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Abstract: The paper tailors the so-called wave-absorbing control designed for a homogenous
platoon of vehicles to a platoon where dynamics of vehicles differ. The proposed solution is based
on the symmetric bidirectional control of the in-platoon vehicles and wave-absorbing control of
the platoon ends. This type of control reduces oscillations of vehicle’s velocities and significantly
decrease the settling time of the platoon by absorbing waves on the platoon ends. The necessary
transfer-function-based mathematical apparatus for description of the so-called soft boundary is
also presented. Although the soft boundary is a virtual boundary located between the vehicles
of different dynamics, it significantly alters the behaviour of the platoon. It is shown how to
incorporate model of the soft boundary into the design of the wave-absorbing control such
that its effect is minimized. The proposed control scheme is verified on numerous mathematical
simulations.

Keywords: Wave-absorbing controller, heterogenous vehicular platoon, symmetric bidirectional
control, soft boundary, wave transfer function.

1. INTRODUCTION

1.1 Vehicular platooning

The main task of the vehicular platooning is to drive safely
and efficiently several vehicles travelling in a row. The
motivation is to increase highways capacity, improve traffic
safety and allow drivers to pay attention to other duties.

Regarding control strategies, a few papers considered cen-
tralized control approaches but much more attention has
been given to fully or partially distributed control ap-
proaches; each vehicle then carries its own local onboard
controller with only limited knowledge of state of the rest
of the platoon. The string stability analysis serves as one
of the basic performance analysis tool for a distributed
approach. Although there are several definitions of string
stability, for instance by Swaroop and Hedrick (1996), Eyre
et al. (1998) or by Seiler et al. (2004), the underlying ques-
tion is the same: Is the disturbance present at one vehicle
amplified as it propagates in the platoon to other vehicles?
For a string stable platoon, the answer is ‘no’, however, it
is important to note that this does not guarantee that
vehicles do not crash into each other. The definition of the
string stability for heterogenous platoon was introduced
in Shaw and Hedrick (2007) under the term heterogenous
string stability.

This paper mostly relies on the so-called symmetric bidi-
rectional control, where each vehicle equally weights in-
formation about distance to its immediate predecessor
and successor. Although a homogenous platoon with a
symmetric bidirectional control is string unstable as well,
scaling of the disturbance amplification is qualitatively
? The research was supported by the Grant Agency of the Czech
Republic within the project GACR P103-12-1794.

better than for the predecessor following algorithm. How-
ever, this comes at a price of a very long settling time
as showed Middleton and Braslavsky (2010). Moreover,
stability of such a platoon becomes an issue for a large
number of vehicles due to the least stable closed-loop
eigenvalue converging to zero as showed Barooah et al.
(2009).

As for the heterogenous platoon, Middleton and Braslavsky
(2010) showed that within reasonable confines the het-
erogeneity of the platoon has little effect on the string
stability. However, the scalability is poor for a long platoon
as showed by Herman et al. (2014). Another study of the
heterogenous platoon was done by Lestas and Vinnicombe
(2007), where the symmetric bidirectional control was en-
hanced by a weak coupling with the leader. The effect
of both heterogeneity and asymmetry on the closed loop
stability margin is examined in Hao and Barooah (2010).

1.2 Wave-absorbing controller

It is well known from the field of mechanics that a trav-
elling wave appears in the response of flexible mechanical
systems on various inputs. The wave travels in the system
back and forth reflecting on the system boundaries. It is
those reflections that usually degrades the system’s perfor-
mance and makes the behaviour undesirably oscillatory.

Among the first papers proposing a controller that would
cancel the wave reflection on the structural ends was
the work of Vaughan (1968). Later, the approach was
reformulated in the term of traveling wave modes by
Flotow (1986). Recently, a series of paper by O’Connor,
see for instance O’Connor (2006), introduced yet another
approach, the wave-based control. They described the trav-
elling wave by the so-called wave transfer function and
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adopted the travelling-wave principle for lumped multi-
link flexible mechanical systems. Simultaneously, Halevi
(2005) showed a similar approach for control of continuous
flexible structures under the name absolute vibration sup-
pression. The two aforementioned concepts are compared
in the joint paper by Peled et al. (2012). Recently, paper
by Martinec et al. (2013) introduces the so-called wave-
absorbing controller, which tailors the wave-based control
to the domain of vehicular platooning, where distances
between vehicles have to be additionally considered, since
there is no physical connection between the vehicles. The
link between vehicles is made by a distance controller
implemented onboard each vehicle.

1.3 Problem formulation

This paper extends the work of Martinec et al. (2013) by
assuming more realistic conditions in terms of a heteroge-
nous vehicular platoon, that means a platoon with vehicles
that are not identical. The heterogeneity causes that the
travelling wave partially reflects when it travels between
the vehicles of different dynamics. The wave-absorbing
controller can be applied on platoon ends, however, ef-
fect of the boundary has to be considered when treating
the reference signal for the controller. For simplicity, we
assume a two types of vehicles; trucks and cars, though
the result can be generalized even for a platoon where
each vehicle has a different dynamics. It is convenient, as
shown in the SARTRE project described by Coelingh and
Solyom (2012), to order the platoon such that all trucks
are located in the front and cars are located behind them,
see Fig. 1. Such a platoon configuration is treated in this
paper.

The paper has two contributions: a) It presents a math-
ematical (‘transfer function’) description of the so-called
soft boundary and b) it shows how to efficiently control a
heterogenous platoon by a wave absorber, specifically, it
presents a way how to design the reference signals Xref(s)
and Xref,rear(s).

2. MATHEMATICAL MODEL OF VEHICLES

Each vehicle is modelled as a double integrator with a
simple (linear) model of friction, ξ. In the Laplace domain,
the model reads as,

s2Xn(s) = −sξXn(s) + Un(s), (1)

where s is the Laplace variable,Xn(s) represents a position
of the nth vehicle and Un(s) is the system input which
is generated by the platoon controller specified in the
following.

We assume that each in-platoon vehicle is controlled by a
symmetric bidirectional controller, that means it is capable
to measure distance to both its immediate predecessor
and successor with task to equalize these distances. To
regulate the distances without a steady state error, the
vehicles need to be equipped with a PI or PID controller.
It is sufficient to implement a PI controller because of the
simple vehicle model, hence,

Un(s) =

(
kp +

ki
s

)
(Dn−1(s)−Dn(s)) , (2)

where Dn(s) is the distance between vehicles indexed
n and (n + 1), Dn(s) = Xn(s) − Xn+1(s), kp and ki

are proportional and integral gains of the PI controller,
respectively.

We substitute (2) into (1) and obtain the resulting model
of the in-platoon vehicle,

Xn(s) =
kps+ ki

s3 + ξs2 + 2kps+ 2ki
(Xn−1 +Xn+1). (3)

The vehicle at the rear end, indexed as N , is controlled ei-
ther by the wave-absorbing controller, see the next section,
or by the so-called predecessor following algorithm,

XN (s) =
kps+ ki

s3 + ξs2 + kps+ ki
(XN−1(s)−Dref(s)), (4)

where Dref(s) is the reference/desired distance between
vehicles. Its task is to keep the distance to the immediate
predecessor equal to the reference distance.

We assume that there are two types of vehicles in the
platoon, trucks and cars. The coefficients of the systems
are summarized in Table. 1. The coefficients of the PI
algorithms were tuned such that the local system of the
vehicle is stable without long transient.

Table 1. Truck’s and car’s coefficients of the
vehicle models (3) and (4).

Vehicle type Coefficient of the vehicular model

Truck ξt = 2 Nsm−1, kp,t = 1 Nm−1, ki,t = 1 Ns−1m−1

Car ξc = 4 Nsm−1, kp,c = 4 Nm−1, ki,c = 4Ns−1m−1

c0

First car

c−1 N

Last carFirst truck Last truck

Fig. 1. Heterogenous platoon of (N + 1) vehicles with c
trucks in the front and (N−c) cars behind them. The
leader of the platoon, a truck, is indexed 0, while the
index of the first car in the platoon is c.

3. WAVE ABSORBING CONTROLLER

This paper continues in the work of Martinec et al. (2013).
For convenience of the reader, we will briefly review the
main results of the paper.

In a platoon of identical vehicles, the position of the nth
vehicle composed of two parts, An(s) and Bn(s), that
represent two waves propagating along a platoon in the
forward and backward directions, respectively. We assume
a platoon of infinitely many vehicles, hence there is no
reflection on platoon ends. The mathematical model of
such a platoon is

Xn(s) = An(s) +Bn(s), (5)

An+1(s) = G(s)An(s), (6)

Bn(s) = G−1(s)Bn−1(s), (7)

where G(s) is the so-called wave transfer function. In other
words, the wave transfer function describes how the wave
propagates from vehicle to vehicle in the platoon. The wave
transfer function expressed for the model (3) is
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G(s) =
s3 + ξs2 + 2kps+ 2ki

2(kps+ ki)

−
s
√
s4 + 2ξs3 + ξ2s2 + 4kps2 + 4kpξs+ 4kis+ 4kiξ

2(kps+ ki)
.

(8)

We label G(s) to be the wave transfer function for a
platoon of trucks andH(s) to be the wave transfer function
for a platoon of cars.

Any type of a wave-absorbing controller can be designed,
however, the reference signal for the controller is different
for each case. In this paper, we employ the Two-sided
wave-absorbing controller, i.e. both platoon ends absorb
the incoming wave, therefore, the wave can reflect only on
the soft boundary. This clearly demonstrates effect of the
soft boundary. The Two-sided wave-absorbing controller
is described as

Xf(s) = Xref(s) +G(s)B1(s)

= Xref(s)
(
1−G2(s)

)
+G(s)X1(s), (9)

Xr(s) = Xref,rear(s) +H(s)AN−1(s)

= Xref,rear(s)
(
1−H2(s)

)
+H(s)XN−1(s), (10)

where Xf(s) is input to the positional controller of the
leader, Xref(s) is a reference signal with ramp of slope wf.
Input to the rear-end vehicle is denoted by Xr(s) with
reference signal Xref,rear(s) with slope wr.

In order to implement the wave-absorbing controller, we
need to find an impulse response of the wave transfer
function. Due to the square root function of a polynomial,
it is a very challenging task. However, we can find an ap-
proximation in the time domain in form of a finite impulse
response (FIR) filter. The main idea is to approximate the
wave transfer function with a rational transfer function
Gl(s) derived by the following recursive formula

Gl(s) =
kps+ ki

s3 + ξs2 + 2kps+ 2ki − (kps+ ki)Gl−1(s)
. (11)

Then carry out the impulse response of Gl(s), truncate it
and sample it with a sufficient frequency to obtain a FIR
filter coefficients.

4. SOFT BOUNDARY

Apart from the forced/free end boundary on the platoon
ends, there is yet another boundary located between the
last truck and the first car, which originates from the
different dynamics of the vehicles. We call such a boundary
a soft boundary. Although a soft boundary is virtual in
nature, it fundamentally affects the platoon behaviour.

Even though we assume that each vehicle is modelled as
a double integrator with a linear friction, the presented
mathematical model of the soft boundary is valid for arbi-
trary vehicle dynamics, since the mathematical derivation
is carried out with general G(s) and H(s).

4.1 Mathematical model of the soft boundary

When a wave is travelling through a boundary between two
media of different densities, part of the wave is reflected
back from the boundary while part gets through, this
phenomenon is known from basic wave physics, see for

instance French (2003). The same situation occurs on the
soft boundary between the last truck and the first car.
To mathematically describe what happens when a wave
reaches the soft boundary, we need in total four transfer
functions. The transfer functions are summarized in Table
2 and depicted in Fig. 2.

cc−1

c
B

c
A

c−1
A

c−1
B

bb
T

aa
T

ba
T

ab
T

Fig. 2. Scheme of reflections on a soft boundary inside a
platoon described by (12a) and (12b).

Table 2. List of the transfer functions describ-
ing reflection on a soft boundary. For the DC
gain, we assume a ramp signal on the input.

Label Description Trans. fun. DC gain

Taa Ac−1 → Ac
H −HG2

1−HG
κaa

Tab Ac−1 → Bc−1
HG−G2

1−HG
κab

Tba Bc → Ac
HG−H2

1−HG
κba

Tbb Bc → Bc−1
G−H2G

1−HG
κbb

The mathematical derivation for the soft boundary is given
in the appendix. The resulting model is

Ac = Ac−1
H −HG2

1−HG
+Bc

HG−H2

1−HG
,

Bc−1 = Bc
G−H2G

1−HG
+Ac−1

HG−G2

1−HG
.

(12a)

(12b)

Transfer functions describing reflection on the soft bound-
ary are related,

Taa + Tbb = G+H, (13)

(Taa + Tbb)(G− Taa) = Tba − Tab, (14)

(Taa + Tbb)(H − Tbb) = Tab − Tba, (15)

which yield the following relations between their DC gains

κaa = 2− κbb, κab = 1− κbb, κba = 1− κaa. (16)

Values of DC gains expressed for the model (3) are given
in the appendix.

4.2 Numerical simulations of the soft boundary

This subsection verifies the model of the soft boundary
(12a), (12b) through the mathematical simulation in the
following manner. First, we simulate reaction of the pla-
toon on given input signal, in our case it is acceleration
of the leader or the rear-end vehicle. Second, we carry out
the reaction of the platoon on the same input signal with
the ‘wave’ mathematical model (5)–(7), (12a) and (12b).
At last, we compare results of these two methods.
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We simulate a platoon with 5 trucks and 4 cars, that means
the soft boundary is located between vehicles indexed 4
and 5. To fully demonstrate effect of the soft boundary,
we equip both platoon ends with the wave-absorbing
controller. For this case, we disregard the reference velocity
and distance signals. We only command the leader or the
rear-end vehicle to accelerate to a velocity of 1 ms−1.

Fig. 3 shows velocities of the last truck and the first car
for the whole time of the simulations. We can see that as
the wave travels from the left, it gets amplified by factor
of κaa ≈ 1.171 while when it travels from the opposite
direction it is attenuated by factor of κbb ≈ 0.828, i.e. the
amplitude is attenuated. We can see an agreement between
the soft-boundary-derived and independently-simulated
velocities. Fig. 4 compares behaviour of the platoon with
and without the soft boundary.
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Wave travelling from the right

 

 

Sim. vel. last truck
(A+B) last truck
Sim. vel. first car
(A+B) first car

Fig. 3. Velocity of the last truck and the first car simulated
by the Matlab Simulink (solid lines) compared to the
velocity components computed before the simulation
using (12a) and (12b) (crosses). The top panel shows
situation when the leader accelerates to a velocity of
1 ms−1 which initiates a wave propagating to the soft
boundary from the left, i.e. from trucks to cars. The
opposite situation is shown in the bottom panel where
the rear-end vehicle initiates a wave by accelerating
at 1 ms−1.

5. TWO-SIDED WAVE-ABSORBING CONTROLLER

5.1 Design of the controller

The principle how to absorb the incoming wave on the
platoon end is the same as for a homogenous platoon.
Similarly, slopes of the reference signals determine the
steady state velocity of the whole platoon, v(∞), and the
inter-vehicle distances, d(∞). However, the steady states
are changed by the soft boundary as we can see in Fig. 3.
We can compensate its effect by incorporating DC gains
from Table 2 into slopes of the reference signals.

We assume that the platoon ends are controlled by the
wave-absorbing controllers (9), (10), then combining (12a),
(12b) and (A.7) yields the platoon steady states

v(∞) = (1 + κab)wf + κbbwr,

= κaawf + (1 + κba)wr, (17)

d(∞) = κdwf − κdwr. (18)

We can interpret it in the following way. The steady state
velocity of the whole platoon is composed of the three
parts: i) initial commanded velocity to the leader wf, ii)
part of velocity wf that reflects from the soft boundary
back to the leader, iii) initial commanded velocity to the
rear-end vehicle, wr, that is amplified on the soft boundary.
The steady state distance between vehicles is composed of
two parts which follows from (A.8).

We substitute vref/dref for v(∞)/d(∞) and express wf/wr

from (17)/(18). This gives slopes for the reference inputs
of the Two-sided wave-based controller as,

wf =
1

2
vref +

1

2

κbb
κd

dref, wr =
1

2
vref −

1

2

κaa
κd

dref. (19)

5.2 Numerical simulations

Similarly as in Section 4.2, we assume a platoon of 9
vehicles, where first 5 vehicles are trucks and following
4 vehicles are cars. This means that the soft boundary is
located between vehicles indexed 4 and 5.

First, we will show performance of the platoon without
any absorber, i.e. the leader travels with constant velocity
and the rear-end vehicle is described by (4). Simulation
of acceleration of this a platoon is shown in Fig. 5. We
can see that the settling time is very long since it scales
quadratically with the number of vehicles as shown by
Martinec et al. (2013).

Simulation of the platoon with the Two-sided wave-
absorbing controller is shown in Fig. 6. The settling time
is significantly decreased, since now it scales linearly with
the number of vehicles.

6. CONCLUSION

The paper presents a transfer-function-based mathemati-
cal description of the so-called soft boundary located in a
platoon between two vehicles of different dynamics, where
each in-platoon vehicle is controlled by the symmetric
bidirectional controller. Although the boundary is virtual,
it has a profound effect on the platoon behaviour. As in
case of the homogenous platoon, it is beneficial to use a
wave-absorbing platoon control. However, effect of the soft
boundary needs to be considered for carrying out slopes
of the reference signals.

The proposed approach is demonstrated on a platoon with
two types of vehicles but it can be generalized for a platoon
where each vehicle has a different dynamics.

On the mathematical simulations are shown that ad-
vantages of a wave-absorbing control of a heterogenous
platoon remains the same. That means reduction of the
settling time by eliminating oscillations in velocity of the
platoon vehicles. Another benefit is that the control is
fully decentralized and require no wireless communication
between vehicles. The paper discuss only the Two-sided
wave-absorbing control but it can be modified for other
types of the wave-absorbing control as well.
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Fig. 4. Simulation of the velocity wave propagating in the platoon with the soft boundary located between vehicles
indexed 4 and 5 and in the platoon without the soft boundary where all vehicles are trucks, i.e. a homogenous
platoon. At the beginning, t = 0 s, all vehicles are standing still except for the leader which accelerates to a velocity
1 ms−1. At intermediate times, the wave travels to the soft boundary, where it is partially reflected and partially
amplified by κbb. By propagating back to the leader, it forces trucks to accelerate by another κab. The waves
are absorbed on the platoon ends by the wave-absorbing controller, therefore, there is no B component in the
homogenous platoon or for cars in the heterogenous platoon. The red crosses represent the derivation of A + B
positional components computed from the soft boundary model (12a) and (12b), the green plus signs are derivations
of A components in the homogenous platoon of trucks computed from model (5)–(7). The B components of all the
vehicles are equal to zero in the homogenous platoon because there is no boundary where the wave can reflect.
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Fig. 5. Simulation of the platoon without the wave-absorbing controller when the leader accelerates to velocity
vref = 1 ms−1. The reference distance is kept fixed, dref = 1 m, for the whole time.
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Fig. 6. Simulation of the platoon with the wave-absorbing controller implemented on both platoon ends. The platoon
is commanded to accelerate to velocity vref = 1 ms−1 while the reference distance is kept fixed, dref = 1 m.

The performance of the controller in the presence of
modelling errors and disturbances is subject of further
research.
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Appendix A. MATHEMATICAL DERIVATION OF
REFLECTION ON A SOFT BOUNDARY

This technical result follow the mathematical derivation of
reflection on a forced boundary derived by Martinec et al.
(2013). The model of a forced boundary was carried out
to be A1 = GX0 − G2B1. We can apply this result and
describe model of the last truck and the first car from Fig.
1 and Fig. 2 as

Ac = −H2Bc +H1Xc−1, (A.1)

Bc−1 = −G2
1Ac−1 +GXc. (A.2)

Substituting (5) for Xc−1 and (A.2) for Bc−1 yields

Ac = −H2Bc +H(Ac−1 −G2Ac−1 +G(Ac +Bc)). (A.3)

Separating Ac gives the final result

Ac = Ac−1
H −HG2

1−HG
+Bc

HG−H2

1−HG
. (A.4)

Similarly, substituting (5) for Xc−1 and (A.1) for Ac gives

Bc−1 = −G2Ac−1 +G(−H2Bc +H(Ac−1 +Bc−1) +Bc).
(A.5)

Finally, separating Bn yields

Bc−1 = Bc
G−GH2

1−HG
+Ac−1

HG−G2

1−HG
(A.6)

The distance between the last truck and the first car, Dc,
is described as

Dc = (1 + Tab − Taa)Gc-1
1 A0 + (Tbb − Tba − 1)HN−cBN .

(A.7)
The DC gain from A0 to Dc, assuming a ramp signal of
A0, is

κd = lim
s→0

Dc

A0
= lim

s→0

1

s

1−H −G2 +HG2

1−HG

= 2

√
ξcξtki,cki,t

ki,cki,t

(√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)−1
. (A.8)

It can be shown that the DC gain from BN to Dc is (−κd),
if we assume that BN is a ramp signal.

Appendix B. DC GAINS OF THE SOFT BOUNDARY
TRANSFER FUNCTIONS

We evaluate the DC gains from Table 2 for the vehicle
dynamics described in (3).

The DC gain of Taa is

κaa = lim
s→0

Taa = lim
s→0

H −HG2

1−HG
=

0

0
. (B.1)

Applying L’Hopital’s rule gives

κaa = lim
s→0

H ′ −H ′G2 − 2HGG′

−H ′G−HG′
. (B.2)

We substitute lims→0(G′(s)) = −
√
ξtki,t/ki,t and

lims→0(H ′(s)) = −
√
ξcki,c/ki,c and obtain

κaa = 2

√
ξtki,t

ki,t

(√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)−1
. (B.3)

In the same manner, we carry out all the other DC gains

κab =

(√
ξtki,t

ki,t
−
√
ξcki,c

ki,c

)(√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)−1
,

(B.4)

κba =

(
−
√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)(√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)−1
,

(B.5)

κbb = 2

√
ξcki,c

ki,c

(√
ξtki,t

ki,t
+

√
ξcki,c

ki,c

)−1
. (B.6)
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