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Abstract: In this paper, a discrete-time frequency-shaped sliding mode control (FSSMC) is
proposed for audio-vibration rejection in Hard Disk Drives (HDDs). Such vibrations cause
significant degradation of the servo performance and have become a major concern in the HDD
industry. The proposed FSSMC involves the frequency-shaped sliding surface design based on
peak filters, aiming to provide frequency dependent control allocation in sliding mode control
(SMC). Compared to standard SMC, FSSMC provides additional design flexibilities in the
frequency domain, and improves vibration rejection during track-following in HDDs. Those
benefits are validated by simulation based on benchmark models and actual vibration data.
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1. INTRODUCTION

In hard disk drives (HDDs), the increase of data track
density necessitates to reduce the position error signal
(PES) and improve the servo performance. Sophisticated
algorithms have been proposed to control the transient
during the track-seeking process. One current challenge
for steady-state performance improvement comes from
high-frequency vibrations, which may even excite system
resonances. Nowadays audio vibrations have become one
of the most important vibrations to deal with. They are
induced by audio sounds when HDDs are equipped in
modern multimedia personal computers.

Sliding mode control has been applied to HDD system-
s due to its fast convergence and good robustness to
unknown disturbance. Lee et al. (2000) applied sliding
mode control algorithm to HDDs and achieved fast track-
seeking performances. Zhang and Guo (2000) proposed a
time-optimal sliding mode control algorithm with a time-
varying sliding surface and realized smooth transition from
the track-seeking process to the track-following process.
Zhou et al. (2001) improved the algorithm to further re-
duce the setting time during track-seeking. Hu et al. (2009)
also proposed a sliding mode control for HDDs based
on a time-optimal sliding surface and improved both the
transient performance and the steady-state performance.
Sliding mode control has been considered as a promising
technique for HDDs.

Aiming to extend the design of sliding mode control
from time domain to frequency domain, motivated by
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the frequency-shaped linear quadratic regulator (LQR),
Young and Ozguner (1993) proposed frequency-shaped
sliding mode control (FSSMC) with a new switching plane
and applied it to a flexible robot manipulator. Many
authors then extended, improved and applied frequency-
shaped sliding mode control to different areas. Nonami
et al. (1996) designed a FSSMC based on H∞ and µ
synthesis theory for a flexible arm. Moura et al. (1997)
provided a conventional sliding surface that can be made
equivalent to the frequency-shaped one, and applied F-
SSMC to a single degree of freedom robot with a flexible
appendage. Yanada and Ohnishi (1999) added a low-pass
filter to the control input to suppress chatter in SMC.
Koshkouei and Zinober (2000) discussed the design of the
frequency-shaped sliding surface based on LQR weighting
functions to improve the transient performance. Wu and
Liu (2005) designed a FSSMC with an inverse notch filter
to control the flying height of the pickup head in optical
disk dives. Mehta and Bandyopadhyay (2009) designed a
FSSMC based on output sampled measurements to damp
the vibration amplitude of a smart beam at its resonance
frequencies.

In most of the aforementioned literature, FSSMC is moti-
vated by the frequency-shaped LQR control problem with
frequency-varying weighting functions, aiming to atten-
uate the excitation of undesired system dynamics and
enhance the robustness. In this paper, the proposed F-
SSMC is directly motivated by performance enhancement.
Specifically, to have customized control allocation for at-
tenuating the large spectral peaks in audio vibrations, the
proposed FSSMC increases the ’local gain’ of sliding mode
control at the frequencies where the servo performance is
degraded by audio vibrations. Peak filters are utilized for
significant performance improvement of audio-vibration
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rejection. It is proved that, for the proposed second-order
peak filters, as long as the filter poles and zeros are
stable, the sliding surface and the full closed-loop system
will be stable. For higher-order filter design, the stability
condition is more involved (although there are still strong
design flexibility). Analysis based on root locus is provided
for intuitive design and easy stability analysis. Control
algorithms and filter design are provided in discrete-time,
whose analysis is more complex than the continuous-time
case, but is directly implementable on actual HDDs.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the description of HDD model and the
frequency-shaped SMC algorithm. Section 3 provides the
stability analysis including both the approaching and the
sliding phases of SMC. Section 4 provides the details of
peak filter design. Simulation results based on the HDD
benchmark package by IEEJ (2007) are provided in Section
5. Section 6 concludes the paper.

2. MODEL DESCRIPTION AND CONTROLLER
DESIGN

2.1 Model Description

The control of a practical model for a single-stage HDD
plant can be higher than ten, as shown in Figure 1
(HDD benchmark package by IEEJ, 2007). High frequency
resonances are usually attenuated by notch filters.
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Fig. 1. Full Order Model of HDD (IEEJ, 2007)

A double-integrator nominal model that captures the
central low-frequency characters is[

ẏ
ky v̇

]
=

[
kyv
kykvu

]
(1)

where u is the actuator input, y is the position of the head
in the unit of tracks, v is the velocity, kv is the acceleration
constant, and ky is the position measurement gain.

Denote e1 = y − yr, and e2 = ė1 = kyv − ẏr. In
HDD track-following control, yr(k) and ẏr(k) are zero.
From equation (1), the discrete-time error dynamics with
unknown bounded disturbance is

e(k + 1) = Ae(k) +B(u(k) + d(k)) +Bava(k) (2)

where

e(k) =

[
e1(k)
e2(k)

]
, A =

[
1 T
0 1

]
, B =

[
T 2kykv/2
Tkykv

]
, Ba =

[
1
0

]
,

T is the sampling time, |d| ≤ D is the input force
disturbance, and |va| ≤ Va is the audio vibrations lumped
at the output of the plant.

2.2 Frequency-shaped Sliding Mode Control

In this section, a frequency-shaped sliding mode control
(FSSMC) algorithm is proposed to provide enhancements
at the frequencies where the servo performance is seriously
degraded by large disturbance such as audio vibrations.
With this motivation, a peak filter Qf is introduced to
shape sliding surface at the preferred frequencies. Qf can
be regarded as a weighting function to allocate the control
effort in the frequency domain: at the frequencies where
the weight is large, it is expected that the controller
allocates more energy in the input. In this paper, the peaks
of Qf are selected at the frequencies where PES is large.

Based on this idea, we have a different definition for
the sliding surface in FSSMC, as shown in Figure 2. In
traditional definition of sliding surface st(k) = 0, st(k)
is defined as st(k) = He(k) = [1 h2] e(k) (h2 > 0). In the
frequency-shaped sliding surface s(k) = 0, s(k) is modified
to

s(k) = H

[
Qf{e1(k)}
e2(k)

]
= ef (k) + h2e2(k) (3)

where ef is the filtered position error, i.e., ef = Qf{e1}.

(a) Traditional 

Sliding Surface Definition
(b) Frequency-shaped

Sliding Surface Definition

e1 

e2 H
st 

e1 

e2 
Qf 

ef 

H
s 

Fig. 2. Sliding Surface Definition

Assume that Qf has the following state-space realization:

ew(k + 1) = Awew(k) +Bwe1(k)

Qf{e1(k)} = Cwew(k) +Dwe1(k)
(4)

Combining equation (2) and equation (4), the augmented
system can be represented as

Ẽ(k + 1) = ÃẼ(k) + B̃(u(k) + d(k)) + B̃ava(k) (5)

where
Ẽ(k) = (eTw(k), eT (k))T (6)

Ã(k) =

[
Aw Bw 0
0 A11 A12

0 A21 A22

]
, B̃(k) =

[
0
B1

B2

]
, B̃a =

[
0
Ba1
Ba2

]
(7)

The FSSMC control law is proposed as

u(k) = (H̃B̃)−1[(1−qT )s(k)−H̃ÃẼ(k)−(εT+β) sgn(s(k))]
(8)

where β = H̃B̃D + H̃B̃aVa, H̃ = [Cw Dw h2], q > 0,
1 − qT > 0, and 0 / ε < 1. s(k) defines the sliding

dynamics for Ẽ(k), and it is yet to be designed. Substi-
tuting equation (8) into equation (2), after some algebra,
the approaching dynamics of the system is represented as

s(k + 1) = (1− qT )s(k)− (εT + γ(k))sgn(s(k)) (9)
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where

γ(k) = β− H̃B̃d(k)sgn(s(k))− H̃B̃ava(k)sgn(s(k)) (10)

with 0 ≤ γ(k) ≤ 2β = γ.

3. STABILITY ANALYSIS

Sliding mode control needs to satisfy two conditions to
ensure the stability: (a) Approaching condition: the tra-
jectory s(k), starting from any initial point, reaches to the
sliding surface s(k) = 0 in finite time; and (b) Sliding
condition: after the trajectory reaches the sliding surface,
it stays on it. This means that the sliding surface s(k) = 0

should define stable dynamics for Ẽ(k), which ensures the
boundedness of the tracking error e1(k) and e2(k) when
s(k) is bounded. Therefore, the overall stability analysis
for system (2) with controller (8) includes both the ap-
proaching phase and the sliding phase.

3.1 Approaching Phase

This part shows that the sliding surface (switching plane)
s(k) = 0 will be reached in finite time if the approaching
dynamics satisfies equation (9). Discrete-time sliding mode
control analysis is known to be more complex than the
continuous-time case. Gao et al. (1995) proposed several
stability conditions for a general class of discrete-time ap-
proaching dynamics: (a) starting from any initial point, the
trajectory will move monotonically toward the switching
plane and cross it in finite time; (b) once the trajectory
has crossed the switching plane for the first time, it will
cross the plane again in every successive sampling period,
resulting in a zigzag motion about the switching plane;
and (c) the trajectory stays in a band.

In the following, we prove that under equation (9), con-
ditions (a)-(c) are satisfied. That is, s(k) will converge to
and stay in the band [−∆, ∆], where

∆ =
εT + γ

1− qT
≥ εT + γ(k)

1− qT
= ∆(k) > 0 (11)

From equation (9), we have

s(k + 1) = (1− qT )|s(k)|sgn(s(k))− (εT + γ(k))sgn(s(k))

= (|s(k)| −∆(k))(1− qT )sgn(s(k))

When |s(k)| > ∆(k), sgn(s(k + 1)) = sgn(s(k)) and
|s(k+1)| = (|s(k)|−∆(k))(1−qT ) < |s(k)|, which implies
that s(k) would move towards the band monotonically;
similarly, when |s(k)| < ∆(k), sgn(s(k+1)) = −sgn(s(k))
and |s(k + 1)| = (∆(k) − |s(k)|)(1 − qT ) < ∆(k), which
implies that s(k) will go across the switching plane, change
its sign at every step and stay in the band thereafter.

In summary, controller (8) can drive system (2) towards
the sliding surface s(k) = 0 with the approaching dynam-
ics (9) in finite time, and make it stay in the band [−∆, ∆]
centered around the sliding surface thereafter. In practical
implementation, the discontinuous function sgn is usually
replaced by a saturation function sat(s(k)/φ) to inhibit
the chatter phenomenon.

3.2 Sliding Phase

To guarantee the stability of the overall system, the
convergence of s(k) is not sufficient. In this section, we

derive conditions for both e1(k) and e2(k) to converge
to zero when s(k) converges to zero. Consider first the
continuous-time sliding surface s = 0, where

s = ef + h2e2 = Qf{e1}+ h2ė1 (12)

Assume that Qf has the transfer function realization:

Qf (p) = B(p)/A(p), where p = d
dt . Then, the dynamics

between s and e1 is

e1 =
1

B(p)
A(p) + h2p

s (13)

which can be realized by the block diagram in Figure 3.

s
1
e

2
h p

B p

A p

1f f

2 2 fh e s e

Fig. 3. Dynamics of Sliding Surface

Notice that the open-loop transfer function in Figure 3 is

G(p) =
1

h2

B(p)

A(p)

1

p
(14)

and the closed-loop characteristic equation comes from

1 +
1

h2

B(p)

A(p)

1

p
= 0 (15)

Given h2 > 0, if all of the closed-loop poles are in the left
half plane, the systems from s to e1 and from s to e2 are
stable; thus any bounded s yields bounded e1 and bounded
e2. We have thus transformed the stability analysis (in
sliding phase) into a root-locus problem: as 1/h2 changes
from 0 to +∞, the poles of (13) are on the root loci from
the open-loop poles to the open-loop zeros and −∞.

For the discrete-time case,

s(k) = ef (k) + h2e2(k) = Qf{e1(k)}+ h2
2

T

z − 1

z + 1
e1(k)

(16)
where Qf has the transfer function realization Qf (z) =
Bd(z)/Ad(z), which is the discretized version of Qf (p) via
Tustin transformation:

p =
2

T

z − 1

z + 1
(17)

Then the discrete-time dynamics between s(k) and e1(k)
is

e1(k) =
1

Bd(z)
Ad(z)

+ h2
2
T
z−1
z+1

s(k) (18)

and the closed-loop characteristic equation comes from

1 +
1

h2

T

2

z + 1

z − 1

Bd(z)

Ad(z)
= 0 (19)

A root locus analysis similar to the continuous-time case
can be performed. Alternatively, noticing that the Tustin
transformation preserves stability of the poles and zeros
by the mapping of equation (17) (where the left-half plane
is mapped to the inside of the unit cycle), we can directly
conclude that (18) is stable if and only if its continuous-
time equivalent (13) is stable.
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4. FILTER DESIGN

This section discusses the design of a family of peak filters
for FSSMC.

4.1 Peak Filter with Single Peak (PFSP)

A continuous-time PFSP is

Qf (p) =
B(p)

A(p)
=
p2 + 2bwdp+ w2

d

p2 + 2awdp+ w2
d

(20)

with 0 < a < b < 1.

In the following, it will be shown that if h2 > 0, the closed-
loop poles of system (13) with (20) will always be stable;
namely, FSSMC has a guaranteed stable sliding surface.

Open-loop Poles

Open-loop Zeros

Arrow Direction: h2 varying from +∞ to zero

Im

Re

-bwd -awd

Fig. 4. Root Locus with a PFSP

Figure 4 sketches the root loci of the closed-loop system
(13) with (20) as h2 changes from +∞ to zero, which are
always in the left half plane. More specifically, if both the
open-loop poles and zeros are in the stable region, a closed-
loop pole can never be on the imaginary axes (except the
one at origin), or the root loci will never enter the unstable
region. To prove this point, suppose there exit such a pole
at p = γj(γ 6= 0). It must satisfy

1 +
1

h2

B(γj)

A(γj)

1

γj
= 0 (21)

Using (20), this means

∠
(w2

d − γ2) + 2bwdγj

(w2
d − γ2) + 2awdγj

1

γj
= (2n+ 1)π (22)

or

arctan

 2bwdγ
w2

d
−γ2 − 2awdγ

w2
d
−γ2

1 + 2bwdγ
w2

d
−γ2

2awdγ
w2

d
−γ2

 = −π
2

(23)

This means that
(

1 + 2bwdγ
w2

d
−γ2

2awdγ
w2

d
−γ2

)
is 0, which does

not take place. The root loci thus will never cross the
imaginary axes.

Actually, in the single peak filter case, the sliding surface
is a 3rd-order system, and the stability can be directly
checked. Combining equation (13) and equation (20), we
have

e =

[
p2 + 2awdp+ w2

d

h2p3 + (1 + 2awdh2)p2 + (h2w2
d + 2bwd)p+ w2

d

]
s

(24)
The closed-loop poles satisfy

h2p
3 + (1 + 2awdh2)p2 + (h2w

2
d + 2bwd)p+ w2

d = 0 (25)

Note that the coefficients h2 > 0, (1 + 2awdh2) > 0,
(h2w

2
d+2bwd) > 0, w2

d > 0. From Routh test, the system is
stable, if and only if (1+2awdh2)(h2w

2
d+2bwd)−h2w2

d > 0,
which clearly holds as (1 + 2awdh2) > 1 and (h2w

2
d +

2bwd) > h2w
2
d.

In summary, we obtain the strong stability result for
FSSMC with a PFSP: as long as both the zeros and poles
of (20) are stable, the sliding surface will be stable.

The corresponding discrete-time version of (20) based on
Tustin transformation is

Qf (z) =
Bd(z)

Ad(z)
(26)

where Bd(z) = 4(z−1)2 +4Tbwd(z−1)(z+1)+T 2w2
d(z+

1)2, Ad(z) = 4(z − 1)2 + 4Tawd(z − 1)(z + 1) + T 2w2
d(z +

1)2. With such a filter, the discrete-time sliding surface
described in equation (16) is stable if and only if both the
zeros and poles of the corresponding continuous-time filter
(20) are stable.

4.2 Peak Filter with Multi-peaks (PFMP)

Usually there are more than one peak in audio vibrations.
Such cases can be handled by FSSMC with a PFMP

Qf (p) =

n∏
i=1

Bi(p)

Ai(p)
(27)

where Bi(p) = p2 + 2bwdip+ w2
di, and Ai(p) = p2 +

2awdip+w2
di. Analogous to previous discussion, a general

dynamics between s and e1 with a PFMP can be repre-
sented as

e1 =
1∏n

i=1
Bi(p)
Ai(p)

+ h2p
s (28)

and the closed-loop characteristic equation is

1 +
1

h2

n∏
i=1

Bi(p)

Ai(p)

1

p
= 0 (29)

Although all the open-loop zeros and poles (except the
one at origin) are in the left half plane, the closed-loop
root loci may cross the imaginary axes. In this case, the
proposed root locus method provides us a way to decide
the filter parameters a, b, and the sliding surface parameter
h2 in the p plane. For example, if we would like to design
a three-peak filter with n = 3, a = 0.03, b = 3, w1 =
900Hz, w2 = 1170Hz, w3 = 2500Hz, the root locus can
be numerically calculated and plotted, as shown in Figure
5. For this particular design, FSSMC always stabilizes the
system when h2 > 0. The sliding surface can be further
refined by selecting a suitable h2 based on the transient
performance.

For implementation, the equivalent discretized Qf (by
Tustin Transform) is

Qf (z) =

n∏
i=1

Bdi(z)

Adi(z)
(30)

where Bdi(z) = 4(z−1)2+4Tbwdi(z−1)(z+1)+T 2w2
di(z+

1)2, and Adi(z) = 4(z − 1)2 + 4Tawdi(z − 1)(z + 1) +
T 2w2

di(z + 1)2. The discrete dynamics between s(k) and
e1(k) is described as

e1 =
1∏n

i=1
Bdi(z)
Adi(z)

+ h2
2
T
z−1
z+1

s (31)
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Fig. 5. Root Locus with a PFMP

with the closed-loop characteristics equation

1 +
1

h2

T

2

z + 1

z − 1

n∏
i=1

Bdi(z)

Adi(z)
= 0 (32)

(31) is stable if and only if (28) is stable.

In most cases, it is not known in advance at which
frequencies the servo performance is most degraded. Such
frequency ranges may be identified in real time through
processing the error signal e1(k) by an adaptive notch filter
with an adjustable notch frequencies. Some discussions on
this are in Chen and Tomizuka (2010, 2012, 2013).

5. SIMULATION RESULTS

The proposed frequency-shaped sliding mode control is
implemented on the full-order benchmark system in Figure
1. The system parameters are set as follows: rotation speed
= 7200 rpm, the number of servo sector = 220, the sam-
pling time T=3.7879× 10−5 sec, the acceleration constant
kv=951.2 m/(s2A), and the position measurement gain
ky=3.937×106 track ·m−1. Three sets of audio vibrations
are injected into the plant with peak frequencies around
1200Hz, 900Hz, 2500Hz respectively. Two control algo-
rithms are compared: the traditional sliding mode control
without a peak filter, and the proposed frequency shaped
sliding mode control. To make the comparison of the two
controllers meaningful, all the parameters in the controller
such as q (0.1/T) and ε (1× 10−4) are set the same.
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Figures 6 to 8 show the spectrum of PES under the three
sets of audio vibrations. The accumulative 3σ value of PES
is calculated and shown at the top right corn of each figure.
As shown in Figure 6, the accumulative 3σ value of PES
has been reduced from 0.37447 to 0.31265 by frequency
shaping, approximate 20% reduction; the amplitude re-
duction around the peak frequency is approximate 50%.
Similar results for the other two sets of audio vibrations
are shown in Figure 7 (approximate 26% reduction of ac-
cumulative 3σ value of PES and 50% amplitude reduction
around the peak frequency) and Figure 8 (approximate
13% reduction of accumulative 3σ value of PES and more
than 50% amplitude reduction around the peak frequen-
cy). Figure 9 provides the ’measured’ frequency response
plot of the sensitivity function when the excitation is under
vibration 3.

In summary, simulation results demonstrate the benefits
of the proposed FSSMC: reduction of the overall 3σ
value of PES, and reduction of the amplitude of the
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PES spectrum at specific frequencies, with very small
performance sacrifice at other frequencies.

6. CONCLUSION

This paper proposed a frequency-shaped sliding mode
control algorithm for the track following of HDDs. It
aimed to inhibit high-frequency audio vibrations in the
error spectrum. Simulation results validated the benefits
of the proposed FSSMC. From the theoretical viewpoint,
this paper provided stability analysis and a guideline for
filter design based on root-locus method, which provides
great flexibility and convenience in the frequency-domain
controller design. A nice property of the proposed PFSP
design is that: as long as both the poles and the zeros
of the shaping filter are stable, the sliding surface will be
always stable. This property will be used in future work
on FSSMC with adaptive shaping filters.
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