploitation
of advanced sensors in underwater operation. However, in
underwater environments the acquisition of 3D informa-
tion through visual perception is subject to severe limita-
tions. In particular, the propagation of light through water
suffers from phenomena such as absorption and scattering.
Despite the work carried out so far, there is a need for
additional experimental investigation to assess the actual
potential of visual perception in underwater environments.

This paper presents the development and the initial evalu-
ation of a prototype embedded system for underwater ob-
ject detection using stereo vision. The system has been de-
veloped within the MARIS project (Marine Autonomous
Robotics for InterventionS, Italian National Project). The
general goal of MARIS is the development of technologies
useful for underwater intervention in the offshore industry,
in search-and-rescue tasks, and in scientific exploration.

In particular, this work describes a low-cost box developed
for underwater image acquisition, which includes a 3-
sensor multi-baseline stereo camera, and the algorithmic
pipeline developed for stereo image processing. Experi-
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ments of object detection have been performed to assess vi-
sual perception performance in real underwater scenarios.
Experiments have also evaluated the embedded system by
measuring physical parameters relevant for underwater au-
tonomous operation such as power consumption, humidity
level, and thermal characteristics. The goal of the proposed
processing pipeline is to detect a target object of known
shape and to estimate its pose with respect to a reference
frame on the sensor. At each iteration, frames are pre-
processed for underwater image enhancement. Then, the
method extracts a region of interest where the target ob-
ject is located and performs computation of the disparity
map for 3D representation. Finally, the pose of the object
is estimated through 3D model alignment.

The paper is organized as follows. Section 2 reviews the
state of the art regarding underwater sensing methods
for object detection. Section 3 describes the low-cost em-
bedded vision system. Section 4 illustrates the developed
image processing algorithms and section 5 reports results
obtained in the initial experimental evaluation of the sys-
tem. Section 6 concludes the paper with some directions
for future research.

2. RELATED WORK

Although vision is a major sensing modality in robotics,
it is not widely used in underwater perception due to
the problems of light transmission in water. Ultrasonic
sensing instead is a commonly used and robust underwater
perception modality. However, acoustic sensing is not suit-
able when an accurate and detailed reconstruction of the
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object shape is required. Sonar array cameras have been
developed which exploit the emission of multi-frequency
acoustic signals for detection and recognition of objects.
These systems allow 3D sonar imaging (Yu et al. (2006))
and extend their application to recognition tasks, but their
high cost, limited resolution, and operational complex-
ity restrict their application domain. A rather extensive
survey and comparison of state-of-art ultrasonic technolo-
gies with vision in underwater scenarios is presented in
Jonsson et al. (2009). Underwater laser scanners do exist
and exploit an accurate modeling of light propagation in
water means Gordon (1992). Such sensors can provide
high performance in term of resolution and accuracy of
acquired 3D images. However, underwater laser scanners
are very expensive and affected by the same operating
problems of vision systems. A system for underwater ob-
ject manipulation has been described by Sanz et al. (2013)
where object perception is achieved using a structured
light laser attached to the forearm of the manipulator and
unknown objects are successfully grasped in a water tank
environment.

Vision can provide, when feasible, information at lower
costs and with higher resolution and acquisition rate, com-
pared to acoustic perception. Applications of underwater
computer vision include detection and tracking of cables
and pipelines for surveying (Narimani et al. (2009)), im-
age mosaicing to map seabeds (Nicosevici et al. (2009)),
monitoring of underwater plants and artifacts, recognition
and observation of interesting objects like artificial struc-
tures or archaeological sites (Eustice et al. (2005)), and
localization and mapping in limited regions (Horgan et al.
(2009); Schattschneider et al. (2011)). In Kim et al. (2012)
a vision-based object detection method is presented based
on template matching and tracking for underwater robots
using artificial objects. In Garcia and Gracias (2011) a
comparison of the performance of popular salient keypoint
detectors on underwater images, degraded by turbidity,
is performed. It is shown that Hessian-based approaches
outperform Laplacian and Harris counterparts.

Stereo vision systems have not been extensively used until
recently, due to the difficulty of homologous point match-
ing in underwater conditions and relatively high compu-
tational requirements. The development of advanced algo-
rithms for preprocessing and image enhancement (Bazeille
et al. (2006); Corchs and Schettini (2010)) and of dedicated
or high performance architectures for image processing
has increased the interest for underwater application of
stereo vision (Ishibashi (2009)). Disparity of stereo images
can be exploited to generate 3D models (Brandou et al.
(2007); Campos et al. (2011)) through the interpolation,
filtering and segmentation of measurements. The resulting
topological representation allows object recognition even
with partial data as well as integration of multiple view
images. In Wang et al. (2011) a stereo matching algorithm
is proposed based on median and homomorphic filtering to
minimize noise and enhance image contrast. The system
also adopts Harris corner detection to obtain the charac-
teristic information of underwater targets.

Low-cost image and 3D sensors are currently widely used
in different applications of shape recognition and process-
ing. However, 3D active devices like Microsoft Kinect (An-
dersen et al. (2012)) are not suitable for underwater en-

vironments. In this work we investigate the suitability for
underwater perception of a stereo vision system built using
inexpensive webcams, similar to the work in (Oleari et al.
(2013)).

3. EMBEDDED STEREO VISION SYSTEM

The design of the embedded system has taken into ac-
count the constraints and requirements of the underwa-
ter application in terms of computational capacity, power
consumption and thermal dissipation, waterproofing, and
implementation time. The system has been conceived as a
low-cost prototype to be assembled in a short time and to
be eventually adapted during the development. For these
reasons, a general purpose plastic box has been chosen
as the container. This canister (260x330x92mm) has a
flat transparent plate and a certified protection rating
IP-68. The key design problem is the achievement of a
trade-off between computational power requirements and
electrical power consumption and heat dissipation through
the plastic enclosure. Computer vision tasks require high
computational capabilities and compatibility of the plat-
form with common software frameworks and libraries. On
the other hand, the CPU power consumption and thermal
design power (TDP) should be as low as possible, since the
battery storage is limited and, above all, the cooling down
inside a waterproof sealed canister is performed through
conduction. The embedded system mounts a Mini-ITX
Intel Desktop Board DN2800MT with an Intel Atom pro-
cessor N2800 (TDP 6.5 W ) and 2 GB RAM, which is
a trade-off between the power-efficient ARM architecture
processors (TDP 5.0 W for ARM Cortex A9) and the
powerful commodity processors in the x86 architecture
(low consumption embedded Intel Core i7-3517UE has
TDP 17 W ).

Figure 1 shows the embedded system and its architecture.
The internal structure of the canister has been organized in
three vertical layers. The bottom layer contains 4 batteries
(12V , 2Ah) and a DC UPS (10A). The middle layer
contains the processing hardware described above and a
12V to 5V DC-DC step-down unit to supply the sensors.
The system also features a SSD hard drive. The top
layer contains the 3-sensor multi-baseline and an Arduino
Uno board to control the system (internal temperature
and humidity monitoring, power on/off using a remote
controller, LCD display to log information). The system
comprises 3 cameras to test different baselines and fields of
view. The vision sensors are three Logitech C270 webcams
(1280x960 @7.5fps). The choice of low cost cameras is
motivated by the prototype nature and testing aim of the
system.

In order to monitor the temperature and humidity inside
the canister these sensors have been integrated in the
system: three analog temperature sensors (LM 35) for
CPU, hard drive and batteries, and a digital sensor for
temperature and humidity (DHT11) located in the top
layer. Both sensors provide fully calibrated outputs. The
LM35 sensor maintains an accuracy of ±0.8oC over a
range from 0oC to 100oC. The LM35 sensor draws 60µA
and possesses a low self-heating capability. The DHT11
sensor operates from 3.5V to 5.5V . DHT11 can measure
temperature from 0oC to 50oC with an accuracy of ±2oC,
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Fig. 1. Architecture of the embedded vision system (top)
and image of the opened canister (bottom).

and relative humidity ranging from 20% to 95% with an
accuracy of ±5%. The Arduino Uno board checks the
temperature and humidity measurements and is in charge
of the shutdown of the system, if the measurements exceed
their respective safety thresholds. The embedded system
can also be supplied by an external power source. An
Ethernet cable enters the canister to connect the system
to an external computer for monitoring operations. The
system does not use underwater illuminators.

4. ALGORITHMS

The embedded system described in the previous section
has been designed to detect objects. The system can ac-
quire color images from each of the three cameras and com-
pute the 3D representation of the observed environment by
stereo-processing the data provided by any camera pair.
Thus, object detection may be performed using algorithms
based on the processing of images acquired from a sin-
gle camera or with three-dimensional shape recognition
algorithms based on stereo processing. In our evaluation
we have assumed that the objects to be detected have
cylindrical shape and can be conveniently represented by
a geometric parametric model. However, this assumption
is exploited only at the end of the processing pipeline,
to identify the object and estimate its pose. The other
vision modules operate on general hypotheses about the
environment and the targets.

A suitable underwater vision system must be designed
to cope with the difficult underwater light conditions.
In particular, light attenuation produces blurred images
with limited contrast, and light back-scattering results into
artifacts in acquired images. Object detection becomes
even more difficult in presence of suspended particles
or with an irregular and variable background. Hence,

Fig. 2. An underwater image before (left) and after (right)
the application of contrast mask and CLAHE.

with underwater images special attention must be paid
to algorithmic solutions improving their quality in the
early processing stages. Object detection, therefore, has
been decomposed into several sub-tasks including image
enhancement, image segmentation, 3D model matching
and object pose estimation. Detection is performed by
processing both a single colored image and the point
cloud achieved by stereo vision 3D reconstruction. The
mono-camera and stereo-camera processing algorithms are
discussed in the following.

4.1 Mono-Camera Processing

Processing of individual images is performed on the image
stream produced by one of the cameras and aims at detect-
ing the region of the image that contains the target object.
The identification of a region of interest (ROI) restricts the
search region of the target object in later processing stages
and, therefore, prevents possible detection errors. Since
object recognition on a 3D point cloud is computationally
expensive, mono-camera processing helps in decreasing the
requested overall computation time.

The first step is the image pre-processing performed in
order to improve image quality in the underwater envi-
ronment. A contrast mask method based on component
L of CIELAB color space is applied to the input image.
In particular, the component Lin,i of each pixel i is ex-
tracted, a median filter is applied to the L-channel of
the image to obtain a new blurred value Lblur,i, and the
new value is computed as Lout,i = 1.5 Lin,i − 0.5 Lblur,i.
The effect of the contrast mask is a sharpened image
with increased contrast. Next, a contrast-limited adaptive
histogram equalization (CLAHE) is performed in order
to re-distribute luminance. The combined application of
contrast mask and CLAHE lessens light attenuation and
reduces the effect of light artifacts on the objects, as shown
in Figure 2. It was observed that the image enhanced by
CLAHE alone is not discernible from the one achieved
after applying both filters. Hence, the contrast mask may
not be required.

The second step of mono image processing performs image
segmentation, i.e. identification of a ROI that contains
the target object. The ROI may be searched according
to different criteria based on a specific feature of the
object to be found. One criterion is the uniformity of the
target object color w.r.t. the roughness and variety of the
background. Two algorithms have been investigated. The
first algorithm is a variant of Eigen transform (Targhi et al.
(2006)), a texture descriptor that allows identification of
regions with similar patterns. The algorithm is applied
to the luminance component of the color image and it
processes the matrix containing the grey-scale values of
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Fig. 3. An example of LU transform applied to an un-
derwater image (left). The area corresponding to the
object is represented by a black blob (right).

a small square window with size w × w centered on each
pixel pij . The smaller eigenvalues or the singular values
of such matrix provide a measure of the roughness of the
area around each pixel: the rougher is the texture in the
w×w window, the greater are the smaller eigenvalues of the
corresponding matrix. Since computation of eigenvalues or
singular values is time-consuming, a more efficient algo-
rithm is the LU transform that evaluates roughness using
the LU decomposition. The diagonal of U matrix captures
the same information of eigenvalues. In particular, the
output of such method is a scalar computed as the average
absolute values of the l smaller diagonal elements ukk of
matrix U

Γ(l, w) =
1

w − l+ 1

w
∑

k=l

|ukk| (1)

where |u11|, . . . , |uww| are sorted in decreasing order.
This technique can be applied to detect artificial objects
with uniform color and pattern that are placed in a
natural irregular background: if the value of eq. (1) is
used as the color of a mask, the uniform colored objects
appear as darker blobs on a brighter background (see
Figure 3). The ROI of objects can be obtained by threshold
classification or by region growing. The main drawbacks of
this technique are its computational cost (still high even
using LU matrix decomposition) and its effectiveness in
underwater scenarios. Indeed, light absorption tends to
smooth the roughness of natural background and, in some
cases, it is difficult to distinguish between objects and
background.

Another approach based on color level segmentation has
been tested to detect ROIs in the image. This method
assumes that the object to be detected has a uniform
color. In this approach the image is converted to HSV
(Hue Saturation Value) color space and segmented ac-
cording to 16 intervals of channel H values. Hence, the
image can be partitioned into 16 subsets of (possibly not
connected) pixels with the same hue level. The rough level
quantization is not affected by the patterns generated by
light back-scattering. The region corresponding to a given
hue level is estimated as the convex hull of the pixels.
Only regions whose area is less than 50% of the image are
selected as part of the ROI. This heuristic rule rests on
the hypothesis that the object is observed from a distance
such that only the background occupies a large portion of
the image. ROI estimation only exploits the relative color
uniformity of a texture-less object, but it does not identify
a specific object. When the object color is known, a more
specific color mask (CMask) can be applied to detect the
object with an accurate estimation of object contour. In
our experiments, both ROI and CMask always contain the
target objects. CMask can be used either as a groundtruth

to estimate ROI precision or to detect the object in the
image.

In general, object pose estimation cannot be performed
on a single image, and requires 3D perception as shown in
the next section. However, if the object shape is known,
such as with the cylindrical pipes to be recognized in
our experiments, pose estimation is possible also with a
monocular camera. In particular, the cylinder is defined
once are given the cylinder radius cr and its axis, a line
with equation c(t) = cp+cd t. The contour of a cylinder in
the image plane is delimited by two lines with equations
lTi u = 0 with i = 1, 2, where u = [ux, uy, 1]

T is the
pixel coordinate vector and l1, l2 are the coefficients. Let
l0 be the parameters of the line representing the projection
of the cylinder axis in the image. The two lines with
parameters l1 and l2 are the projections on the image plane
of the two planes, which are tangent to the cylinder and
contain the camera origin. The line with parameter l0 is
the projection of the plane passing through the cylinder
axis and the camera origin. The equations of these three
planes in the 3D space are

lTi (Kp) = (KT li)
T p = nT

i p = 0 (2)

where K is the camera matrix obtained from the intrinsic
calibration, ni = KT li the normal vectors of the planes
corresponding to the lines li with i = 0, 1, 2 (in the follow-
ing, the normalized normals n̂i = ni/‖ni‖ are used), and
p a generic vector in camera reference frame coordinates.
The direction of the cylinder axis is given by direction
vector cd = n̂1 × n̂2. If the cylinder radius cr is known,
then the distance of the cylinder axis from the camera
center is equal to

d =
cr

sin
(

1

2
acos (|n̂1 · n̂2|)

) (3)

The projection of the camera origin on the cylinder axis
is equal to cp = d(cd × n̂0) (if cp,z < 0, then substitute
cp ← −cp). These geometric constraints allow estimation
of the object pose in space using only a single image.
The accuracy of such estimation depends on the image
resolution and on the extraction of the two lines. It can
be used as an initial estimation that can be refined by
processing the 3D point cloud computed using stereo
vision, or to validate the results.

4.2 Stereo-Camera Processing and Pose Estimation

Object detection and pose estimation are performed on the
3D point cloud computed using stereo vision techniques.
The ROI obtained from single camera processing is used
to restrict the region where stereo point matching is per-
formed and the object is searched. The benefit of restrict-
ing the region size where stereo processing is performed is
limited when the disparity image is performed using incre-
mental block-matching SAD (sum of absolute differences)
algorithm. Since the SAD of a block is computed using the
SAD values of adjacent blocks, the advantage of computing
the disparity image only on the ROI is not significant.
However, estimation of noisy point cloud limited to the
ROI saves about 15% of the time for each frame.
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Fig. 4. An example of pose estimation by matching the
raw point cloud and a cylinder model (blue).

The importance of a ROI is more apparent in object recog-
nition, since this step requires computationally expensive
operations on point clouds. In particular, the ROI can be
used to select the point cloud C where to search objects.
The objects to be recognized have a cylindrical shape and
can be represented by a parametric model. In particular,
we represent cylinders using 7 parameters: the three co-
ordinates of a cylinder axis point cp = [cp,x, cp,y, cp,z]

T ,
the axis direction vector cd = [cd,x, cd,y, cd,z]

T , and the
radius cr. The model matching algorithm simultaneously
searches for a subset of the point cloud that better fits a
cylindrical shape and computes the value of the cylinder
parameters c = [cTp , c

T
d , cr]

T . Three algorithms have been
applied to the problem: RANSAC (RANdom SAmple Con-
sensus) Fischler and Bolles (1981), PSO (Particle Swarm
Optimization), and DE (Differential Evolution) (for PSO
and DE see Ugolotti et al. (2013)). These algorithms re-
quire a fitness function that measures the consensus of a
subset of the point cloud C over a candidate model c. A
natural fitness function is the percentage of points pi ∈ C
such that their distance to the cylinder c is less than a
given threshold dthr. The more obvious measure of the
displacement between a point pi and a cylinder c is the
Euclidean distance

dE(pi, c) =

∣

∣

∣

‖cp × (cp − pi)‖

‖ld‖
− r

∣

∣

∣

(4)

However, the Euclidean distance may not take into ac-
count some orientation inconsistencies. If the normal vec-
tor ni on point pi can be estimated, the angular displace-
ment between the normal and the projection vector of the
point pi on the cylinder c (called proj(pi, c) hence after)
provides

dN (pi, ni, c) = min(αi, π − αi) (5)

αi = arcos

(

ni · proj(pi, c)

‖ni‖ ‖proj(pi, c)‖

)

proj(pi, c) = pi − cp −

(

pi · cd − cp · cd

‖cd‖2

)

cd

The chosen distance function is a weighted sum of two
distances

d(pi, ni, c) = w · dE(pi, c) + (1− w) · dN (pi, ni, c) (6)

Figure 4 shows an example where the cylinder pose is
approximately recovered from the point cloud. It should
be observed that the cylinder model parameters and the
point-to-model distance are the only parts of the algorithm
depending on the specific object shape.

5. EXPERIMENTAL EVALUATION

Two experimental sessions were conducted at the Lake of
Garda (Italy) to assess the performance of the system. The

Fig. 5. Images of the experimental sessions.

session 1 session 2
location Bardolino Malcesine

time 10: 00− 12: 00 10: 00− 12: 00

weather clouds sun

floor stones and algae stones and algae

object depth [1.8m, 2.3m] [2m, 3m]

camera depth ∼ 40cm ∼ 40cm

max canister temp 68oC 63oC

max fps 3.31Hz 6.62Hz

Table 1. Experimental session data.
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Fig. 6. Temperature trends over time for the experimental
sessions in Bardolino and Malcesine.

prototype was fixed to a floating unit, as shown in figure 5.
Cylindrical objects were submerged at a depth that ranged
from 1.8m to 3m. PVC tubes of different colors were
used (10cm diameter, 1m length). Table 1 summarizes
the experimental conditions of the two sessions. In both
sessions the average depth of the camera was about 40cm
below water level. In the two sessions the frame rate was
set at different rates resulting in the effective frame rates
in Table 1.

One of the goals of the experiments was to test the
physical properties of the embedded system, such as the
water-proof endurance of the low-cost canister and the
thermal balance of the electronic devices inside it. The
sealed canister has proven to be able to transfer heat
through thermal conduction and without any active device
like a fan. Figure 6 illustrates the temperature values
measured during the two sessions, each lasting more than
one hour. Sensors temp analog 1 and DHT11 measure
the environmental temperature inside the canister, temp
analog 2 is placed on the heat sink of the CPU and
temp analog 3 is placed on the SSD hard drive. The
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Fig. 7. Example of ROI (left) and CMask (right) computed
on the same input frame.

Pre-processing Frames CMask ROI ROI/CMask

no 304 9.32% 33.18% 3.72
yes 304 9.07% 11.98% 1.31

Table 2. ROI and CMask computation w.r.t.
image pre-processing.

Num. Frames Distance [mm]
avg std.dev.

302 1441 169

Table 3. Mono-camera estimated distance.

maximum temperature value of 68◦ C has been measured
by the sensor on the CPU, as it might be expected. All
measurements seem to converge to stable and safe values.
The approximate power consumption measured in the
laboratory for the whole system is about 17 W . Thus, the
thermal dissipation behavior of the embedded system has
proven adequate for its correct operation.

The image pre-processing algorithms discussed in sec-
tion 4.1 significantly influence underwater object detection
performance. In order to assess the effectiveness of the pre-
processing algorithms, the CMask and the ROI have been
computed on a set of 304 sample images. Results have been
computed on both the raw and the pre-processed images.
The average percentage of CMask and ROI pixels over the
whole image and the ratio between the two quantities are
reported in Table 2. The region found by the CMask only
slightly depends upon the quality of the input image (since
it exploits the information about the color of the object),
whereas the computed ROI is more affected by the image
quality. The ROI in the pre-processed image is on average
only one third of the ROI computed in the raw image.
Thus, assuming that the CMask reasonably approximates
the groundtruth, the ROI provides an adequate estimate of
the object for underwater detection, as long as appropriate
pre-processing is performed. Figure 7 shows an example of
ROI and CMask computed on the same input frame. The
complete mono-camera processing is performed on average
in 74.82 ms, with a standard deviation of 3.20 ms.

Mono-camera images have been used to estimate the pose
of a cylindrical pipe, as discussed in section 4.1. The
algorithm computes all the parameters of the cylinder axis
that allow localization of the target object. However, dur-
ing experiments at the Garda lake, the embedded system
swung rather fast attached to the floating support, due to
the continuous waves (see Figure 5). In such experiments
no groundtruth is usually available, therefore a parame-
ter invariant to camera motion is required to assess the
precision of the proposed method. The object lies on the
lake floor and the camera depth remains approximately
constant. Thus, the distance between the camera center
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Fig. 8. Object recognition results on the point cloud.

and the cylinder axis in equation (3) approximately meets
this pre-requisite. Table 3 illustrates the average distance
and the standard deviation of the axis computed in a
sequence of 302 frames. The standard deviation of 17 cm is
due to both the estimation error and to the slight variation
of distances caused by waves.

A second set of experiments has aimed at assessing the
object detection and pose estimation performance on the
point cloud acquired in the stereo camera configuration.
Unfortunately, the point cloud obtained from the under-
water dataset is rather sparse and noisy. As mentioned
above, in water the embedded system was attached to
a floating support, and the camera baseline swang due
to waves. Since the webcams are not synchronized by a
hardware trigger, the computed disparity image becomes
noisy and inaccurate. The triggering delay between two
cameras is on average about 65 ms. Thus, an alternative
dataset of images has been acquired in air to obtain an
evaluation of the full stereo-processing pipeline. In this
alternative setting, the target cylindrical pipes lay in a
dry river bed among sand and stones, and the embedded
acquisition box is manually moved. Figure 8 summarizes
the object recognition results for RANSAC, PSO, and
DE recognition algorithms. The three algorithms obtain
comparatively similar recognition results, but as could be
expected RANSAC is at least one order of magnitude
faster than the alternative algorithms. Figure 4 shows the
recognition of a cylinder from 3D point cloud data.

6. CONCLUSIONS

This paper has presented the design and experimental
evaluation in real underwater environment of an embedded
vision system for underwater object detection. The design
approach has focused on a low power budget, low cost, and
inevitably low performance embedded system. The system
has proven thermally stable and capable of guaranteeing
a level of autonomy of at least two hours of video ac-
quisition. Suitable preprocessing and image enhancement
algorithms have proven effective in improving underwater
images, thereby enabling detection of regions of interest
as well as detection and localization of known objects in
sequential image streams gathered from a single camera.
On the contrary, the 3D point clouds obtained from stereo
processing of multiple underwater camera streams have
not allowed reliable object detection and localization. The
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stereo processing pipeline has been eventually evaluated on
a dataset obtained in outdoor, in-air conditions. The low
quality of the 3D point cloud computed from underwater
images is mainly due to lack of hardware synchronization
between the webcams, which of course is affected by the in-
motion nature of underwater perception (with possibility
of strong fluctuations at low depths or in presence of
water streams). Moreover, the accuracy, resolution, and
acquisition rate afforded by inexpensive webcams have
proven inadequate for challenging underwater perception
tasks.

Although the experimental evaluation has shown its strong
limitations, the prototype described in this work has pro-
vided insights for development of more advanced under-
water vision systems. Indeed, low-cost stereo vision tech-
nologies seem adequate for evaluation of early-stage image
processing algorithms in underwater environments. The
essential requirement for the next version of our system is
the adoption of more advanced vision sensors. Moreover,
based on the experience gathered with this prototype,
we are currently investigating different tradeoffs between
power demand and performance, including better heath
trasfer mechanisms from the electronics to the canister
body. The final aim is to support real-time stereo vision
algorithms in fully autonomous configuration.
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