
Model-free Adaptive Dynamic

Programming for Optimal Control of

Discrete-time Affine Nonlinear System ⋆

Zhongpu Xia ∗ Dongbin Zhao ∗ Huajin Tang ∗∗

∗ The State Key Laboratory of Management and Control of Complex
Systems, Institute of Automation, Chinese Academy of Sciences,

Beijing 100190, China (e-mail: zhongpu.xia@gmail.com,
dongbin.zhao@ia.ac.cn).

∗∗ Institute for Infocomm Research, Agency for Science, Technology
and Research (A*STAR) Singapore 138632, Email:

htang@i2r.a-star.edu.sg

Abstract: In this paper, a model-free and effective approach is proposed to solve infinite horizon
optimal control problem for affine nonlinear systems based on adaptive dynamic programming
technique. The developed approach, referred to as the actor-critic structure, employs two
multilayer perceptron neural networks to approximate the state-action value function and the
control policy, respectively. It uses data collected arbitrarily from any reasonable sampling
distribution for policy iteration. In the policy evaluation phase, a novel objective function is
defined for updating the critic network, and thus makes the critic network converge to the
Bellman equation directly rather than iteratively. In the policy improvement phase, the action
network is updated to minimize the outputs of the critic network. The two phases alternate until
no more improvement of the control policy is observed, such that the optimal control policy is
achieved. Two simulation examples are provided to show the effectiveness of the approach.

Keywords: Model-free adaptive dynamic programming, reinforcement learning, policy
iteration, multilayer perceptron neural network.

1. INTRODUCTION

Steering systems from one state to another by the ap-
plication of a series of control actions in a best way is
desired in the practical engineering. The one which can
satisfy this goal is called the optimal control policy. It is
well known that deriving optimal control policies for linear
systems is equivalent to calculate the unique positive defi-
nite solution of the algebraic Riccati equation (ARE), and
for nonlinear systems is to calculate the Hamilton-Jacobi-
Bellman (HJB) equation(Lewis et al. (2012)). What is
indispensable during the calculation is an accurate dynam-
ics model of the system. Unfortunately, dynamics models
are always completely unknown or their parameters are
uncertain in the engineering. Moreover, the solution to
HJB equation is often difficult or impossible to obtain as it
involves solving the nonlinear partial difference equations.
Therefore, developing an algorithm that can achieve the
optimal control policy model-freely is fairly necessary.

Reinforcement learning makes it possible to obtain a viable
control policy model-freely as the control policy can be
improved by interacting with the system. More in detail,
it can learn to make a good decision by observing its
own behaviors and the system’s responses, and use built-
in mechanism for improving the control policy through
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a reinforcement scheme (Bertsekas and Tsitsiklis (1995)).
Lots of work has been done to yield a viable control policy
without accessing to the dynamics model in the computa-
tional intelligence community such as Q-learning (Watkins
(1989)), the fitted Q-iteration (Ernst et al. (2005)), the
least square policy iteration (LSPI) (Lagoudakis and Parr
(2003)), and in the control community such as the adaptive
dynamic programming (ADP) (Wang et al. (2009)). The
first two algorithms focus on discrete state-action space,
and the LSPI algorithm mainly focuses on continuous
state but discrete action space. However, events are always
continuous in the application. In order to steer the system
in an optimal way, the continuous action is required. The
ADP algorithm is available for the such a problem as it
can calculate the numerical solution to the HJB equation.

The ADP technique has gained much interest so far in the
area of deriving optimal control policy without accessing
the dynamics model. It derived the optimal control policy
for the linear system without accessing to the dynamics
model (Bradtke et al. (1994)) and was applied for adaptive
cruise control system (Zhao and Xia (2013)). Recently, the
ADP technique has been studied to derive the optimal
control solutions for nonlinear systems. The optimal con-
trol policy was derived for the affine nonlinear system with
known partially dynamics model (Dierks and Jagannathan
(2012); Vrabie and Lewis (2009)), i.e. only the control co-
efficient matrix was required. Model-free methods for the
nonlinear system were developed in (Wang et al. (2012);
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Zhang et al. (2009)), but the dynamics model was still
required to be identified based on the collected data in
advance. The action dependent ADP algorithm proposed
in(Liu et al. (2001); Si and Wang (2001); Zhao et al.
(2014)) provides a good mechanism for deriving the op-
timal control policy model-freely by using the state-action
value function, but an effective way for implementing this
algorithm is still being explored.

In this paper, we propose a fast and effective approach
for implementing the action dependent ADP algorithm by
introducing the learning mechanism in the LSPI algorithm
which is efficient in using of data. Different from the
LSPI algorithm, this paper focuses on the optimal control
problem in the continuous state-action domain, and the
multilayer preceptron (MLP) neural network which has
a more powerful generalization than the linear approxi-
mation architecture (Lagoudakis and Parr (2003)) is em-
ployed to implement the actor-critic structure. The policy
iteration method is adopted for calculate the numerical
optimal control solution. In the policy evaluation phase,
a novel objective function is defined for updating the
critic network to satisfy the Bellman equation directly.
In the policy improvement phase, the action network is
updated to minimize the corresponding output of the critic
network. What is required for implementing the policy
iteration is a batch of data about the state transition of
the system, and the same data can be used throughout the
iteration. In addition, the Levenberg-Marquardt method
is adopted to train both the critic network and the action
network.

This paper is organized as follows. The problem is in-
troduced in section 2. Section 3 outlines the proposed
approach and implements it by MLP neural networks. Two
affine nonlinear systems are given to verify its effectiveness
in section 4. Conclusions are given in section 5.

2. PROBLEM STATEMENT

In this paper, we study the discrete-time affine nonlinear
systems as follows:

xk+1 = f(xk) + g(xk)uk (1)

where x ∈ S ⊆ R
n is the state vector, u ∈ A ⊆ R

m is
the control action vector, with the subscript k = 0, 1, 2, · · ·
represents the time step, S and A represent the state space
and the action space respectively. It is supposed that the
system is controllable and (0, 0) is the equilibrium point.
A control policy is a mapping from a state to an action,
and denoted as π.

A value function is defined to evaluate the performance of
control policy π by summing a local cost c(xk, uk) of the
system following the control policy π in infinite horizon

Jπ(xk) =

∞
∑

i=0

γic(xk+i, π(xk+i)) (2)

where γ (0 < γ ≤ 1) is the discount factor, and the
local cost c(xk, uk) = xT

k Qxk + uT
kRuk (Q ∈ R

n∗n is
positive semi-definite matrix and R ∈ R

m∗m positive
definite matrix). At the equilibrium point, J(0) = 0.

Definition 1. (Admissible control policy). A control poli-
cy π is said to be admissible, if π(0) = 0, π(xk) is
continuous in the state space S and it is able to drive the
system to the equilibrium point from any initial state with
the value function being finite (Wang et al. (2012)).

Mostly, the optimal control policy is desired, which can
obtain an minimized value function

J∗(xk) = min
π

∞
∑

i=0

γic(xk+i, π(xk+i)). (3)

According to Bellman’s principle of optimality, the optimal
value function is time-invariant and satisfies the discrete
time HJB equation

J∗(xk) = min
uk

{c(xk, uk) + γJ∗(xk+1)}. (4)

Then the optimal control action u∗

k is derived by applying

the stationary condition ∂J∗(xk)
∂uk

= 0. Combining with the

system dynamics (1), we get:

u∗

k = −
1

2
γR−1gT (xk)

∂J∗(xk+1)

∂xk+1
. (5)

From (5), the optimal control action can be calculated only
when the future state is acquired. It means that the dy-
namics model (1) must be known during the calculation of
the optimal control policy. However, the dynamics model is
always unknown or uncertain in the application. Although
the dynamics model is set up, the solution to (5) for most
nonlinear systems is difficult or even impossible to cal-
culate. To circumvent these deficiencies, a new approach,
the action dependent adaptive dynamic programming al-
gorithm, is introduced to derive the optimal control policy
for affine nonlinear system model-freely.

3. MODEL-FREE ADP

The value function defined previously gives an evaluation
for each state only. The Q-function proposed by Watkins
(Watkins (1989)) gives an evaluation for each state-action
pair. It is also known as state-action value function (Sutton
and Barto (1998)) and defined as

Qπ(xk, uk) = c(xk, uk) + γJπ(xk+1) (6)

The state-action value function Qπ(xk, uk) is the sum of
the current step local cost incurred by taking action uk

from state xk, plus the value function of next state xk+1

following control policy π. uk is not specified by the control
policy for xk, and it can be any one control action in
the action space A for that state. Thus, Qπ(xk, uk) gives
an evaluations for all control actions on each state with
following a control policy π. Then a better action u′

k for a
state xk can be obtained directly through minimizing the
state-action value function:

u′

k = arg min
uk∈A

Qπ(xk, uk). (7)
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Remark 2. In order to derive the improved control policy
πi+1, the minimum solution of Qπi(xk, uk) with respect

to uk should be derived. As ∂2Q(xk,uk)
∂u2

k

= R, R is positive

definite. Thus, Q(xk, uk) is a convex function with respect
to uk in the global action space. That is to say, the solution
to (7) is the global minimum value.

The policy iteration method is always used for deriving
the optimal control policy. Providing an initial admissible
control policy π0, its state-action value function (6) is
determined, then a new better control policy is yielded
according to (7). This procedure repeats until no improve-
ment of the control policy is observed. It can be depicted
as:

• Policy evaluation:

Qπi(xk, uk) = c(xk, uk) + γQπi(xk+1, πi(xk+1)). (8)

• Policy improvement:

πi+1(xk) = arg min
uk∈A

Qπi(xk, uk). (9)

Where i represents the i− th policy iteration.

3.1 Framework

In order to implement the policy iteration method, the
actor-critic structure is employed, where the critic is
updated in the policy evaluation phase and the actor is
updated in the policy improvement phase. Artificial neural
network provides a good solution for the update of the
critic-actor for the properties of adaptivity, self-learning
and generalization. Here we employ two three-layer neural
networks to approximate the state-action value function
and the control policy, named critic network and action
network, respectively. The input of the critic network is a
row vector including states and actions, and the output is
the estimation of Q(xk, uk):

Q̂(xk, uk) = wT
2 tanh(wT

1 [x
T
k , u

T
k ]

T + b1) + b2. (10)

The input of the action network is a state vector and the
output is the estimation of π(xk):

π̂(xk) = tanh(vT2 tanh(vT1 xk + a1) + a2. (11)

Where tanh(y) = ey−e−y

ey+e−y is the activation function. w, v

are the weights of the neural networks and a, b the bias,
with the subscript representing the located layer. Note
that, the output of the action network is limited in the
range [−1, 1]. It needs to be transformed into the real
action space in proportion when acting on the system.

For simplicity, we collect the critic network parameters
w1, w2, b1, b2 into a row vector ωc and the action network
parameters v1, v2, a1, a2 into a row vector ωa. Thus the
critic network and the action network are denoted:

{

Q̂(xk, uk) = Φ(xk, uk, ωc)

π̂(xk) = Ψ(xk, ωa).
(12)

where Φ(·) and Ψ(·) is the function expression for the critic
network and the action network, respectively.

3.2 Critic Network

The critic network is updated to obtain the state-action
value function for current control policy in the policy eval-
uation phase. Notice that, the state-action value function
(6) is an implicit expression. The forward-in-time and
the backward-in-time (Wang et al. (2009)) approaches are
always used to calculate the state-action value function
iteratively (Si andWang (2001); Liu et al. (2001)). In other
words, the output of the current critic network plus the
local cost is chosen as the target output of the critic net-
work during the next update iteration, and this procedure
repeats until the critic network converges. As the approxi-
mation error cannot be eliminated in the neural networks,
errors will accumulate throughout the iterations. Thus it
will cost lots of time or be hard to converge. Moreover,
the errors will be propagated to and amplified in the action
network, and then lead to a failure action network. In order
to avoid the accumulation of the approximation errors, a
novel approach is developed in this paper, which can train
the critic network to achieve the Bellman equation directly
rather than iteratively.

From (8), we notice that the local cost is the relative
value of state-action value function between two con-
secutive states. The value functions at all state-action
pairs can be calculated combining with absolute value
function at equilibrium point, Q(0, 0) = 0, if all tuples
(xk, uk, c(xk, uk), xk+1) distributed in the state-action s-
pace are collected.

Benefited from the generalization properties of the neural
network, we can calculate the approximate state-action
value function with a certain amount of such tuples instead
of all the state-action pairs in the space. What is required
is that xk and uk should distribute in the state-action
space randomly. In addition, these tuples can be collected
from the running trajectories of the system if the dynamics
model is unknown.

Motivated by this idea, the update of the critic network
can be depicted by an optimization problem.







min ωT
c ωc

st. Φ(xk, uk, ωc) = c(xk, uk) + γΦ(xk+1, π̂(xk+1), ωc).

Φ(0, 0, ωc) = 0
(13)

Here the norm of ωc is minimized for smoothing the
outputs of the critic network. Further on, it can be changed
into an objective function Ec for updating the parameters
of the critic network by introducing the relative error er,
the equilibrium point error e0 and the parameters norm
eωc

as follows:























min Ec =
1

2
(eTr er + λ2

0e
T
0 e0 + λ2

ωc
eTωc

eωc
)

er = Φ(xk, uk, ωc)− γΦ(xk+1, π̂(xk+1), ωc)− c(xk, uk)

e0 = Φ(0, 0, ωc)

eωc
= ωT

c ωc

(14)
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where λ0, λωc
are the weights, which can be adjusted to

trade off er, e0 and eωc
during the update of the param-

eters. λ0 should be set to guarantee that the output at
equilibrium point approximates zero as much as possible,
and λωc

is always set small as eωc
are less important than

er and e0 . The parameters are trained to minimize Ec and
the Levenberge-Marquardt method is employed:

ωc(t+ 1) = ωc(t)−
JT
c

JT
c Jc + µcI

ec (15)

where t is the inner-loop cycle for updating the parameters
and µc is the damping factor which can be adjusted
according to the variation of the objective function at each
inner-loop cycle. ec = [eTr , λ0e

T
0 , λωc

eTωc
]T , I the identity

matrix with suitable dimensions and Jc is the Jacobian
matrix of ec with respect to ωc

Jc =
∂ec

∂ωT
c

=
[∂eTr
∂ωc

, λ0
∂eT0
∂ωc

, λωc

∂eTωc

∂ωc

]T
. (16)

After the critic network is convergent, it goes into the
policy improvement phase.

3.3 Action Network

In the policy improvement phase, the action network aims
to minimize the output of the critic network. The target
control action is

π̂′(xk) = arg min
uk∈A

Φ(xk, uk, ωc). (17)

Combining (17) with (12), the problem of updating the
parameters of the action network to target control actions
is converted into an optimization problem by minimizing
the output of the critic network with respect to ωa. Then
the parameters of the action network are updated to
minimize the objective function Ea as follows:











Ea =
1

2
(eTcaeca + λ2

ωa
eTωa

eωa
)

eca = Φ(xk,Ψ(xk, ωa), ωc)

eωa
= ωT

a ωa

(18)

where λωa
is the weight of the norm of the parameters.

It is adjusted to smooth the output of the action network.
Similar to the update of the critic network, the parameters
of the action network are updated:

ωa(t+ 1) = ωa(t)−
JT
a

JT
a Ja + µaI

eTa (19)

where t is the inner-loop cycle for updating the parameters
and µa is the damping factor, ea = [eTca , λωa

eTωa
]T and Ja

is the Jacobian matrix of ea with respect to ωa.

4. SIMULATION RESULTS

In this section, the proposed approach is tested on
the discrete-time nonlinear mass-spring system and the
continuous-time nonlinear oscillator system, respectively.
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Fig. 1. The convergence process for the state [−0.8, 0.8]T .

In the first simulation example, we compare it with an
ADP method which derives the optimal control policy
with the partial knowledge of the system model. In the
second example, the approach is tested in the condition of
different initial admissible control policies.

4.1 Discrete-time Mass-Spring System

We consider the mass-spring system(Zhang et al. (2009))
whose dynamics is given by:







x1,k+1 = 0.05x2,k + x1,k

x2,k+1 = −0.0005x1,k − 0.0335x3
1,k

+x2,k + 0.05uk

(20)

The parameters of the quadratic cost function are chosen
as Q =

[

0.5 0
0 0.5

]

and R = 0.25. Here two three-layer
perceptron neural networks are employed as the critic
network and the action network with structures of 3−8−1
and 2− 6− 1, respectively. The initial parameters for the
networks are chosen randomly in the range [−1, 1]. The
errors’ weights are set as λ0 = 10, λωc

= 0.01, λωa
=

0.01. The initial admissible control policy is π0(xk) =
[−3, −1]xk and discount factor γ = 1. We define the state
space as −1 ≤ x ≤ 1. If the state space is larger than
this, preprocess will be introduced to normalize states in
the range [−1, 1] in proportion when input to the both
networks. It is assumed that a batch of 1000 states xk

distributed randomly in the state space, the actions for
the states as uk = π0(xk) + N(0, σ2), and the next time
step states xk+1 have been collected in advance. Here we
set σ = 0.3 to cover the action space randomly. These
sampled data is used throughout the policy iteration.

Closed form solution of the HJB equation is difficult
to yield, and no benchmarking method exists currently
for evaluating the optimal control policy. The approach
proposed in (Dierks and Jagannathan (2012)), which is
named as time-based ADP, derives the optimal control
policy with only accessing to the control coefficient matrix.
It is also applied to the system (20), where the bias
function of the critic is {x2

1, x1x2, x
2
2, x

4
1, x

3
1x2, · · · , x

6
2}.

The same action network and the same initial control
policy are used for comparing.
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Fig. 2. The state trajectories from the state [0.8, −0.8]T .
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Fig. 3. The action trajectories from the state [0.8, −0.8]T .

Both approaches are trained offline. In the training proce-
dure, the policy iteration lasts 10 steps. Fig. 1 illustrates
the convergence processes of the value function and the
control action on x = [−0.8, 0.8]T , which is derived by the
model-free ADP and time-based ADP. At the 0− th itera-
tion, the value function is uncertain since the parameters
of the critic networks are generated randomly. The value
function is calculated for the initial control policy at the
1 − st iteration, and then decreases as the improvement
of control policy. After the 3 − rd policy iteration, the
value function and the control action are steady, which is
deemed convergent. The value functions calculated by the
both approaches converge to approximately equal value. It
is the same for the control actions.

Fig. 2 shows the state trajectories from the state [0.8, −0.8]T

to the equilibrium point steered by the initial control
policy, the control policy derived by time-based ADP and
the one derived by the proposed model-free ADP, and Fig.
3 shows the corresponding control action trajectories. All
these trajectories are very close to the ones yielded by
time-based ADP. It is also shown that both the yielded
optimal policies are much better than the initial control
policy, with less response time and smoother trajectories.

All these results illustrate the proposed approach has
the same optimization ability with the time-based ADP
approach, but accessing to no knowledge of the dynamics
model.
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Fig. 4. The convergence process for the state [0.5, 0.8]T .

4.2 Continuous-time Oscillator System

The continuous-time oscillator system (Abu-Khalaf and
Lewis (2005)) is considered with dynamics as follows:

{

ẋ1 = x1 + x2 − x1(x
2
1 + x2

2)

ẋ2 = −x1 + x2 − x2(x
2
1 + x2

2) + u.
(21)

It is difficult to derive the discrete-time control coefficient
matrix of (21), so time-based ADP is unavailable for such
a system. The proposed model-free approach would be
carried out on the system. The sample time is set as 0.1s.

The quadratic cost function is chosen as Q =
[

0.5 0
0 0.5

]

and R = 0.1. As this system is more complex than
the previous system, the number of hidden neurons is
increased to 10 and 8 for the critic network and the ac-
tion network, respectively. Two different initial admissible
control policies: Policy I (π0(xk) = [−5, −3]xk) and Policy
II (π0(xk) = [−6, −2.5]xk), are provided for the policy
iteration. Other parameters and the way of sampling data
are same as the settings of the previous example.

In the training procedure, the policy iteration lasts 10
steps and Fig. 4 illustrates the convergence processes of
the value function and the action on the states [0.5, 0.8]T

from the different initial control policies, respectively. The
value function decreases following the improvement of the
control policies. Both the value function and the control
action converge at the 3 − rd iteration. The state trajec-
tories from an initial state [−0.8, 0.8]T to the equilibrium
point steered by the two initial control policies, the optimal
control policy yielded from Policy I and the one yielded
from Policy II are shown in Fig. 5, and the corresponding
control action trajectories are displayed in Fig. 6. Although
the trajectories steered the initial control policies are fluc-
tuant, the ones steered by yielded control policies are
smooth and reach the equilibrium point fast. Moreover,
the trajectories steered by yielded control policies are very
close to each other.

These results illustrate that the proposed approach is able
to obtain almost the same control policy even if different
initial admissible control policies are provided.
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Fig. 5. The state trajectories from the state [−0.8, 0.8]T .
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5. CONCLUSIONS

In this paper, a model-free approach is proposed to achieve
the optimal control policy for discrete-time affine nonlinear
system based on the action dependent ADP technique.
The actor-critic structure is adopted, which is implement-
ed by two MLP neural networks. The critic network is
trained in a novel way to approximate the Bellman equa-
tion directly in the policy evaluation phase. Both the critic
network and the action network are trained by Levenberg-
Marquardt method. Two simulation examples are given to
verify the effectiveness of the proposed approach. The first
simulation example illustrates that the proposed model-
free ADP is effective as same as time-based ADP where
partial model of the system is required. The second simu-
lation example illustrates that the model-free ADP is able
to achieve the optimal control policy although different
initial control policies are provided. In both examples, the
control policy converges after the policies iterates three
times. Moreover, only the number of the hidden neurons
need be adjusted to yield a more powerful generalization
ability for systems with varying degrees of complexity. All
results show the proposed approach is effective, adaptable
and fast learning.

Further work will be on the analysis the admissibility of
the improved control policy and give a convergence proof
for the proposed approach.
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