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Abstract: Multi-channel surface electromyography (sEMG) recognition has been investigated 

extensively by researchers over the past several decades. However, due to the nature of sEMG sensors, 

the more sensors are used, the greater chance for the sEMG to be influenced by environment noise. 

Furthermore, it is not feasible to use multi-sensors in some cases because of the bulky size of the sensors 

and the limited area of muscles. This paper proposes a novel sEMG recognition method based on the 

decomposition of single-channel sEMG. At first, sEMG is acquired while the participant does 5 

predetermined hand gestures. Then, this signal is decomposed into its component motor unit potential 

trains (MUAPTs), which includes 4 steps: 2-order differential filtering, spikes detection, dimension 

reduction and clustering with Gaussian Mixture Model (GMM). Finally, 5 MUAPTs are obtained and 

used for hand gestures classification: four features, integral of absolute value (IAV), maximum value 

(MAX), median value of non-zero value (NonZeroMed) and index of NonZeroMed (Ind) are extracted to 

form feature matrix, which is then classified with the algorithm of Linear Discriminate Analysis (LDA). 

The classification results indicate this method can achieve an accuracy of 74.7% while the accuracy of 

traditional classification method for single-channel sEMG is about 52.6%. 

Keywords: sEMG, Pattern recognition, sEMG decomposition, Gaussian Mixture Model, Linear 

Discriminate Analysis. 



1. INTRODUCTION 

Surface electromyography (sEMG) is a technique to record 

the electrical activity produced by skeletal muscles and can 

be readily measured on the skin to provide an assessment to 

human neuromuscular system (Tassinary et al., 2007). It is 

safe, noninvasive, real-time and convenient to be 

implemented. The signals can be analyzed to detect medical 

abnormalities, activation level, recruitments of motor units 

and to analyze the biomechanics of human or animal 

movements (Bilodeau et al, 2003; Chan et al, 2003; Frigo et 

al, 2000). sEMG is weak, low Signal Noise Ratio (SNR), 

non-stationary and easy to be influenced by environment 

noise. Hence, its process and recognition methods have 

drawn more and more attention. 

The conventional sEMG recognition approach is 

implemented as follows. Multi-channel sEMG are acquired 

on specific muscles while the researchers are doing some 

gestures or actions; a certain length of time window and 

sliding window are used to extract the corresponding time 

domain, frequency domain and time-frequency domain 

features, including Integral Absolute Value (IAV), Zero 

Crossing (ZC) (Xiong et al, 2011), Median Frequency 

(MedFre) (Chang et al, 2013), Power Spectral Density (PSD) 

(Singh et al, 2007) and Wavelet Transfer Coefficients(WTF) 

(Li, et al, 2008), etc.; after that, some classification or 

clustering algorithm such as Neural network (Xiong et al, 

2012), Support Vector Machine (Naik et al, 2010) and Linear 

Discriminate Analysis (Al-Timemy et al, 2013) are employed 

to recognize different action. 

However, it is known to us that sEMG is vulnerable to 

environmental noise because the sEMG sensors are adhered 

to the skin surface and the sweat, sebum or large range of 

motion will inevitably cause the sensor to loosen. Therefore, 

the more sensors are used, the greater chance for the sEMG 

signal to be interfered (Scheme et al, 2011). Furthermore, it is 

not feasible to use multi-sensors in some cases because of the 

bulky size of the sensors and the limited area of muscles. In 

this paper, we will present a novel sEMG recognition method 

based on the decomposition of sEMG, aiming to achieve 

higher sEMG recognition accuracy with fewer EMG sensors. 

sEMG signal is composed of the action potentials (APs) from 

groups of muscle fibers organized into functional units called 

motor units (MUs). It is a non-linear summation of the motor 

unit action potentials (MUAP) in a muscle (De Luca et al 

2006; Nawab et al, 2010). Each action potential from each 
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active unit contributes a small and constant increase in the 

total electrical signal recorded at the skin. The sEMG 

decomposition is to decompose the original signal into its 

component MUAP and hence analyze the recruitment and 

firing of motor units (Tracy et al, 2005). 

When researchers pose different actions, the recruited MUs 

are different although the amplitudes of sEMG might be 

almost the same. Consequently, to decompose sEMG into 

MUAPs; that is, to analyze sEMG from a micro scale, may 

help to improve the accuracy of recognition of sEMG. 

Although various decomposition (Stashuk 1999; Florestal et 

al, 2009; McGill et al, 1985) and corresponding validation 

(McGill et al, 2011; Parsaei et al, 2012) methods have been 

proposed, to the best of our knowledge, this paper presents 

the first sEMG recognition approach based on sEMG 

decomposition. 

The rest of the paper is organized as follows. Section 2 

presents the sEMG processing algorithms. The experimental 

results are analyzed and reported in Section 3. Section 4 

draws the conclusions. 

2. METHOD 

In this study, single-channel sEMG is decomposed into 

several trains of MUAPs. Then, the MUAPs trains are used 

for hand gestures recognition. The flowchart of the signal 

process procedure is illustrated in Fig.1. 
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Fig.1 The flowchart of sEMG process 

2.1  sEMG Decomposition Method 

2.1.1 Signal preprocess and MUAP detection 

According to (McGill et al, 1985), sEMG is filtered with a 2-

order differential filter, that is, 

2 1 1t t t t t
x y y y y

  
     (1) 

where 
t

y  is the sampled raw signal and 
t

x  is the sampled 

filtered signal, t is the sample time. Then, the threshold   is 

calculated according to (2) 
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The filtered signal is scanned for locations where the 

detection threshold is exceeded. Once a MUAP spike is 

detected, its firing time is defined by the location of the 

maximum value found within the next 1 ms (Stashuk 1999). 

2.1.2 Dimension Reduction with Principal Component 

Analysis (PCA) 

According to (McGill et al, 1985), the spike is made up of 16 

data due to the 2 order differential filter; that is, the 

dimension of samples for the following cluster algorithm is 

16. In order to reduce the required size of samples and 

computation load, improve the numerical stability and 

accelerate the convergence, Principal Component Analysis 

(PCA) is employed (Duda et al, 2012). Principal Component 

Analysis (PCA) in general transforms multivariate data into a 

set of linearly independent components that contain 

eigenvectors or principal axes onto which the original data 

are projected. To clarify this notation, recall that the 

calculation of modes is realized by diagonalization of the 

data’s covariance matrix, to which eigenvectors and 

eigenvalues correspond (Staudenmann et al, 2006). 

Representative data are decomposed and ranked in terms of 

the eigenvalues that, for every mode, reflect its contribution 

to the data in terms of variance. The exact use of PCA in our 

study will be introduced in Section 3.2 in detail. 

2.1.3 Clustering with Gaussian Mixture Model (GMM) 

A Gaussian mixture model is a weighted sum of M 

component Gaussian densities as given by the equation: 

1

( | ) ( | , )

M

i i i

i

p g 


 x x    (3) 

Where M is determined by Akaike information criterion (AIC) 

(Akaike 1974), x is a D-dimensional continuous-valued data 

vector (i.e. the dimension-reduced sEMG data with PCA 

method), 
i

 , i = 1,…,M, are the mixture weights, and 

( | , )
i i

g x   , i = 1,…,M, are the component Gaussian 

densities. Each component density is a D-variate Gaussian 

function of the form: 

1
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with mean vector 
i

  and covariance matrix 
i

 . The mixture 

weights satisfy the constraint that 

1

1

M

i

i




 . 

The complete Gaussian mixture model is parameterized by 

the mean vectors, covariance matrices and mixture weights 

from all component densities. 

According to the GMM, we can cluster the spikes samples 

into M clusters, namely M trains of MUAPs. 

2.2  Motion Recognition based on MUAPs 

2.2.1 Feature extraction 

On account of the complexity and the short-time stationary 

random characteristic of the sEMG, it is important to choose 

the proper features to represent the raw sEMG (Ferrarin et al, 

2007). In this study, the EMG segments are divided into 

overlapping epochs of length 800 ms and 25% overlap; 

namely, the EMG is segmented with 800ms time windows 

and 200ms sliding windows. The integral of absolute value 

(IAV), maximum value (MAX), median value of non-zero 

value (NonZeroMed) and index of NonZeroMed (Ind) are 

then extracted. Their description and calculation are given 

below. 

a) Integral of absolute value (IAV)  

1

1
| |

N

i

i

IAV x
N 

   (5) 

where 
i

x  is the i th sampling point and N is the length of 

time windows. 

b) Maximum value(MAX) 

1,...,

max
i

i N

MAX x


  (6) 

where 
i

x  is the i th sampling point and N is the length of 

time windows. 

c) Median value of non-zero value (NonZeroMed) 

1 2
median value of { , , ..., }

N
NonZeroMed x x x    (7) 

where 
i

x  is the i th sampling point and N is the length of 

time windows. 

d) Index of NonZeroMed (Ind) 

original location of the NonZeroMed in the time windowsInd    

(8) 

The selection and the number of features as well as the length 

of time and sliding windows have been tested several times; 

and the aforementioned features and windows provide best 

performance. 

2.2.2 Classification with Linear Discriminate Analysis (LDA) 

After features are extracted, LDA is utilized to classify the 

features samples into 5 classes corresponding to 5 

predetermined hand gestures. Since the purpose of the 

classification is not to introduce complex classification 

method but to show the improvement of the proposed 

approach, we want to use a well-known and simple 

classification algorithm. 

In this experiment, we define a linear transfer matrix A, 

which projects features extracted from M trains of MUAPs, 

into a reduced subspace, namely 

T
y A D  (9) 
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where , , ,
ij ij ij ij

IAV MAX NonZeroMed Ind  are defined in 

Section 2.2.1 and i = 1,2,…,p; j = 1,2,…,M. For the subscript 

4M p , 4M denotes the number of features of M trains of 

MUAPs and p is the number of training samples.  

total number of sEM G data T ime W indow len gth

sliding window length sliding window leng th
p  

 (11) 

The reduced subspace is represented as y={y1,y2,…,yi,..,yp}, 

where yi{1,2,…,k,…,c}. k denotes the kth cluster, and c is 

the total number of clusters. c = 5 in this study corresponding 

to the 5 hand gestures defined earlier in Section 2.2.2. 

LDA is mainly based on a set of functions of scatter matrices. 

The within cluster scatter matrix is defined as 

   
1

c
T

w i i

i

   S D m D m   (12) 

The between clusters scatter matrix is defined as  
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LDA optimization is defined as 
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Accordingly, the matrix A  can be obtained. 

The matrix R
d r

A  is made up of r eigenvectors 

corresponding to the r largest eigenvalues of 
1

w b


S S . The 

dimension of the matrix A is determined by the number of 

clusters c. 

As mentioned in (9), the subspace y can be calculated 

accordingly. 

3 EXPERIMENT AND RESULTS 

3.1 Equipment and Procedure 

In this study, sEMG is acquired while the participant poses 

predetermined 5 gestures, including rest, fist clenching(FC), 

palm stretching(PS), index finger pinching (IFP), and middle 

finger pinching(MFP); and the gesture of rest is used 

constantly as the transition from one movement to another. 

 

Fig. 2 The 5 gestures: pinching the index finger, pinching the 

middle finger, rest, clenching the fist, and outstretching the 

palm 

 

Fig. 3 The position for sEMG electrode and sensor. 

The sensor used for acquiring sEMG is MyoScan-Flex 

(Thought Technology Co. Ltd.®, Canada) with a gain of 

1000 and a common rejection mode ratio >100 dB. The 

disposable surface electrodes (Ag/AgCl) with a diameter of 8 

mm and a center to center distance of 20 mm, which adhered 

to the skin that was cleaned previously with alcohol. The 

electrode is affixed on flexor digitorum superficialis (see Fig. 

3), whose primary function is flexion of the middle phalanges 

of the fingers at the proximal interphalangeal joints, however 

under continued action it also flexes the metacarpophalangeal 

joints and wrist joint (Tubiana et al, 1988). All data are 

sampled with a frequency of 1kHz and then digitally filtered 

by a bandpass filter of 2-500Hz and a notch filter of 50Hz for 

the further process with MATLAB. 

3.2 Experiment 

In our experiment, the sEMG is recorded while the 

participant completes the 5 gestures described in Section 3.1. 

Totally 960000 sEMG data points, are used for training.  

The raw sEMG is filtered by the 2-order differential filter 

mentioned in (1), which can suppress the low-frequency 

background activity as well as removing the outliers. 

Then, the threshold to detect MUAP spikes is calculated to be 

39.5 and the spikes are marked with red circles at their peaks 

locations (Fig. 4). The sEMG data which are less than the 

threshold are replaced by 0.  
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Fig. 4 The filtered sEMG signal and detected spikes which 

are marked with circles located at the peaks positions. 

After that, PCA algorithm is used to reduce the dimension of 

spikes into a lower dimension subspace. The selection of the 

subspace dimension has been tested several times and we 

finally choose 4 because it is the compromise between the 

computation load and clustering accuracy. Then, we use 

GMM to cluster the dimension-reduced spikes and 5 clusters 

are obtained due to the AIC. 

Furthermore, the MUAP spikes within the same clusters form 

a MUAP train according to their original location; and the 

other locations without MUAP are set to be 0. The 5 trains of 

MUAPs are plotted in Fig. 5(a). We will use the 5 trains of 

MUAPs to recognize hand gestures later. 

A 800ms time window and a 200ms sliding window are 

employed to extract features, including IAV, MAX, 

NonZeroMed and Ind. To describe it clearly, we select 1 of 

the sEMG files to plot it and its corresponding features (see 

Fig. 5). The red lines denote the onset and end time of hand 

gestures. 

These features are combined to form a matrix, where p can be 

calculated according to (11):  

960000 800
2397

200 200
p   

 

LDA algorithm is employed to classify the matrix into 5 

classes. The classification training result is plotted in Fig. 14. 

Different colors denote different gestures samples and they 

scatter in the 3 dimension space. Moreover, the projection 

matrix A can be obtained according to (12)-(14), and the 

matrix Center is calculated by averaging all the samples in 

each clusters. 
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Fig. 5 (a) the 5 MUAPs trains decomposed from filtered 

sEMG. The red lines denote the start and end points of 

actions, i.e. index finger pinching, middle finger pinching, 

fist clenching and palm outstretching respectively. (b-e) the 

IAV, MAX, NonZeroMed and Ind features extracted from 

MUAPs trains, respectively. 

Additionally, we implement an online sEMG recognition 

experiment. 384 seconds of sEMG data are recorded in 12 

trials when the participant completes the aforementioned 

actions. Results are shown in Fig. 6 and Table 1. The x-axis 

in Fig. 6 is the number of samples (the time windows). The y-

axis denotes the gestures. The red pluses are the real labels 

obtained from prior knowledge; and the blue dots are the 

estimated labels. The results indicate that our proposed 

method can achieve a mean accuracy of 74.7%, as shown in 

Table 1. 

Table 1. the classification result for each gesture  

Gestures Rest FC PS IFP MFP 

Accuracy 0.63 0.83 0.79 0.98 0.50 

Mean accuracy 74.7% 

0 50 100 150
Rest

FC

PS

IFC

MFC

Time Windows
A

c
ti
o
n
s

The online sEMG recognition result

 

 

The estimated label

The real label

 

Fig. 6 The sEMG recognition result. The x-axis is the number 

of samples (time windows). The y-axis denotes the gestures. 

The red line is the real label that we marked during the 

experiment and the blue dotted line is the estimated result. 

We can see the estimate errors appear during the transition 

moment from one action to another. 

Furthermore, we compare this result with that of a traditional 

method, which is to classify the single channel sEMG with 

LDA but without sEMG decomposition. The latter result is 

shown in Table 2. The mean accuracy is about 52.6%. 

Table 2 The classification result for each gesture with 

LDA only 

Gestures Rest FC PS IFP MFP 

Accuracy 1.00 0.37 0.27 0.48 0.49 

Mean accuracy 52.6% 

4. CONCLUSIONS 

In this paper, we propose a novel gesture recognition method 

based on sEMG decomposition. sEMG on flexor digitorum 

superficialis is acquired while the participant does 5 

predetermined  gestures. After that, the single channel sEMG 

is resolved into 5 trains of MUAPs utilizing 2-order 

differential filter, spike detection, PCA dimension reduction 

and GMM clustering. Then, 4 features, such as IAV, MAX, 

NonZeroMed and Ind are extracted to form features matrix 

and finally LDA algorithm is employed to classify it into 5 

classes. The accuracy of classification is about 74.7%, which 

is much higher than that of conventional recognition method 

for single channel sEMG. 
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