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Abstract: A novel optimisation framework using an adjoint cost sensitivity calculation, and
integrating computer simulations of fluid dynamics, rigid body dynamics and control is proposed.
A generic tail-fin steered missile under closed-loop control is used to show that the framework is
able to generate a detailed geometrical tail-fin design and tune control performance parameters
that are directly related to the range and manoeuvrability of the missile. It is shown that this
new methodology is able to reduce the aerodynamic drag by 2% and the tracking error by about
3% relative to the original design.
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1. INTRODUCTION

The use of computer simulations as part of the design
process is becoming increasingly common in complex and
multi-disciplinary engineering products. For missile de-
sign, multi-point geometry optimisation ((Anderson et al.
(2000)) and trajectory and geometry optimisation (Tek-
inalp and Bingol (2004) and Yang et al. (2012)) have
been reported in the literature. These previous studies
utilised low fidelity semi-empirical aerodynamic models
such as Missile DATCOM (Vukelich et al. (1988)) rather
than modern computational fluid dynamics (CFD) models
to generate the aerodynamic data. An obvious criticism
of these methods is the accuracy of the semi-empirical
aerodynamic models. Moreover, these models implicitly
place limitations on both the fidelity and novelty of the
shapes that can be generated by the optimiser.

The field of aerodynamic shape optimisation was pioneered
by Lighthill (1945) who utilised analytical inverse field
methods to determine an optimal shape for a known pres-
sure distribution. More recently, the adjoint method has
gained popularity due to the computational efficiency of
the method. Jameson (1988) was the first to demonstrate
the capability of the adjoint method in calculating the
sensitivity of an aerodynamic functional with respect to
the geometry design variables with just two simulations.
A primal simulation is used to capture the behaviour of the
physical system and an adjoint simulation is used to calcu-
late the gradient of a cost function with respect to all of the
design variables. In comparison, calculating the gradient
of a cost function using finite differences would require at
least N + 1 simulations, where N is the number of design

? This work was supported by the Australian Research Council’s
Linkage Projects funding scheme (LP110200025). Support of BAE
Systems Australia and the Defence Sciences Institute is also acknowl-
edged.

variables. The gradient can then be used within a gradient-
based optimiser to find a local minimum. Jameson’s work
was initially concerned with just optimisation of geometry
at a single steady-state, but has since been extended for
multi-point optimisation (Reuther et al. (1997)), rotor-
craft blade optimisation (Economon et al. (2012)) and
aerofoil optimisation with a predefined pitching motion
(Economon et al. (2013)). Adjoint methods are limited in
that the solution can become entrapped in local minima.
The alternative is to use global optimisation methods to
overcome this, but global methods require much higher
computational resources especially as the number of design
variables increases. In Lee et al. (2013), a global extremum
seeking method is proposed that utilises semi-converged
CFD evaluations to reduce the computational load.

In order to optimise the performance of an aircraft un-
dertaking a set of manoeuvres, one may be tempted to
simultaneously compute both the fluid dynamics and the
feedback-controlled rigid-body dynamics. Such a task is,
however, computationally expensive. Moreover, a compli-
cation is introduced by the fact that the achieved aircraft
trajectory depends upon the controller, which is typically
tuned to the aircraft geometry. In order to address these is-
sues, this paper considers a high velocity regime where the
aerodynamic forces acting on the aircraft are adequately
described by steady flow. Note that it is common practice
in missile modelling to consider only steady flow and to
neglect aerodynamic rate effects (see Menon and Ohlmeyer
(2001) and Siouris (2004)). A set of CFD simulations is
performed in order to map the aerodynamic forces acting
on the aircraft for a variety of flow regimes. These maps
are then used in a rigid-body dynamic simulation of the
aircraft undertaking a set of commanded manoeuvres. An
optimiser tunes both the controller gains and the aircraft
geometry in order to maximise the aircraft performance,
which is expressed in terms of both drag and the ability
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of the aircraft to track its commanded trajectory. Further
to this, cost function gradients are calculated through a
novel combination of an adjoint approach for the CFD
and a finite-differencing approach for the (computationally
cheap) rigid-body dynamics.

2. PROBLEM DESCRIPTION

Consider an aircraft subject to the dynamics,

ẋ = f (x, r(t), Xd, F (χ(x), Xi)) , (1)

where:

x is the system state which may, for example, include
states related to the rigid-body dynamics of the aircraft,
states related to the control surface dynamics, and states
used within a feedback controller for motion control.

r(t) is a reference signal, defined over the time interval
[0, T ], that describes a “mission” over which the perfor-
mance of the aircraft is to be evaluated.

Xd is a vector of “direct” design parameters which may,
for example, include vehicle mass, position of centre
of gravity, actuator characteristics, controller tuning
parameters and geometrical parameters whose effects
can be adequately described by available data/models
(without undertaking CFD simulations).

F is a vector of aerodynamic forces and moments that
cannot readily be written it terms of a known algebraic
or ordinary differential equation. Instead F is to be
found by performing a CFD simulation for the steady
flow about the aircraft (or a feature thereof).

Xi is a vector of design parameters related to the ge-
ometry of the aircraft. These design parameters are
referred to as “indirect” since they only enter the system
dynamics via F .

χ(x) is the “pose” or configuration of the aircraft with
respect to the incident flow. The mapping from x to
χ is typically a simple truncation transformation. For
example, χ may be described by aircraft states such air
speed, the angle of attack, slip angle, roll angle, and
control surface deflections. χ cannot contain quantities
such as linear accelerations and angular velocities since
their effect on aerodynamic forces cannot easily be
captured using steady CFD simulations. As a result of
this, the proposed approach is most applicable to high
velocity aircraft where “rate” effects on aerodynamic
forces are typically negligible.

The performance of the aircraft for the “mission” can be
written as a cost function,

Jr :=

∫ T

0

v (x, r(t), Xd, F (χ(x), Xi)) dt. (2)

The design objective is to seek the design parameters
X := (Xd, Xi) which optimise the aircraft’s performance,
in other words,

arg min
X

Jr, (3)

subject to (Xd, Xi) ∈ Dd × Di where Di and Dd are
compact sets.

2.1 Discrete approximation for aerodynamic force maps

Consider a given aircraft geometry so that Xi is fixed. F
then maps the aerodynamic forces in terms of the aircraft

pose. It is reasonable to constrain the pose to a compact
set, χ ∈ G. Nonetheless, even under these conditions, the
domain of F is continuous. Recalling that F can only
be “discovered” through CFD simulations, then a single
CFD simulation for a given value of χ reveals only one
point on the mapping, F (·, Xi). It follows that only a
finite number of points on the mapping can be found using
CFD simulations, and an interpolation scheme must then
be used to approximate F for those values of χ that are
not tested. Suppose CFD simulations are performed for n
values of χ, denoted by χ1, . . . , χn. Then the interpolated
mapping F̂k(χ,Xi) should have the property that, for any
ε > 0, there is a n∗ such that for all n > n∗, χ ∈ G and
Xi ∈ Di, ∥∥∥F̂k (χ,Xi)− F (χ,Xi, )

∥∥∥ < ε. (4)

3. OPTIMISATION FRAMEWORK

3.1 The Adjoint Method

The adjoint method is a means of calculating the gradient
of the cost function with respect to the design variables.
The derivation of the adjoint equations following from
Nadarajah and Jameson (2000) and Economon et al.
(2012) are reproduced here.

Consider a cost function J , that is a function of the flow-
field quantities, U , and geometric design variables (indirect
design variables) Xi.

J = J (U,Xi) . (5)

In aerodynamic studies, the cost functions of interest are
predominantly some function of the pressure over the
surface boundary S of the aircraft. Let the class of these
functionals be written as,

J =

∫
S

d · (pnS) ds, (6)

where, d is a force projection vector, p is the pressure and
nS is the local normal vector on the surface.

By calculus of variations a change in Xi results in a change
in the cost,

δJ =
∂J

∂U
δU +

∂J

∂Xi
δXi. (7)

It is expensive to compute variations in the flow-field quan-
tities, δU , that is, each variation will require an additional
CFD simulation. The aim of the adjoint approach is to
eliminate this term in (7). Suppose that the governing
equations of the flow are introduced in the form of an
equality constraint,

R (U,Xi) = 0. (8)

For example, R (U,Xi) could be the conservative form of
the compressible Euler equations. The variation in (8) is,

δR =

[
∂R

∂U

]
δU +

[
∂R

∂Xi

]
δXi = 0. (9)

Equation (7) can be combined with (9) via a Lagrange
Multiplier, ψ, which gives,

δJ =
∂J

∂U
δU +

∂J

∂Xi
δXi − ψ

([
∂R

∂U

]
δU +

[
∂R

∂Xi

]
δXi

)
=

{
∂J

∂U
− ψ

[
∂R

∂U

]}
δU +

{
∂J

∂Xi
− ψ

[
∂R

∂Xi

]}
δXi.

(10)
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Suppose ψ is chosen such that,[
∂R

∂U

]
ψ =

∂J

∂U
. (11)

Equation (11) is called the adjoint equation, and with an
appropriately defined flow field and boundary conditions,
this adjoint PDE can be implemented and solved using
the same numerical computer code that is used to solve
the governing equations of the flow.

Substituting (11) into (10) eliminates the term δU . The
change in the cost functional is,

δJ = GδXi, (12)

where the gradient, G, is given by,

G =
∂J

∂Xi
− ψ

[
∂R

∂Xi

]
. (13)

3.2 Modified Adjoint Method

An overview of the optimisation framework is provided in
Figure 1. Let X0 denote the initial set of design variables.
The design variables are separated into indirect design
parameters, Xi, and direct design parameters, Xd.

For each iteration of the optimiser, the following steps are
performed:

(1) The CFD solver is executed for each configuration
and this is used to calculate the lift, drag and moment
aerodynamic values, F (χk, Xi).

(2) The maps of the aerodynamic forces are then utilised
within a simulation of the feedback-controlled rigid-
body dynamics for a series of commanded manoeu-
vres, and a cost function, Jr, is evaluated.

(3) The derivatives of Jr with respect to Xd and
F (χk, Xi) are calculated by means of finite differences
(requiring multiple executions of step 2).

(4) An adjoint CFD simulation is performed, using
knowledge of both the primal CFD states and the
derivatives of Jr with respect to F (χk, Xi). The result
of the adjoint CFD is the derivative of Jr with respect
to Xi.

Optimiser

Primal CFD

χ = χk
∀k ∈

[1, 2, ..., n]

Rigid body

dynamics &

controller

Adjoint CFD

χ = χk
∀k ∈

[1, 2, ..., n]

initial design X0

direct design

variables, Xd

indirect

design

variables,

Xi

aerodynamic

forces &

moments

F (χk, Xi)

sensitivities
∂Jr

∂F (χk,Xi)

sensitivity
dJr
dXi

cost Jr

sensitivity dJr
dXd

Fig. 1. Optimisation framework

Remark 1. Consider the isolated task of calculating the
derivative of Jr with respect to Xd and F (χk, Xi). In

this work, the derivative is approximated using finite-
difference, which requires many simulations of the feedback-
controlled rigid-body dynamics per derivative calculation.
This computational cost could be reduced by instead using
an adjoint based approach (without making any other
change to the proposed framework). The resulting opti-
misation framework would then have and “inner” adjoint
solver for the CFD, and an “outer” adjoint solver for the
rigid-body dynamics. However, for the case at hand, the
computational effort associated with simulations of the
rigid-body dynamics is insignificant compared to that of
the CFD. Thus the computational benefits of using an
“outer” adjoint solver are small when weighed against the
effort required to develop such a solver.

The following describes step 4 in detail. It can be seen
that,

dJr
dXi

=
∑
k

∂Jr
∂F (χk, Xi)

dF (χk, Xi)

dXi
. (14)

Suppose that a force projection vector of the form,

d =
∑
k

∂Jr
∂F (χk, Xi)

H, (15)

is used, where the derivatives of Jr with respect to
F (χk, Xi) were found in step 3. In order to calculate the
gradient in (14) via the adjoint method, we require each
row of H in (15) to correspond to the forces and moments
in the vector F .

The derivative of Jr with respect to Xi is calculated using
just two CFD simulations (one primal and one adjoint)
per configuration per optimiser iteration.

An alternative and perhaps more intuitive formulation is

to calculate the gradients dF (χk,Xi)
dXi

separately by execut-
ing an adjoint CFD simulation for each element in F .
However, this particular approach requires M + 1 CFD
simulations (one primal andM adjoint) per configuration
per optimiser iteration, whereM is the number of elements
in F .

4. EXAMPLE

4.1 Missile tail-fin shape optimisation

A tail-fin steered missile moving in the pitching plane is
considered. Movement is restricted to the vertical plane
and a constant speed relative to the flow is assumed. For
a three-dimensional, variable speed model both of these
restrictions could be removed, but this would result in
additional “poses” of the aircraft, and therefore additional
CFD evaluations. The rigid-body dynamics model is then,

α̇ =− L

mV
+ q,

q̇ =
MY

Iyy
, (16)

where, the angle of attack α and pitching rate q is
written in terms of the instantaneous speed V , missile
mass m, second moment of inertia Iyy, aerodynamic lift
L and moment MY . It is assumed that the effects of
gravity are neglected. At transonic and supersonic speeds,
the gravitational force is small in comparison to the
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aerodynamic forces, and, the change in instantaneous
speed is also not significant for the manoeuvres considered
here.

The normal acceleration can be written as,

η =
V (q − α̇)

cosα
. (17)

The fin actuators are modelled using a second order linear
system,

δ̇ = δz

δ̇z = ω2
aδ − 2ζaωaδz + ω2

aδc, (18)

where, δc is the commanded fin deflection, δ is the achieved
fin deflection, δz is the fin deflection rate, ζa is the damping
ratio and ωa is the undamped natural frequency of the
actuator.

A variety of feedback control schemes have been adopted
in missile control. An overview of some common control
algorithms can be found in Jackson (2010). A typical hi-
erarchical control scheme consists of target tracking, guid-
ance, autopilot and servomechanism control. The autopilot
is responsible for translating the guidance commands into
actuator commands.

In this paper, an acceleration-based control system, com-
monly known as a “three-loop” autopilot is utilised,

δc = −KRq +WIxc
ẋc = −q +KA(−η +KDCηc) (19)

where, the commanded normal acceleration, ηc, is the
input, the fin-deflection is the output, and the missile’s
achieved pitch rate and acceleration form the feedback
signals. A linear technique for tuning the four gains of
the controller follow from Zarchan (2012), where an equi-
librium operating condition is chosen, along with the de-
sired time constant τ , damping ζ and open-loop crossover
frequency. The tuning strategy provides a static mapping
from τ , ζ and ωcr to the gains KDC , KA, WI and KR.
These control design variables can be thought of as direct
design parameters, that is, Xd = [τ , ζ, ωcr].

For the indirect design parameters, consider the geometry
of a generic tail-fin controlled missile found in Sooy and
Schmidt (2005). The physical schematic and dimensions
of the missile is shown in Figure 2. The missile consists of
a tangent-ogive nose, a cylindrical body and four tail-fins
arranged in a cruciform. The tail-fins have a leading-edge
sweep angle of 33.69◦ and a wedge profile with a thickness-
to-chord ratio of 0.07. In this example, only the tail-fins
are optimised with the remaining geometry fixed.

The tail-fins are the control surfaces of the missile. A
change in the fins’ position, alters the flow field around
the missile, this in turn changes the aerodynamic forces
and moments and ultimately this affects the rigid-body
dynamical states given in (16). For pitch axis motion, it
can be seen that the aerodynamic forces and moments
depend on the states α and δ. It is then necessary to
estimate these forces for the entire α-δ state space of the
missile.

The DATCOM computer program (Vukelich et al. (1988))
is able to return aerodynamic data based on semi-empirical
models. The program is also capable of calculating the
overall forces and moments of the missile, based on a

3d

16d

14.667d

d

d

2d
3

4d
3

Fig. 2. Schematic of missile nose, body (truncated) and
tail

component build-up method, where the aerodynamic data
for each individual component (eg. nose, body and fins)
are effectively summed up. To alleviate the burden of
computing the aerodynamic data for the entire missile,
DATCOM is used to generate the aerodynamic data for
the nose and body of the missile, and only the tail-fin aero-
dynamic data at different δ-deflections are generated using
steady flow CFD simulations provided by the Stanford
University Unstructured (SU2) package (Palacios et al.
(2013)). Therefore the configuration, χ = δ, and, the
vector of the aerodynamic lift, drag and moment of the
tail-fin is given by,

F :=
[
D̃ L̃ M̃Y

]>
. (20)

DATCOM is used to combine the aerodynamic data of
all the various components of the missile together, which
gives, D((α, δ), Xi), L((α, δ), Xi) and MY ((α, δ), Xi). It is
these curves which are used in (16).

With F defined as (20), this leads to a matrix,

H :=
1

C∞


cos δ sin δ 0
− sin δ cos δ 0

0 0
−(x− x0)

Lref

 , (21)

which is used in the adjoint CFD simulation, where, C∞ =
1
2V

2ρ2∞Az. ρ∞ is freestream density, Lref is the reference
length and Az is the reference area.

The geometry of the tail-fin is deformed using a free-
form deformation method (Samareh (2004)), where control
points can locally deform the geometry close to where
they are specified. 24 control points (or indirect design
parameters, Xi) which can only deform the tail-fin in the
z-direction are defined. So that the tail-fin remains sym-
metrical under deformation, each control point at the top
of the wing is coupled with the corresponding control point
directly below, this means that a positive deformation
on the top is mirrored by a negative deformation on the
bottom of the tail-fin. The deformations are constrained by
maximum and minimum values set in the optimiser. The
mesh used to model the tail-fin and the control points are
shown in Figure 3.

For a controlled missile, two key performance measures of
interest are the manoeuvrability and range. A possible cost
function that captures this is,

Jr =

∫ T

0

e(t)2dt+ w

∫ T

0

D(t)2dt, (22)
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Fig. 3. CFD mesh and geometry deformation control
points of tail-fin

where e(t) = ηc − η, is the instantaneous tracking error
between the commanded and achieved normal acceleration
and D(t) is the instantaneous drag force. A weighting
constant w is used to adjust the relative cost of each of
component.

4.2 Results

The missile model is subjected to both a positive and
negative step change in command acceleration of 5 ms−2

over a 3 second period at a freestream speed of Mach 0.8.
An example of the positive step command and response
of the missile is shown in Figure 4. The fin deflection rate
was recorded to be no more than 100 rad · s−1 (equivalent
to a fin tip rotational speed of 16.67 ms−1). Comparing
this value with the freestream Mach speed, it is reasonable
to assume that there exists time scale separation between
the actuator’s speed and the stabilisation of the transonic
flow field and therefore justifies the use of steady flow CFD
data.
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Fig. 4. Step response of missile model

The cost and gradients calculated using the adjoint
method are used with an interior point optimisation al-
gorithm (Waltz et al. (2006)) to determine the optimum
tail-fin design. Three optimisation test cases are con-
ducted. In Test Case A only the geometry is optimised.
In Test Cases B the three control design variables τ , ζ
and ωcr, are optimised. In Test Case C both geometry
and control parameters are optimised. A cost weighting
w = 3.0× 10−6 is used. The convergence histories for the
test cases are shown in Figure 5.
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Fig. 5. Optimisation convergence history

The result shows that the optimiser was able to converge
quite rapidly to the local minimum, requiring only a
modest number of function evaluations. In Test Case A the
cost was reduced by 1.4%, in Test Case B it is reduced by
3.8%, while in Test Case C the cost was reduced by 5.2%.
It is noted that the drag was reduced in both cases A and C
by about 2%. While this does not seem to be a significant
reduction in absolute terms, it would still be a significant
fuel saving. In Test Case A it can be seen that the geometry
variables have only a small impact on the tracking error
component, and vice versa for Test Case B, the impact
of the control parameters on the drag component is small
(in fact the drag force is slightly increased). This result
indicates that the tracking error depends on the control
parameters, and similarly, that the drag force depends on
the geometric parameters.

Figure 6 show cut-through sections of the tail-fin at
different stations along the span for the initial tail-fin
and the two optimised tail-fins. It can be seen that both
optimised tail-fins have very similar profiles. The overall
height of the tail-fin has been reduced and the fin tapers in
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toward its skinniest point at the mid-span. It is interesting
to note that the profile of the tip of the fin bulges out
again, which emulates the aerodynamic benefits of some
traditional wing-tip designs.

xs1

xs2

xs3

xs4

xs5

xs6

xs1

xs2

xs3

xs4

xs5

xs6

xs1

xs2

xs3

xs4

xs5

xs6

original geometry only geometry & control

Fig. 6. tail-fin cross-section comparison (vertical scale
stretched)

5. CONCLUSION

An optimisation framework integrating an adjoint-based
cost sensitivity calculation into an environment consisting
of CFD, rigid body dynamics and controller simulation has
been developed. This framework, demonstrated through
the design of a missile’s tail-fin, shows that a locally opti-
mal design can be achieved with only a twofold increase in
computational resources and is independent of the number
of geometry design variables.
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