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Abstract: An approach of iterative predictive learning control (IPLC) is studied with consideration to both 
precise train trajectory tracking and energy efficient operation. Through designing the predictive cost 
function, the IPLC approach for input-affine nonlinear systems is formulated and solved in this paper. Its 
application to train operation is detailed to compromise between punctuality and energy consumption. 
Rigorous theoretical analysis confirms that the proposed approach can guarantee the asymptotic 
convergence of train speed and position to desired profiles along iteration axis. Simulation result shows its 
effectiveness and enegry efficiency. 

 

1. INTRODUCTION 

Due to the large capacity, low energy consumption, and high 
punctuality rate, railway transportation plays a more and 
more important role in mass transit both within and between 
cities. Recently, high-speed railway and subway are 
developing with great achievements worldwide, and 
automatic driving is one of the key technologies for the train 
control and monitoring to ensure safety and comfort. 
Speed regulation is one of the main tasks of automation train 
operation (ATO), along with programmed stopping, 
performance level regulation, etc.. At present, various control 
methods have been developed to deal with the train trajectory 
tracking problem, such as PID (Murtaza & Garg, 1989), 
fuzzy logic control (Chang & Xu, 2000), and nonlinear 
output regulator (Zhuan & Xia, 2008). 
It is worth noting that the train, especially high-speed train 
and subway train, operates according to its operation 
diagrams on the same track strictly every day, every week, or 
even every year. This operation pattern leaves train operation 
an inherent outstanding feature, repetition. However, the 
majority of existing ATO methods, including aforementioned 
methods, neglect this significant unique characteristic of train 
motion, and a large amount of valuable historical information 
is wasted. Without learning from the recurrent train operation 
process, control performance of train operation cannot be 
improved no matter how many times it runs. 
In control theory community, there is a control method called 
iterative learning control (ILC), just proposed for addressing 
the control problem of a system repeating the same control 
task on a finite interval. After first proposed by Arimoto, 
Kawamura, & Miyazaki (1984), ILC has been well studied 
both in theory (Xu & Tan, 2003; Ahn, Moore, & Chen, 2007) 
and in application (Bristow, Alleyne, & Zheng, 2004; Hou, 
Xu, & Yan, 2008). Compared to other control methods, ILC 
possesses capacity to learn and improve control performance 
from previous executions. Moreover, less priori knowledge 
of system model is required. All these characteristics indicate 
that it is an ideal tool to deal with train operation. 

There are already a few works on ILC based train operation, 
such as terminal ILC based train station stop (Hou et al., 
2011), norm optimal ILC based train trajectory tracking (Sun, 
Hou, & Li, 2012), and coordinated ILC based multi-train safe 
operation (Sun, Hou, & Li, 2013). However, none of these 
works takes energy efficient operation into account. 
In general, the energy conservation of train operation are 
studied either by utilization of regenerative braking (Estima 
& Marques, 2012; Yang et al., 2013) or by cybernetic studies 
(Howlett & Pudney, 1995; Bocharnikov, Tobias, & Roberts, 
2010; Ke, Lin, & Lai, 2011; Ke, Lin, & Yang, 2012). In this 
work, we focus on the latter. In existing studies, several 
control methods have been applied to energy efficient train 
operation, such as optimal control theory (Howlett & Pudney, 
1995), genetic algorithm (Bocharnikov, Tobias, & Roberts, 
2010), fuzzy logic control (Bocharnikov et al., 2007), max-
min ant system (Ke, Lin, & Yang, 2012;), and combination of 
them (Bocharnikov et al., 2007; Ke, Lin, & Lai, 2011). 
This paper aims at developing an iterative predictive learning 
control (IPLC) approach for the input-affine nonlinear 
systems. Note that the combination of various predictive 
control methods and ILC has been studied, but most of them 
are studied for linear systems (Lee & Lee, 2000; Shi, Gao, & 
Wu, 2007), and little relative theoretical research is on 
nonlinear systems (Balaji et al., 2007; Cueli & Bordons, 
2008). Different from existing works, the proposed IPLC 
approach is designed for input affine nonlinear systems, and 
its prediction is along iteration axis, rather than time axis, 
which can improve the transient behavior along iteration axis. 
Its application to train operation makes a compromise 
between train tracking precision and energy consumption. 
The other parts of this paper are organized as follows. Section 
2 shows the train motion dynamics model and problem 
formulation. The IPLC approach for input-affine nonlinear 
systems is formulated and solved in Section 3. Three sets of 
simulation results are provided is Section 4. Finally, Section 
5 concludes the paper. 

2. PROBLEM FORMULATION 
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2.1  Train Motion Dynamics Model and Discretization 

The motion dynamics model of a train is firstly proposed in 
Davis (1926), and then Hay gave a detailed description of the 
model in his monograph (Hay,1982) as follows, 
 ( ) ( ),dv dt u w v g s= − −  (1) 

 ,ds dt v=  (2) 

 2
0 ( ) ,a vw v c v c v c= + +  (3) 

 ( ) ( ) sin ( ) ,g s l sθ= ⋅  (4) 

where v  (m/s) is train speed, u  (N/kg) is traction or braking 
force on unit mass, s  (m) is position of the train, ( )w v  (N/kg) 

is the general resistance on unit mass, ( )g s  (N/kg) is the 

additional resistance on unit mass caused by slope angle and 
degree of curvature, 0, ,a vc c c  are coefficients of general 

resistance, depending on many factors, such as vehicle 
characteristic, weather condition, wind speed, wind direction, 
etc., l  is coefficient of additional resistance, and ( )sθ  is 

slope angle at position s . 
Above train motion model is continuous-time. However, 
discrete-time is more convenience for computer-based 
control methods and data storage. Therefore, we transform 
above equations into discrete-time difference equations. Here 
we consider the operation diagram over a fixed time interval 

[ ]0,T , i.e., [ ]0,t T∈ . By choosing Δ  as sample time, the 

whole time interval in discrete-time domain becomes 
0,1, ,k K=  , and T K= Δ ⋅  holds. According to Euler 

Formula, differential equations (1)-(4) can be discretized as, 
 ( ) ( )( 1)= ( ) ( ) ( ),v k f v k h s k u k+ + + Δ ⋅  (5) 

 ( 1) ( ) ( ),s k s k v k+ = + Δ ⋅  (6) 

where ( ) ( )2
0( ) ( ) 1 ( )a vf v k c v k c v k c= − Δ ⋅ − Δ − ⋅ − Δ , and 

( ) ( )( ) ( )h s k g s k= −Δ⋅ . 

2.2  State Space Representation and Assumptions 

By defining speed and position of the train as system states, 

i.e., [ ]( ) ( ), ( )
T

n n nk v k s k=x , the train motion dynamics can be 

rewritten as following, 
 ( )( 1) ( ) ( ),n n nk k u k+ = + ⋅x f x b  (7) 

where ( ) ( ) ( )( ) ( )
( )

( ) ( )
n n

n
n n

f v k h s k
k

v k s k

+ 
=  Δ ⋅ + 

f x , 
0

Δ 
=  
 

b . 

For the convergence analysis, some reasonable assumptions, 
which are common in ILC design, are made first. 
Assumption 1. Function ( )⋅f  is uniformly globally Lipschitz 

continuous on its compact set Ω  with respect to its 
arguments, 

 ( ) ( )1 2 1 2( ) ( ) ( ) ( ) ,fk k k k k− ≤ ⋅ −f x f x x x  (8) 

where fk  is Lipschitz constant, compact set = ×Ω V S , V  

and S  are the range of speed and position of train operation. 
Assumption 2. The re-initialization condition is satisfied 
throughout the repeated iterations, i.e., 
 (0) (0),     ,n d n= ∀x x  (9) 

where (0)dx  are initial values of the desired system states. 

Assumption 3. There exists an appropriate control ( )du k  

which can drive the system states to track ( 1)d k +x  for 

system (7) over the whole finite interval [ ]0, 1k K∈ − , i.e., 

 ( )( 1) ( ) ( ).d d dk k u k+ = + ⋅x f x b  (10) 

Remark 1. Assumption 1 requests the train motion dynamics 
to be globally Lipschitz continuous, which can be naturally 
satisfied, since the train motion dynamics (7) is bounded 
continuously differentiable on its bounded compact set Ω . 
Assumption 2 can be also satisfied, because if the train 
operation task is set to run from one station to the next, the 
train always departs from one station after stopping for a 
while according to the prescheduled timetable, i.e., 

(0) (0) 0n dv v= = , (0) (0) 0n ds s= = . Assumption 3 is a 

reasonable assumption that the task assigned for control 
should be feasible. 

3. ITERATIVE PREDICTIVE LEARNING CONTROL 
APPROACH 

In this section, the iterative predictive model is first 
developed for prediction and controller design. And then the 
IPLC controller is designed by optimizing a cost function. At 
last, the convergence of the IPLC approach is studied. 

3.1   Iterative Predictive Model 

In order to predict the state sequence in future iterations, a 
predictive model in iteration domain will be constructed 
briefly. The interested reader can refer Sun & Hou (2013). 
The prediction model is, 

 , , ,
ˆ( 1) ( ) ( ),n L n L n Lk k k+ = ⋅ ⋅ Δ + ⋅1 B 1X U H  (11) 

where 2 1
, | , 1| ,( 1) ( 1), , ( 1)

TT T L
n L n n k n L n kk k k ×

+ − + = + + ∈  X x x , 

[ ] 1
, 1( ) ( ) ( )

T L
n L n n Lk u k u k ×

+ −= ∈U   , 

, , 1,( ) ( ) ( )n L n L n Lk k k−Δ = −U U U  

2 2L L×

 
 =
  

I 0
1

I I
 


, 

2L L×

 
 =
  

0
B

0

b

b
 , 

1
1

1 1
0 1

,

1

1 1
0 1

ˆ( 1) ( ) ( )

ˆ ( ) ( )
ˆ ( )

ˆ ( ) ( )

n n n
kk

n n
j i j

n L

kk

n L n L
j i j

k k k

i u j
k

i u j

−
−

+ +
= = +

−

+ − + −
= = +

 + + Δ
 
 ⋅ ⋅Δ
 =  
 
 ⋅ ⋅Δ
  

∏

∏

Α

Α

Α

x x

b
H

b


.  

According to the definition of ( )n kΑ , 

 ( )1, 2
ˆ ˆ( ) ,T

n nk k =  Α f f , (12) 

where [ ]2 1T = Δf . 

From (11), we find that the sequence ( ) ( )1, 1, 1
ˆ ˆ, ,n n Lk k+ −f f  

are still needed to be estimated. Here we use projection 
algorithm along iteration axis. 

First, ( )1,
ˆ

n kf  will be predicted as,  
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( ) ( ) ( )

[ ] ( )( ){
( ) ( )}

1, 1, 1 1 22

1 2

1 2 1 2

1 2 1, 1

ˆ ˆ ( ) ( )
( ) ( 1)

        10 ( 1) ( 1) ( ) ( )

ˆ        ( ) ( )

n n n n

n n

n n n n

T

n n n

k k k k
k k

k k u k u k

k k k

γ
μ− − −

− −

− − − −

− − −

′ = + ⋅ −
+ − −

× ⋅ + − + − ⋅ −

− − f

f f x x
x x

x x b

x x

(13) 

 ( )
( )

( ) ( )
( )

1,max 1, 1 1,max

1, 1, 1 1,min 1, 1 1,max

1,min 1, 1 1,min

ˆ ˆ ˆ              ,
ˆ ˆ ˆ ˆ ˆ         ,

ˆ ˆ ˆ               .

n

n n n

n

k

k k k

k

−

− −

−

 ′ ≥


′ ′= < <
 ′ ≤

f f f
f f f f f

f f f
  (14) 

And then ( ) 1 2
1,
ˆ ( ), ( )T

n l n l n lk k kϕ ϕ+ + + =  f  
 ( 1, , 1l L= − ) are,  

 1 1 1
1 1( ) ( ) ( ),T

n l n l n lk k kϕ + + − + −= Θ Ψ
  (15) 

 2 2 2
1 1( ) ( ) ( ),T

n l n l n lk k kϕ + + − + −= Θ Ψ
  (16) 

 

1
1 1 2

1 2 21 1
2

1 1 1
1 2 2

( )
( ) ( )

( )

                     ( ) ( ) ( ) ,

n l
n l n l

n l

T
n l n l n l

k
k k

k

k k k

δ

ϕ

+ −
+ − + −

+ −

+ − + − + −

Ψ
Θ = Θ +

+ Ψ

 × − Ψ Θ 


  (17) 

 

2
2 2 2

1 2 22 2
2

2 2 2
1 2 2

( )
( ) ( )

( )

                     ( ) ( ) ( ) ,

n l
n l n l

n l

T
n l n l n l

k
k k

k

k k k

δ

ϕ

+ −
+ − + −

+ −

+ − + − + −

Ψ
Θ = Θ +

+ Ψ

 × − Ψ Θ 


  (18) 

where 1 1 1 1
1 1, 2, ,( ) ( ), ( ), , ( )

p

T

n l n l n l n n lk k k kθ θ θ+ − + + +
 Θ =   , 

2 2 2 2
1 1, 2, ,( ) ( ), ( ), , ( )

p

T

n l n l n l n n lk k k kθ θ θ+ − + + +
 Θ =   , 

1 1 1 1
1 1 2( ) ( ), ( ), , ( )

p

T

n l n l n l n l nk k k kϕ ϕ ϕ+ − + − + − + −
 Ψ =  
   , 

2 2 2 2
1 1 2( ) ( ), ( ), , ( )

p

T

n l n l n l n l nk k k kϕ ϕ ϕ+ − + − + − + −
 Ψ =  
   , and pn  is a 

proper order.  
Therefore, according to (12)-(18), all of the parameters in 

, ( )n L kH  have been predicted, and the prediction model (11) 

can be used for controller design. 

3.2   Controller Design 

According to the demands of train trajectory tracking and 
energy efficient operation, the following quadratic prediction 
objective , ( )n LJ k  is considered, 

 
, , ,

, , , ,

( ) ( 1) ( 1)

         ( ) ( ) ( ) ( ),

T
n L n L n L

T T
n L n L n L n L

J k k k

k k k k

δ δ= + ⋅ ⋅ +

+Δ ⋅ ⋅Δ + ⋅ ⋅

Q

R S

X X

U U U U
  (19) 

where , | , 1| ,( ) ( ), , ( )
TT T

n L n n k n L n kk k kδ δ δ + − =  X x x , 

| , | ,( ) ( ) ( )n l n k d n l n kk k kδ + += −x x x  ( 0,1, , 1l L= − ), Q, R, and S 

are weighting matrices. 
Note that weighting matrix S is on the input force, which 
determines the energy consumption in the prediction horizon. 
Specifically, if =S 0 , the cost function is irrelevant to the 
energy consumption, and only focuses on the tracking control. 
Intuitively, the larger S is, the controller will be more energy 
efficient, which would be illustrated in simulations. 
From (11), it yields, 

 , , ,
ˆ( 1) ( ) ( ),n L n L n Lk k kδ δ+ = ⋅ − ⋅ ⋅ Δ1 1 B UX H   (20) 

where 

,1
1

1 1
0 1

,

1

1 1
0 1

ˆ ( )

ˆ ( ) ( )
ˆ ( )

ˆ ( ) ( )

n
kk

n n
j i j

n L

kk

n L n L
j i j

k

i u j
k

i u j

δ

δ

−

+ +
= = +

−

+ − + −
= = +

 
 
 − ⋅ ⋅Δ
 =  
 
 − ⋅ ⋅Δ
  

∏

∏

Α

Α

h

b
H

b


, 

,1 1
ˆ ˆ( ) ( 1) ( ) ( )n n n nk k k kδ δ −= + − ΔΑh x x . 

By substituting (20) into (19) and using the optimal condition 

,

,

( )
0

( )
n L

n L

J k

k

∂
=

∂U
, the update law for IPLC can be got, 

 
( ) ( )

( )

1

, 1,

1

,

( ) ( )

ˆ                  ( ).

T T T T
n L n L

T T T T
n L

k k

kδ

−

−

−

= + + +

+ + + ⋅

B 1 Q1B R S B 1 Q1B R

B 1 Q1B R S B 1 Q1

U U

H
 (21) 

In terms of receding horizon principle, only the control input 
in current iteration is actually executed into the system, 

 
( ) ( )

( )

1

1,

1

,

( ) ( )

ˆ             ( ).

T T T T
n n L

T T T T
n L

u k k

kδ

−

−

−

= ⋅ + + +

+ ⋅ + + ⋅

B 1 Q1B R S B 1 Q1B R

B 1 Q1B R S B 1 Q1

g U

g H
(22) 

where [ ] 11 0 0 L×= ∈ g . 

Here, the procedure for the IPLC implementation will be 
summarized. First, assume that the system has executed at 
sample time k in n-th iteration. 
Step 1. ( )n kA  is estimated by (12)-(14); 

Step 2. ( )n l k+A  ( 1, , 1l L= − ) are predicted by (15)-(18); 

Step 3. A control sequence at sample time k in n-th, (n+L-1)-
th iterations can be computed by (21), and only the first 
element, namely the control input at sample time k in n-th 
iteration, is implemented (22). 

3.3   Convergence Analysis 

Theorem 1. For system (7) satisfying Assumption 1-3, if the 
system is controlled by the IPLC update law in (22), together 
with parameter prediction algorithms (12)-(18), convergence 
of the controlled system along iteration domain is guaranteed 
by any symmetric positive definite matrix Q, r=R I  ( 0r > ), 
and S satisfying that the eigenvalues of κ  are less than 1, 
where, 

 ( ) ( )( )1

0 ,T T T T−
= + + + −κ B 1 Q1B R S R B 1 Q1 B b  (23) 

 0 .

 
 

=  
 
 

b

b 0 0
0 0

0 0



   (24) 

Proof. Due to the space limiation, only a concise proof is 
given here. For further detail, please refer to Sun & Hou 
(2013).  
From (7) and (21), we obtain, 

 

( )
( )( )

( )

1

,

0 1,

1

,

( )

       ( )

ˆ       ( ),

T T
n L

T T
n L

T T T T
n L

k

k

kδ

−

−

−

= + +

× + −

′+ + + ⋅

B 1 Q1B R S

R B 1 Q1 B b

B 1 Q1B R S B 1 Q1

U

U

H

 (25) 

where, 
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,1
1

1 1
0 1

,

1

1 1
0 1

ˆ ( )

ˆ ( ) ( )
ˆ ( ) ,

ˆ ( ) ( )

n
kk

n n
j i j

n L

kk

n L n L
j i j

k

i u j
k

i u j

δ

δ

−

+ +
= = +

−

+ − + −
= = +

 ′
 
 − ⋅ ⋅Δ
 ′ =  
 
 − ⋅ ⋅Δ
  

∏

∏

Α

Α

h

b
H

b


 (26) 

 

1

,1 1 1
0 1

1

0 1

ˆ ( ) ( ) ( )

        ( ) ( ) ( ).

kk

n n n
j i j

kk

d n n
j i j

k i u j

u k i u j

δ δ
−

− −
= = +

−

= = +

′ = ⋅ ⋅

+ ⋅ − ⋅ ⋅ Δ

∏

∏

Φ

Α

h b

b b
 (27) 

By defining , , ,(0), , ( 1)
TT T

n L n L n L K = − U U U , (25) becomes, 

 , ,1 1, , ,2 1, , ,3 , , ,4 ,n L u n L u n n L u n n L u n d− −= ⋅ + ⋅ + ⋅ + ⋅L L L LU U U U U  (28) 

where ,1u

 
 =
  

κ
L

κ
 , 

1,0

, ,2

1,0 1, 2

n
u n

K K K
n n

− − −

 
 

=  
 
 

L

0
γ

γ γ 0


  



, 

1,0

, ,3

1,0 1, 2

n
u n

K K K
n n

− − −

 
 

=  
 
 

L

0
β

β β 0


  



, 
1,0

, ,4

1,0 1, 2

n
u n

K K K
n n

− − −

 
 

=  
 
 

L

α
α

α α α


  



, 

( ) ( )( )1

0
T T T T−

= + + + −κ B 1 Q1B R S R B 1 Q1 B b , 

( )

( )1
1

1, 1
1

1
1

( ) ( )

( )

( )

i

n n
l j

i

i j T T T T n
n l j

i

n L
l j

l l

l

l

−
= +

−
+

= +

+ −
= +

 − ⋅ 
 
 ⋅ = + +
 
 
 ⋅  

∏

∏

∏

Α Φ

Α
B 1 Q1B R S B 1 Q1

Α

b

bγ

b


, 

( )
11,

1
1

( )

( )

i

n
l j

i j T T T T
n

i

n L
l j

l

l

= +−

+ −
= +

 ⋅ 
 

= − + +  
 ⋅ 
 

∏

∏

Α

B 1 Q1B R S B 1 Q1

Α

b

β

b

 , 

( ) 1T T T T−

 
 
 = + + ⋅
 
 
 

B 1 Q1B R S B 1 Q1

b
0

α

0


,

( )
1

11,

( )
i

n
l ji j T T T T

n

l−
= +−

 ⋅ 
 = + +  
 
  

∏Φ

B 1 Q1B R S B 1 Q1

b

α 0

0


. 

From (28), it derives, 
 1 1

, 1, , ,4 ,n L n n n L n u n d
− −

−= + ⋅Γ Κ Γ LU U U   (29) 

where 
1,0

, ,3

1,0 1, 2

n
n u n

K K K
n n

− − −

 
 −= − =  
 
− − 

I

Γ I L

I

β

β β


  



, 

1,0

,1 , ,2

1,0 1, 2

n
n u u n

K K K
n n

− − −

 
 

= + =  
 
 

κ

Κ L L

κ

γ

γ γ


  



. 

Note that nΓ  is a block lower triangular matrix with unit 

matrix as its diagonal block, thus 1
n n
−Γ Κ  and κ  share the 

same eigenvalues. 
Since ( )n kΦ  is bounded for 0,1, ,k K=   and 1,2,n =  , 

there exist a matrix 

0,0

0,1

1,0 1, 2 1, 1K K K K K− − − − −

 
 
 =
 
 
  

κ 0

hΖ

h h κ


  



 

satisfying the following inequality, 
 1

1,  1, 2, ,n n n− ≤ ∀ =Γ Κ Ζ   (30) 

 1
, ,4 2 , 1,2, .n u n n− ≤ ∀ =Γ L Ζ   (31) 

Combining (29)-(31), it derives, 
 , 1 1, 2 .n L n L d−≤ ⋅ + ⋅U Ζ U Ζ U  (32) 

If all of the eigenvalues of | |κ  are less than 1, 1Ζ  is a stable 

matrix. Therefore, from (32) we have the asymptotic 
convergence of nu  along iteration axis.  

Remark 2. Note that all elements in matrix ,| |k kκ  are known, 

i.e., B, Q, and R, which means its eigenvalues can be 
calculated directly and accurately. As for train motion 
dynamic system, exact values of system parameters, such as 

0 , , ,v ac c c l , are not necessary. This indicates that it is more 

suitable to apply IPLC to train trajectory tracking problem 
than other model based control approaches in practice. 

4. NUMERICAL SIMULATIONS 

In this section, we will verify the validity of the proposed 
IPLC approach and the effects of its predictive horizon and 
weighting matrices through numerical simulations. The train 
motion dynamic system is applied and simulated in 
MATLAB. 
The chosen railway track is 36.28km long with an upgrade of 
9.68km in length. Sample time is chosen to be 0.01s. Fig. 1 
shows the route vertical profile. The actual parameters of the 
train are listed below, which are only for simulation of train 
motion, 61.5 10ac −= × , 57.5 10vc −= ×  and 2

0 1.66 10c −= × . 

The additional resistance ( )g s  is a piecewise continuous 

function of the displacement as shown in Fig. 2. The desired 
state profiles, i.e., speed and position trajectory profiles, is 
given in Fig. 3. 

start end

0 15' 0

15 9.68 11.6

unit: km

 
Fig. 1. Vertical profile of the track 
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Fig. 2. Additional resistance along the track 
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Fig. 3. Desired speed and position trajectory profile 
Three sets of simulations are provided here. At first, the 
tracking ability of the proposed IPLC and its superiority to 
non-predictive one is shown. And then the effect of 
weighting matrix R on the convergence rate is illustrated. At 
last, IPLC algorithms with different S are simulated to 
demonstrate its function of energy conservation. 
Firstly, two cases are simulated to show the effectiveness and 
practicability of IPLC. Case I, IPLC algorithm with 
predictive horizon 1 ( 1L = ), which equals to non-predictive 
optimal ILC, and , 5, 0.5= = =Q I R S ; Case II, IPLC 

algorithm with predictive horizon 3 ( 3L = ), and 
, 5 , 0.5= = ⋅ = ⋅Q I R I S I . 

Fig. 4 gives the learning errors of Case I and II. Here learning 
error is defined as the root mean square (RMS) of the state 
errors over the whole time interval. From Fig. 4, it can be 
observed clearly that by applying the proposed IPLC, actual 
train speed and position converge to the desired ones just 
after a few iterations. What’s more, the converged learning 
error of IPLC is smaller than that of optimal ILC, where 
illustrates the superiority of predictive part in the proposed 
approach. 
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Fig. 4. Learning errors by IPLC with different predictive horizons 
(Case I, II) 
Secondly, three cases are simulated to show the effect of 
weighting matrix R. The predictive horizons of Case Ⅲ, Ⅳ 
and Ⅴ are all 5 ( 5L =  ), and their weighting matrices Q,S 
are set to be , 0.5= = ⋅Q I S I . The different weighting 

matrices R are applied: Case Ⅲ. =R 0 , Case Ⅳ. 30= ⋅R I , 
and Case Ⅴ. 50= ⋅R I . 
Fig. 5 provides learning errors of Case Ⅲ, Ⅳ and Ⅴ. Actual 
train speed and position converge to the desired ones by 
applying all these three IPLC algorithms. Moreover, the 
larger the weighting matrix R is, the faster the convergence 
rate of learning error is. 
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Fig. 5. Learning errors by IPLC with different R (Case Ⅲ, Ⅳ, Ⅴ) 
Thirdly, three cases are provided to illustrate the function of 
weighting matrix S. The predictive horizons are all 5 ( 5L = ), 
and their weighting matrices Q, R are set to be =Q I , 

5= ⋅R I . The different weighting matrices S here are: Case 
Ⅵ. =S 0 , Case Ⅶ. =S I , and Case Ⅷ. 2= ⋅S I . 
From Fig. 6, it can also be observed that the learning errors 
converge along iteration axis by means of IPLC with different S. In 
addition, the larger the weighting matrix S is, the larger the 
converged errors are. Note that in Fig. 7, the larger the weighting 
matrix S is, the less the energy cost is, which validates the function 
of weighting matrix S in the cost function design. By combining Fig. 
6 and Fig. 7, it can conclude that the smaller the converged learning 
errors are, the more energy will be consumed, which indicates the 
compromise ought to be made between converged learning errors 
and energy consumption. 
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Fig. 6. Learning errors by IPLC with different S (case Ⅵ, Ⅶ, Ⅷ) 
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Fig. 7. Energy cost by IPLC with different S (case Ⅵ, Ⅶ, Ⅷ) 

5. CONCLUSIONS 

An approach of iterative predictive learning control (IPLC) is 
proposed for input-affine nonlinear systems. The application 
of IPLC to train trajectory tracking and energy efficient 
operation is further detailed by capturing and utilizing the 
repeatability of train motion dynamics. Moreover, when 
applying IPLC, convergence condition of the train motion 
system is solely determined by sample time, and other 
unavailable parameters will not affect its asymptotic 
convergence. Rigorous theoretic analyses and simulations 
show the feasibility of the proposed IPLC. 
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