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Abstract: In safety critical systems, the control system is composed of a core control system
with a fault detection and isolation scheme together with a repair or a recovery strategy. The
time that it takes to detect, isolate, and recover from the fault (fault recovery time) is a critical
factor in safety of a system. It must be guaranteed that the trajectory of a system subject to fault
remains in the region of attraction (ROA) of the post-fault system during this time. This paper
proposes a new algorithm to compute the critical fault recovery time for nonlinear systems with
polynomial vector fields using sum of squares programming. The proposed algorithm is based
on computation of ROA of the recovered system and finite-time stability of the faulty system.

1. INTRODUCTION

Dynamics of a system controlled with an active fault
tolerant controller subject to a fault can be described by a
switched nonlinear system [Blanke et al., 2006, Ch. 7]. One
can distinguish between three periods of the operation.
The pre-fault period, the fault-on period and the post-fault
period. In the pre-fault period, the system is working in the
nominal mode with the controller designed for the nominal
system. The fault-on period is the time interval from the
occurrence of the fault until the fault is detected, isolated,
and repaired or the system is reconfigured through a
reconfiguration mechanism. During this period the system
is controlled by the controller designed for the nominal
system. When the fault is recovered or the system is
reconfigured, it enters the post-fault period.

Because the nominal controller is not designed to control
the faulty situations, depending on the severity of the
fault, and the duration of the fault-on period, the system
might become unstable after recovery [Zhang and Jiang,
2006].To guarantee that the system remains stable after
reconfiguration or recovery, it must be assured that the
trajectories of the faulty system during the fault-on period
remains in the region of attraction (ROA) of the post-
fault system. This is illustrated in Fig 1. Ωn is ROA
of the normal system and Ωr is the ROA of the post-
fault system with xne and xre denoting the corresponding

equilibrium points respectively. φf1 shows a trajectory of
the faulty system where the system is recovered at the
appropriate time such that the system’s state is in the
ROA of the post-fault system at the end of the fault-
on period. Consequently, the trajectory converges to the
equilibrium point of the post-fault system. The post-
fault trajectory is depicted by φr1. In case the fault is

1 This work was supported through the SOSPO project by the
Danish Council for Strategic Research under grant no. 11-116794.

cleared after the system’s states exit the ROA of the post-

fault system (see φf2 ), the system’s trajectory diverges
and becomes unstable. φr2 depicts the trajectory in this
situation. This illustrates the criticality of timing in fault
recovery.
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Fig. 1. Illustration of criticality of the recovery time.

(φf1 , φ
r
1) is a trajectory where the system is recovered

before leaving the ROA of the post-fault system,

(φf2 , φ
r
2) is a trajectory where the system is recovered

after leaving the ROA of the post-fault system.

This paper suggests a method to compute the maximum
permissible time to recover from a fault, referred to as
the critical recovery time (CRT) hereafter. To the best of
our knowledge this problem is not addressed before in the
literature in the general setting that we address in this
paper. To compute the CRT, first, the region of attraction
(ROA) of the post-fault system is computed. Then, having
the ROA of the post-fault system, we propose an algorithm
to compute the maximum time that guarantees that the
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trajectories of the system initiated from an initial set
would remain in it. To compute the ROA and CRT we
use sum of squares programming.

Related to the results in paper are the literature in power
system which consider the problem of fault-clearing for
transient stability analysis [Kundur, 1994]. The methods
are mainly based on Monte-Carlo simulations or numer-
ical integration based the nonlinear model of the system
[Pavella et al., 2000]. Alternative methods are based on
finding analytical energy function for the power system
[Chiang, 2011]. Simulation based method cannot provide
us with guaranteed transient stability analysis due to the
uncertainty in the set of initial conditions at the occurrence
of fault. Also, energy based function methods are based
on simplified models where the transfer conductances are
neglected [Chiang, 2011].

Contributions of this paper are the followings: we propose
a new method for estimation of CRT for nonlinear system
based on the estimation of ROA. In estimating ROA,
we modify the algorithm in [Jarvis-Wloszek, 2003] in
two ways. We add safety constraints and we estimate an
invariant subset of ROA that is contained in the safe set
given by safety constraints. Also, instead of using a fixed
shape to enlarge the estimate of ROA, we update the
shape factor iteratively. In computing CRT, we use our
recent results on finite time stability of nonlinear systems
Tabatabaeipour and Blanke [2014] and we show how to
use the proposed method to compute the CRT.

This paper is organized as follows. Preliminaries and basic
definitions used throughout the paper are introduced in
Section 2. Section 3, formulates the problem. Section 4
proposes an algorithm to compute an invariant subset of
ROA contained in a given set describing safety constraints.
Section 5, develops an algorithm to compute CRT based
on the estimate of ROA. Throughout the paper, a single
machine infinite bus system subject to a three phase short
circuit fault, is used as an example to demonstrate steps
of the proposed method. Conclusions are finally given.

2. PRELIMINARIES

This section provides basic definitions and concepts used
throughout the paper.

Definition 1. Monomial: A monomial mα is a function
mα : Rn → R which is defined as: mα(x) = xα :=
xα1

1 xα2
2 . . . xαn

n . The degree of a monomial is defined as
deg mα = Σni=1αi.

Definition 2. [Parrilo, 2003] Polynomial: a polynomial
p(x) is a linear combination of a finite number of monomi-

als: p(x) :=
∑k
j=1 cjmαj

(x). The degree of a polynomial is

defined as p := maxj(deg mαj
).

The set of all polynomials with n variables is denoted by
Rn. The set of positive semidefinite polynomials denoted
by Pn are the set of polynomials that are nonnegative on
all Rn which is defined by: Pn := {p ∈ Rn : p(x) ≥ 0,∀x ∈
Rn}.
Definition 3. Sum of squares polynomial: A polyno-
mial p is said to be sum of squares (SOS) if it can be de-
composed to a sum of squares ofM polynomials p1, . . . , pM
i.e p =

∑M
i=1 pi(x)2.

The set of all SOS polynomials in n variables is denoted by
Σn which is defined as: Σn := {s ∈ Rn : ∃M,pi,∈ Rn, i =

1, · · · ,M such that s =
∑M
i=1 p

2
i }.

Proposition 1. A polynomial p(x) ∈ Rn of degree 2d is
SOS if and only if there exist a positive semidefinite matrix
Q ≥ 0 and a vector of monomials z(x) in n variables up
to degree d such that p(x) = zT (x)Qz(x).

Theorem 1. [Parrilo, 2003] The existence of a SOS decom-
position of a polynomial system in n variables of degree
2d can be formulated as a linear matrix inequality (LMI)
feasibility problem test.

The following lemma is used to check conditions of the
form g0(x) ≥ 0 whenever g1(x) ≥ 0, · · · , gm(x) ≥ 0 by
converting them into sum of squares programming [Jarvis-
Wloszek, 2003].

Lemma 1. (Generalized S-procedure) Given functions
g0(x), g1(x), · · · , gm(x) ∈ Rn, if there exist s1, s2, · · · , sm
∈ Σn such that g0 − Σmi=1sigi ∈ Σn then, it holds that:

{x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} ⊆
{x ∈ Rn : g0(x) ≥ 0}. (1)

Closure of a given set D is denoted by D̄.

3. PROBLEM FORMULATION

We consider a controlled system with a fault recovery or
a reconfiguration mechanism. A fault occurs at t = tf and
the system is recovered or reconfigured at t = tr. Dynamic
of the overall closed-loop system can be described by the
following switched nonlinear system:

ẋ =


fn(x) for 0 ≤ t < tf ,

ff (x) for tf ≤ t < tr,

fr(x) for tr ≤ t <∞,
(2)

where x ∈ Rn is the state of the system, tf is the time
that the fault occurs, tr is the time that the system is
reconfigured or recovered from the fault. The dynamics
of the system during nominal operation is described by
ẋ = fn(x). When a fault occurs at tf the dynamic of
the system switches to ẋ = ff (x) and when the system
recovers from the fault, its dynamic switches to ẋ = fr(x).
Generally, the dynamic of the reconfigured system might
be different from that of the nominal system, but if the
fault is totally repaired then it could be the case that
fr = fn. Also, note that the equilibrium point of the
system in the post-fault period might be different from
that of the nominal operation. We assume that fn, ff ,
and fr are nonlinear functions. We also assume that the
nominal and the post-fault closed-loop system are designed
such that they are locally stable.

To investigate the stability of the system, we use the
concept of region of attracktion (ROA), which is defined
by the largest set of initial conditions whose trajectories
would converge to the equilibrium point of the system.

Definition 4. Region of Attraction: Given the nonlin-
ear system ẋ = f(x) with the equilibrium point of xe = 0,
the ROA of the origin is defined as:

Ω := {x0 : lim
t→∞

φ(t, x0) = 0}, (3)

where φ(t, x0) is a solution of the nonlinear system with
the initial state x0.
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Fig. 2. Single machine infinite bus system

To guarantee the stability of the system, the trajectories
of the faulty system initiated at time tf must not exit the
ROA of the post-fault system during the fault-on period
[tf , tr).

Example To demonstrate the idea, consider a single
machine infinite bus (SMIB) system. SIMB is widely used
in the power system literature, to investigate transient sta-
bility of a multi-machine system using extended transient
stability approach where the generators of the system are
divided into two groups. The system is equivalent to a
two machine system which is modeled as a SMIB, see e.g.
[Pavella et al., 2000], [Xue et al., 1988].

The dynamic of the system is given by:{
δ̇ = ω

Mω̇ = Pm − Pe sin(δ)−Dω (4)

where δ is the machine rotor angle, ω is the relative angular
velocity of the rotor, Pm is the mechanical power input of
the machine, Pe is the maximum electrical power output
of the machine, and M is the inertia of the machine. The
values of these parameters are chosen as: Pm = 1 per unit,
Pe = EU/X = 1.35 per unit, M = 0.2, D = 0.12.

We consider a three phase short circuit fault at a point
in the line such that the power transmitted to the bus
becomes Pe = 0.5 sin δ. The dynamic of the machine in
the faulty condition is given by:{

δ̇ = ω,

Mω̇ = Pm − 0.5 sin δ −Dω. (5)

We assume that the fault is detected and cleared at t = tr
so that the dynamic of the system switches back to that
of the nominal condition. Whather the machine losses
synchronism with the infinite bus depends on the fault
clearing time. If the fault is not cleared at the right time,
then the state of the machine exits the ROA of the post-
fault condition and the machine looses synchronism.

Figure 3 shows the system initiated with w0 = −2, δ0 = 2,
the fault occurs at tf = 10, and it is cleared at t = 10.48.
The black line shows the boundary of ROA for the pre-
fault system which is the same as that of the post-fault
system. As we can see, when the fault is cleared the states
of the system are already outside the ROA of the post-
fault system and the machine looses synchronism. This
emphasizes the importance of critical clearing time.

Computation of the critical clearing time includes two
main steps: estimation of ROA of the post-fault system Ωr,
and then computation of the time that it takes the fault-
on trajectories to leave the Ωr. In the following section we
address the first step.
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Fig. 3. ROA of the post-fault system (solid black). Trajec-
tory of the system in pre-fault condition (solid blue),
faulty condition (solid red), and post-fault condition
(dashed blue), The fault is cleared at t = 10.48

4. ESTIMATION OF REGION OF ATTRACTION

Computation of ROA of a nonlinear system is generally a
very difficult problem, see [Chesi, 2011]. In our work, we
are interested in computing an inner estimate of the ROA,
namely a set that is contained in the ROA of the system.
The reason for this is as follows. Assume that we find an
outer estimate of the ROA. If we can guarantee that the
trajectories of the faulty system remain inside the outer
estimate, we cannot guarantee that they remain inside the
ROA itself.

In this section we give a numerical method to compute an
inner estimate of the ROA based on the algorithm pro-
posed in [Jarvis-Wloszek, 2003]. The idea of the algorithm
is to expand a set contained in the interior of a level set of
the Lyapunov function (LF) of the system. The algorithm
in [Jarvis-Wloszek, 2003], do not consider any constraints
on the state of the system, but here we include some
constraints on the states of the system. These constraints
could be due to safety reasons. Moreover, we introduce an
inner loop in our algorithm to update the shape of the set
that is used for expansion of the estimate of the ROA. We
assume the system is safe as long as the states are inside
the given set:

Xs = {x : gs(x) ≥ 0}. (6)

The goal is to compute an inner estimate of ROA that is
also contained in the safe set Xs. This set is a level set of a
Lyapunov function of the system that is contained in the
safe set. The method is based on finding invariant subsets
of the ROA.

Theorem 2. [Jarvis-Wloszek, 2003] If there exist a contin-
uously differentiable function V such that:

V is positive definite,

ΩV := {x ∈ Rn : V (x) ≤ 1} is bounded,

V̇ =
∂V

∂x
f < 0,∀x ∈ ΩV \ {0},

(7)

then ΩV is an invariant subset of the ROA.

To find an invariant subset of ROA that is also contained in
the safe set, Xs, the following conditions must be satisfied:
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V is positive definite,

ΩV := {x ∈ Rn : V (x) ≤ 1} is bounded,

V̇ =
∂V

∂x
f < 0,∀x ∈ ΩV \ {0},

ΩV ⊆ Xs,

(8)

To expand the ROA, the authors in [Jarvis-Wloszek, 2003]
and [Topcu et al., 2010] defined a fixed shape region with
a variable size given by:

Pβ := {x ∈ Rn : p(x) ≤ β} (9)

with the constraint that Pβ ⊆ ΩV where p is a positive
definite polynomial. The idea is to expand the the ROA
by expanding the set Pβ that is contained in it. In
other words, we are expanding the ROA by expanding
its interior. Then, the problem is cast as the following
optimization problem:

max β

s. t.



V (x) > 0 ∀x ∈ Rn \ {0} and V (0) = 0,

{x ∈ Rn : V (x) ≤ 1} is bounded,

{x ∈ Rn : V (x) ≤ 1} \ {0} ⊆ {x ∈ Rn :
∂V

∂x
f < 0},

{x ∈ Rn : p(x) ≤ β} ⊆ {x ∈ Rn : V (x) ≤ 1},
{x ∈ Rn : V (x) ≤ 1} ⊆ {x ∈ Rn : gs(x) ≥ 0},

(10)

Using the S-procedure, then the best inner estimate of
ROA can be find by solving the following SOS program-
ming:

max
V (0)=0,s1,s2,s3,s4∈Σn

β

s. t.


V − l1 ∈ Σn
−[(β − p)s1 + (V − 1)] ∈ Σn

−[(1− V )s2 +
∂V

∂x
fs3 + l2] ∈ Σn

gs − (1− V )s4 ∈ Σn

(11)

where l1 and l2 are of the form:

li =

n∑
i=1

εijx
2
j ,

where εi are small positive scalars. The above problem is
bilinear in its variable. To solve it we use the following
iterative algorithm given in Algorithm 1.

The algorithm is initialized with a linearized model of
the system. A LF for the linearized system is obtained
by solving the LMI (12). This LF is used to initiate the
optimization problem. At the γ step, the largest level set of
the LF that is contained in the safe set Xs such that V̇ < 0
is obtained. Then, the largest set Pβ that is contained in
the γ level set of the LF is computed. Having Pβ∗ , we
update the candidate LF. In the initialization step, an
LF of degree two (xTPx) is used. In this step, we can
use LFs with higher degrees to improve the estimation.
After scaling, the LF is used to update the shape of the
Pβ by choosing pi = Ṽ . The shape factor has an important
role in enlarging the estimation. If the shape of the Pβ is
fixed and its level set does not aligned with the level sets
of ROA, then we would have a poor estimation of ROA
[Chakraborty et al., 2011]. Therefore, in our algorithm at
each iteration pi is chosen as the latest update of LF. In
this way the level sets of Pβ are closely aligned with the
level sets of ROA which yields a better estimate of ROA.

Algorithm 1 Computation of ROA with safety con-
straints
Initialization.1: Use the linearized model of the system
for initialization: A = ∂f

∂x |x=0. Find a positive definite P
that solves:

ATP + PA = −I. (12)

V 0 = xTPx and p0(x) = V 0(x), i = 0.

Initialization.2:, Fix Ṽ = V 0 and solve the following
optimization problem by bisection on γ:

γ∗ := max γ

s.t.

−[(γ − Ṽ )s2 +
∂Ṽ

∂x
fs3 + l2] ∈ Σn

gs − (γ − Ṽ )s4 ∈ Σn

(13)

repeat
i← i+ 1
Pβ step : Fix Ṽ = V i−1, p̃ = pi−1, and solve the

following optimization problem by bisection on β:

β∗ := maxβ

s.t.


−[(β − p̃)s1 + (Ṽ − γ∗)] ∈ Σn

−[(γ∗ − Ṽ )s2 +
∂Ṽ

∂x
fs3 + l2] ∈ Σn

gs − (γ∗ − Ṽ )s4 ∈ Σn

(14)

V step: Fix s2, s3, s4 and find Ṽ by solving the
following problem by bisection on γ:

γ∗ := max γ

s.t.


Ṽ − l1 ∈ Σn, Ṽ (0) = 0

−[(β∗ − p̃)s1 + (Ṽ − γ)] ∈ Σn

−[(γ − Ṽ )s2 +
∂Ṽ

∂x
fs3 + l2] ∈ Σn

gs − (γ − Ṽ )s4 ∈ Σn

(15)

V i ← Ṽ
γ∗

update pi: pi ← Ṽ .
until the largest difference (in absolute value) between
the coefficients of pi and pi−1 is less than a small given
value.

Example (continued) Using the above algorithm, we
compute the ROA of the SMIB system. The algorithm is
initialized with the the Lyapunov function obtained from
linearization of the system around the the equilibrium
point of the system which is (δ0, ω0) = (0.8342, 0). The
trigonometric terms are approximated using Taylor expan-
sion. The safe set is given by: Xs = {−π2 ≤ δ − δ0 ≤ π

2 }.
The degree of the Lyapunov function V as well as the
degrees of multipliers s1, s2, s3, s4 are chosen as 4. We use
the YALMIP toolbox [Löfberg, 2004] and SeDuMi [Sturm,
1999] to solve the optimization problems. The algorithm
is stopped when largest difference (in absolute value) be-
tween the coefficients of pi and pi−1 are less than 0.005. In
this example the algorithm stops after 20 iterations. Figure
4 shows how the estimate of ROA is expanded iteratively.
The ROA is finally given as: Ωr = {x : V (x) ≤ 1} with:

V (x) = −0.1018x3
1 + 0.5315x2

1 + 0.1197x4
1 + 0.0910x1x2

+0.1135x2
2 + 0.1810x2

1x2 + 0.0575x1x
2
2 + 0.0201x3

2+

0.1054x3
1x2 + 0.0963x2

1x
2
2 + 0.0192x1x

3
2 + 0.0086x4

2 (16)

where x1 = δ − δ0 and x2 = ω − ω0.
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Fig. 4. Expansion of estimate of ROA of the SMIB system
using the proposed algorithm(20 iterations)

5. COMPUTATION OF CRITICAL RECOVERY TIME

To compute the CRT, we use the concept of finite-time
stability. A system is finite-time stable if the the states
of the system remain in a given bounded set in a finite-
time interval. We note that the concept is different from
Lyapunov stability or asymptotic stability as in the latter
concepts the behavior of the system over an infinite
interval of time is studied, see [Amato et al., 2010] and
references therein. This means that a system that is
FTS might not be asymptotically stable and vice versa.
Consider a nonlinear system given by:

ẋ = f(x), (17)

where x ∈ D ⊆ Rn and f : D → Rn is Lipschitz on D.

Definition 5. Finite-time Stability The nonlinear sys-
tem ẋ = f(x), t ∈ [0, T ] is said to be finite-time stable
(FTS) with respect to (D1, D2, T ), where D1 ⊂ D2 ⊆ D
iff:

x(0) ∈ D1 ⇒ x(t) ∈ D2 for all t ∈ [0, T ], (18)

where D1 and D2 are given sets.

It is assumed that D,D1 and D2 are given as semi-
algebraic sets:

D = {x ∈ Rn : g0(x) ≥ 0}, (19)

D1 = {x ∈ Rn : g1(x) ≥ 0}, (20)

D2 = {x ∈ Rn : g2(x) < 0}. (21)

Therefore, verifying whether the states of the system
initiated form a set D1, remain in the ROA of the post-
fault system (Ωr) during a given recovery time (RT ),
is equivalent to verifying if the faulty system is FTS
w.r.t (D1, D2, RT ) with D2 = Ωr. To find the maximum
allowable recovery time or the CRT, we must find the
maximum of RT such that the system is FTS w.r.t the
given sets. The general problem to be solved has the
following form,

Problem 1. Given the nonlinear system (17), and the sets
D1, D2, find the maximum TM such that the nonlinear

system (17) is FTS with respect to (D1, D2, T ) for all
T < TM .

In the following, we explain how to use the results from
[Tabatabaeipour and Blanke, 2014] to solve the above
problem for a polynomial system. Compared to the re-
sults in the literature the method of [Tabatabaeipour and
Blanke, 2014] is not restricted to systems with quadratic
vector fields like [Amato et al., 2010] and can handle
nonlinear systems with polynomial vector fields.

The following theorem we gives sufficient conditions to
check FTS of a nonlinear system.

Theorem 3. [Tabatabaeipour and Blanke, 2014] The sys-
tem (17) is FTS with respect to (D1, D2, T ) if there exist a
continuously differentiable function B(x), a positive scalar
α, and 0 < ε < 1 such that the following conditions are
satisfied:

B(x) ≤ ε ∀x ∈ D1 (22)

B(x) ≥ 1 ∀x ∈ Dc
2 (23)

Ḃ(x)− αB(x) ≤ 0 ∀x ∈ D̄2 (24)

α < − 1

T
ln ε (25)

Using the generalized S-procedure (Lemma 1), the con-
ditions of theorem 3 are satisfied if the following SOS
programming is feasible:

−B(x) + ε− s1g1(x) ∈ Σn
(B(x)− 1)− s2g2(x) ∈ Σn

−∂B(x)

∂x
f(x) + αB(x) + s3g2(x) ∈ Σn

α < − 1

T
ln ε.

(26)

where B(x) is a polynomial, s1, s2 are SOS polynomials, α
is a a positive scalar, and ε is positive such that 0 < ε < 1.

In words, B(x) is a function that maps the trajectories
of the system, x(t), such that the corresponding value for
trajectories that are initiated within D1 is always bounded
from above by εeαt in time.

Due to the presence of the constraint T ≤ − 1
α ln ε, the

conditions given in (26) form a nonlinear SOS program-
ming. To solve the problem 1, we need to calculate the
maximum value of T such that given D1, D2, we can
verify that all trajectories initiated in D1 would remain
in D2. Maximizing T is actually the same as minimizing
the rate of growth of the function B in time. Accordingly,
to maximize T we search for the minimum α. Therefore,
to solve the problem 1, the following optimization problem
is solved:

α∗ := min
B∈Rn,s1,s2,s3∈Σn

α

s.t.


−B(x) + ε− s1g1(x) ∈ Σn
(B(x)− 1)− s2g2(x) ∈ Σn

−∂B(x)

∂x
f(x) + αB(x) + s3g2(x) ∈ Σn

(27)

Then, the system is FTS for all T < TM = − 1
α∗ ln ε. For

a given ε, because of the presence of the term αB(x) the
above problem is bilinear. Since α is scalar, the problem
can be solved by bisection on α. Therefore, to find the
minimum of α, a line search on ε is made where, for each
ε, a bisection is performed on α , see algorithm 2
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To apply the FTS framework to compute the CRT, we find
T ∗ for the nonlinear faulty system ẋ = ff where D1 is the
set describing the initial state of the faulty system and D2

describes the ROA of the post-fault system as computed
by Algorithm 1. The procedure is:

• Given the set Xs, fr, compute the Ωr of the post-fault
system using Algorithm 1.
• Given ff , and D1, set D2 = Ωr and calculate T ∗ using

Algorithm 2.

Algorithm 2

Given ε = [ε1, · · · , εm], (0 < ε1, εm < 1)
for i = 1 to m do

ε← εi
Solve the optimization problem (27) by bisection on

α
Ti ← 1

α∗ ln ε
end for
T ∗ ← minTi

Example (Continued) The CRT for the SMIB system is
now computed, using the ROA from above with D2 = Ωr.
The initial state of the system before fault is in the set
D1 = {x : (δ−δ0)2 +ω2 ≤ 0.1}. Then, using the procedure
given above and solving (27), CRT = 0.671. Extensive
simulations of 5 × 104 trajectories initiated randomly in
D1 gives CRT = 0.6742, which shows the tightness of
the bound. Figure 5 shows the result of 1000 of these
trajectories where the fault is cleared at t = 0.671. All of
the fault-on trajectories remain in Ωr and then converge
to the equilibrium point when the fault is cleared, which
verifies our theoretical result.
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Fig. 5. 1000 trajectories of the SMIB example initi-
ated randomly in D1. The fault is cleared at t =
0.6710 s. Fault-on trajectories (red), post-fault tra-
jectories (blue).

6. CONCLUSION

A new method for calculation of critical recovery time
for safety critical nonlinear systems was presented. The

method is based on computation of region of attraction of
the post-fault system and finite-time stability analysis of
the faulty system. Using sum of squares programming, we
showed how to use finite-time stability analysis with region
of attraction estimation to compute the critical recovery
time. A simulation example showed tightness of the bound
obtained from the method.
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