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Abstract: This paper considers the stochastic characterization of the returns garnered from the use
of linear feedback to trade stocks. For simplicity of presentation, we begin with the simple case of a
single stock and assume that the underlying stock price is governed by the classical binomial model of
Cox, Ross and Rubinstein (CRR). From this starting point, we derive the resulting probability mass
function (PMF) for the discrete-time trading gains and losses. Our use of the CRR model differs
from typical applications in that the quantification of the effect of feedback on gains and losses is our
focal point rather than option valuation. Our analysis is then generalized to the case of two correlated
stock prices governed by a quadrinomial lattice model; i.e., the binomial lattice result can be obtained
as a special case of the quadrinomial analysis using two “perfectly” correlated stocks. The technical
novelty in this paper is the exploitation of a symmetry property of the trading gains and losses g(N) at
stage k = N . That is, using the fact that g(N) is invariant under permutations of the random single-step
returns ρi(k) for each stock, instead of having 22N point masses describing its probability distribution,
only (N + 1)

2 are required. The theory is illustrated via numerical examples and the paper also describes
how one might generalize the analysis to a portfolio with n > 2 stocks.
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1. INTRODUCTION

This paper is part of a growing body of literature on “technical
analysis” that addresses problems which arise in stock trad-
ing and portfolio balancing from a control-theoretic point of
view. The literature on these topics can be subdivided into two
categories: The first category, called model-based approaches,
includes [1]-[16], and typically involves a parametric model for
the financial process under consideration. The second category
of papers, called model-free approaches, includes [17]-[22]. In
these cases, the time-varying stock price S(k) has no predictive
model for its evolution. In this context, the objective is to
construct a feedback control trading strategy that adjusts the
amount invested I(k) over time. Subsequently, as is the case in
this paper, the performance is judged by studying the probabil-
ity distribution associated with the trading gains or losses g(k).

While the set of references above covers a broad array of issues,
the focal point in this paper is stock trading via linear feedback
control. That is, at stage k, the amount invested is given by

I(k) = I0 +Kg(k)

with I0 being the initial amount invested and K being the
feedback gain. When I0 and K are positive, the interpretation of
the feedback law above is that the trader is “long” and benefits
from increases in the stock price S(k). Conversely, when I0
and K are negative, the trader is “short” and profits are accrued
if S(k) decreases. Given this setting, the problem formulations
in papers [11] and [19]-[22] are closest to the one given here.

The research described herein falls within the domain of model-
based approaches mentioned above. More specifically, the take-
off point for this work is the celebrated paper by Cox, Ross, and
Rubinstein (CRR) which begins with a binomial lattice model

for the evolution of a stock’s price S(k) over time; see [24].
With linear feedback as above in place, as S(k) evolves over the
lattice, we study the probability distribution for the gains g(N)
at stage k = N . This type of analysis involving trading based
on feedback control is novel in that it differs from the classical
use of the CRR model to price options.

Binomial Lattice Model: This model is described in terms
of u > 1, d < 1 and a given probability p of “up.” Then,
going forward in time from some stock price S at stage k,
it is assumed that the next price at stage k + 1 is Su with
probability p and Sd with probability 1− p. Figure 1 illustrates
the first two stages of a binomial lattice. Each node shows the
two ways the stock price can change at each stage. Many papers

Fig. 1. Two Stages of a Binomial Lattice

have been written that expand on this model. For instance,
in [25], a flexible binomial model is presented with a ‘tilt’
parameter λ that alters the shape and span of the binomial
lattice. When λ = 0, the classical CRR model is recovered.
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In Section 2, we provide a preliminary result. That is, in The-
orem 2.1, using the CRR model to generate the stock price,
we characterize the probability distribution for the trading
gains g(N) at stage k = N . This initial result, given in the
binomial lattice framework, is a special case of the analysis in
Section 3. It is provided for pedagogical purposes and provides
a simple-to-understand exposition of the key ideas while avoid-
ing the more detailed combinatorics required for the proof of
the more general result in Section 3.

For the binomial lattice, the number of possible paths is 2N

and N can be quite large in practice. For example, in high-
frequency trading over the course of an hour, one can easily
see N = 100 investment updates. With this issue in mind, the
technical novelty in this paper is the exploitation of a symmetry
property of the trading gains and losses g(N) at stage k = N .
That is, using the fact that g(N) is invariant under permutations
of the random single-step returns

ρ(k)
.
=

S(k + 1)− S(k)

S(k)
; k = 0, 1, 2, ..., N − 1,

instead of having 2N point masses describing its probability
distribution, only N + 1 are required.

Quadrinomial Lattice Model: In Section 3, we consider a
generalization of the binomial case that involves two correlated
stocks. To this end, we work with a model very similar to the
one considered in [26] in option valuation; see also [27]-[28]
for other examples of option valuation via lattices and [29] for
an introduction to lattice models in finance. For the two-stock
case under consideration, we have u1 > 1 and d1 < 1 “up-
down parameters” for the first stock price S1(k) and u2 > 1
and d2 < 1 for the second stock price S2(k). In this more
general case, beginning with price pair (S1, S2) at stage k in the
lattice, there are four possible branches and associated probabil-
ities for the next price pair at stage k+1. Namely, we transition
to (S1d1, S2d2) with probability p00, (S1d1, S2u2) with proba-
bility p01, (S1u1, S2d2) with probability p10 and (S1u1, S2u2)
with probability p11. These transitions are depicted in Figure 2
and the main result, a description of the probability mass func-
tion (PMF) for g(N), is given in Theorem 3.1.

Fig. 2. Single Transition Possibilities in Two-Stock Case

For the quadrinomial case, again exploiting symmetry with re-
spect to daily returns ρi(k) for each stock, the 22N sample paths
collapse down to (N + 1)

2 point masses in the PMF. Finally,
we note that the binomial lattice results are a special case of the
quadrinomial lattice formulation with p10 = p01 = 0, d1 = d2
and u1 = u2.

Additional Considerations: In Section 4, we provide numeri-
cal examples demonstrating the application of the two theorems
established in the preceding sections. Finally, in Section 5, we

provide conclusions and directions for further research.

2. TRADING THE BINOMIAL LATTICE

In this section, we give the first result in this paper: a formula
for the probability mass function which results from trading a
single stock via the linear feedback control I(k) = I0+Kg(k)
over a binomial lattice described by the triple (u, d, p). As a
preliminary for the proof, we first derive sample path solutions
for g(k) which result from a realization of the (u, d) sequences.

Indeed, suppose that ρ(0), ρ(1), ..., ρ(N −1), ρ(N) is a sample
path of stock returns generated from some underlying stochas-
tic process. Then, when we arrive at stage k with the cumulative
trading gains g(k), to update to stage k + 1, the increment to
the trading gains ∆g(k) is obtained by multiplying the per-
centage change in the stock price ρ(k) by the amount being
invested I(k). That is,

∆g(k)
.
= g(k + 1)− g(k) = ρ(k)I(k).

Now substituting the linear feedback
I(k) = I0 +Kg(k)

above and simplifying, we obtain update dynamics
g(k + 1) = (1 +Kρ(k))g(k) + ρ(k)I0.

By viewing the recursion above as a linear time-varying system
with input ρ(k)I0, a formula for g(N) is readily obtained
via classical state-space methods. Indeed, via a lengthy but
straightforward calculation, the solution is

g(N) =
I0
K

[
N−1∏
i=0

(1 +Kρ(i))− 1

]
.

We are now prepared to provide a characterization of the prob-
ability mass function for the random variable g(N) above.

2.1 Theorem: Given the linear feedback control stock trading
strategy I(k) = I0+Kg(k) and binomial lattice triple (u, d, p),
let

xi
.
=

I0
K

[
(1 +K (u− 1))

i
(1 +K (d− 1))

N−i − 1
]

for i = 0, 1, 2, ..., N . Then, the probability mass function for the
trading gain or loss g(N) is the sum of Dirac Delta functions
given by

fN (x) =

N∑
i=0

(
N

i

)
pi(1− p)

N−i
δ (x− xi) .

Proof: To find fN (x), for the random variable g(N), we first
note that there are 2N possible paths for the lattice associated
with the price S(k). However, since g(N) is a symmetric
function of the ρ(k), it is invariant to any permutation of these
returns. Hence, g(N) can only take on N + 1 possible values
given by

xi
.
=

I0
K

[
(1 +K (u− 1))

i
(1 +K (d− 1))

N−i − 1
]

where i = 0, 1, . . . , N . These values span from the case where
the stock goes down for N consecutive periods to the case
where the stock goes up for N consecutive periods. Now for
these N + 1 points comprising the sample space for g(N), we
find the probability mass for each of them. Indeed, for xi, there
are

Ni =

(
N

i

)
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possible paths with each such path having probability

pi = pi(1− p)N−i.

Now summing over these N + 1 possibilities leads to

fN (x) =
N∑
i=0

Nipiδ(x− xi);

=
N∑
i=0

(
N

i

)
pi(1− p)

N−i
δ (x− xi) .2

3. TRADING THE QUADRINOMIAL LATTICE

In this section, we provide the main result, a generalization
of Theorem 2.1. That is, we provide a formula for the prob-
ability mass function of the trading gain g(N) which results
from trading two correlated stocks with the two linear feed-
back controls I1(k) = I0,1 + K1g1(k) and I2(k) = I0,2 +
K2g2(k) over a quadrinomial lattice. For i = 1, 2, note
that I0,i is the initial amount invested in stock i. and Ki

is the feedback gain. Per Section 1, the I0,i and Ki can
be positive or negative and this price model is described by
“up-down” parameters (u1, d1, u2, d2) and transition probabili-
ties (p00, p01, p10, p11). Recalling the analysis in Section 2, the
individual trading gains or losses are

gi(N) =
I0,i
Ki

N−1∏
j=0

(1 +Kiρi(j))− 1


where

ρi(k)
.
=

Si(k + 1)− Si(k)

Si(k)

for i = 1, 2 and k = 0, 1, 2, . . . , N − 1.

3.1 Theorem: Given the linear feedback stock trading strate-
gies I1(k) = I0,1 + K1g1(k) and I2(k) = I0,2 + K2g2(k),
quadrinomial lattice with parameters (u1, d1, u2, d2) and tran-
sition probabilities (p00, p01, p10, p11), let

x1,i
.
=

I0,1
K1

[
(1 +K1 (u1 − 1))

i
(1 +K1 (d1 − 1))

N−i − 1
]
;

x2,i
.
=

I0,2
K2

[
(1 +K2 (u2 − 1))

i
(1 +K2 (d2 − 1))

N−i − 1
]

for i = 0, 1, 2, ..., N . Then, the probability mass function f
N
(x)

for the overall trading gain or loss

g(N)
.
= g1(N) + g2(N)

is the sum of Dirac Delta functions given by

fN (x) =

N∑
i=0

i∑
k=0

N−i+k∑
j=k

(
N

i

)(
i

k

)(
N − i

j − k

)
× pN−i−j+k

00 pj−k
01 pi−k

10 pk11δ (x− x1,i − x2,j) .

Proof: To find fN (x) for the random variable g(N), we first
note that there are 22N possible paths for the lattice associated
with the price pair (S1(k), S2(k)). Now, arguing as in the proof
of Theorem 2.1, both g1(N) and g2(N) are symmetric func-
tions of their corresponding returns ρi(k) for i = 1, 2. Hence,
each of these gains can only take on N + 1 possible values

at most. In other words gi(N) is invariant to any permutation
of (ρi(0), ρi(1), . . . , ρi(N − 1)). Now, for i = 1, 2, the N + 1
possible values for the gi(N) are given by

xi,j
.
=

I0,i
Ki

[
(1 +Ki (ui − 1))

j
(1 +Ki (di − 1))

N−j − 1
]

for j = 0, 1, . . . , N . These values are obtained by spanning
all the “up-down” possibilities xi,j for the two stocks. Conse-
quently, there are at most (N + 1)

2 possible values for g(N)
obtained from sums of the form x1,i + x2,j . These sums range
from x1,0+x2,0 to x1,N+x2,N . Now for these (N + 1)

2 points
comprising the sample space for g(N), we need to find the
probability mass for each of them.

To achieve this, we need to count up all the outcomes where
after N periods of trading, i values of the single-step re-
turns (ρ1(0), ρ1(1) . . . , ρ1(N − 1)) in g1(N) are u1 − 1 and j
values of (ρ2(0), ρ2(1) . . . , ρ2(N − 1)) in g2(N) are u2 − 1
where i and j range from 0 to N − 1. Now, for fixed i and j,
let k represent the number of periods where both the first stock
and the second stock go up on the same period.

For a particular outcome of g1(N) where there are i values
of ρi(k) set to u1 − 1 and N − i values set to d1 − 1 and there
are

Nijk
.
=

(
i

k

)(
N − i

j − k

)
possible sample paths for g(N) for k = 0, 1, . . . , i. Notice
that

(
i
k

)
is the number of ways for the first and second stock

to have k out of i periods where both their prices go up on
the same period. In addition,

(
N−i
j−k

)
is the number of ways

where the first stock price goes down and the second stock
price either goes up or goes down over the remaining N − i
periods of trading. Since each trading period is independent,
the probabilities associated with these sample paths are all the
same and given by

pijk = pN−i−j+k
00 pj−k

01 pi−k
10 pk11

for k = 0, 1, . . . , i. Now summing over all the (N + 1)
2

possibilities leads to

f
N
(x) =

N∑
i=0

N∑
j=0

i∑
k=0

Nijkpijkδ (x− x1,i − x2,j)

=

N∑
i=0

N∑
j=0

i∑
k=0

(
N

i

)(
i

k

)(
N − i

j − k

)
× pN−i−j+k

00 pj−k
01 pi−k

10 pk11δ (x− x1,i − x2,j)

=

N∑
i=0

i∑
k=0

N−i+k∑
j=k

(
N

i

)(
i

k

)(
N − i

j − k

)
× pN−i−j+k

00 pj−k
01 pi−k

10 pk11δ (x− x1,i − x2,j) .

In the summations above, we use the convention that
(
i
k

)
= 0

if k > i and
(
N−i
j−k

)
= 0 if j − k > N − i or k > j. 2

Remarks: As mentioned in Section 1, the PMF formula
for g(N) for the quadrinomial lattice in Theorem 3.1 is a
generalization of the binomial lattice formula given in The-
orem 2.1. That is, for the case of two “perfectly” correlated
stocks where p11 = p, p00 = 1−p, p10 = p01 = 0, K1 = K2 =
K, I0,1 = I0,2 = I0/2, u1 = u2 and d1 = d2, then the PMF
formula in Theorem 3 reduces to that given in Theorem 2.1.
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A second special case of interest involves the so-called Simulta-
neous Long-Short (SLS) linear feedback control strategy. This
feedback control strategy was first presented in [20] and subse-
quently pursued in [21] and [22]. In this strategy, the trader be-
gins with position I0 long and −I0 short. Then as time evolves,
the long investment I1(k) and the short investment I2(k) are
modulated via linear feedback strategies

I1(k) = I0 +Kg1(k);

I2(k) =−I0 −Kg2(k)

where g1(k) and g2(k) are the trading gains or losses for the
long and short positions respectively. The overall investment is
given by

I(k)
.
= I1(k) + I2(k)

and the overall gain or loss is
g(k)

.
= g1(k) + g2(k).

In the context of the quadrinomial lattice framework, we re-
cover the PMF of g(N) for SLS by making the substitu-
tions p11 = p, p00 = 1 − p, p01 = p10 = 0, u1 = u2

and d1 = d2 in the quadrinomial lattice PMF formula for fN (x)
in Theorem 3.1. This leads to the PMF given by

fN (x) =

N∑
i=0

(
N

i

)
pi(1− p)

N−i
δ (x− xi)

where

xi
.
=

I0
K

[
(1 +K (u− 1))

i
(1 +K (d− 1))

N−i

+ (1−K (u− 1))
i
(1−K (d− 1))

N−i − 2
]
.

4. NUMERICAL EXAMPLES

In this section, we provide numerical examples illustrating the
generation of the PMF for various trading scenarios for both the
binomial and quadrinomial lattice models. In order to simulate
real-world stock prices, we size the parameters ui and di for
both models to represent trading on the order of every minute.
For all examples, when we find the PMF f100(x) represent-
ing N = 100 periods of trading, it roughly corresponds to 100
minutes of trading. We also record the maximum and minimum
values of the gain represented by gmin and gmax respectively,
the probability of loss, p

loss
= P (g(100) < 0) and the mean

value of the gain represented by E [g(100)].

4.1 Binomial Lattice Examples

For the single stock trading scenario, we assign up parame-
ter u = 1.001, down parameter d = 0.999 and transition
probability p = 0.55. For the long case, we set the initial
investment to I0 = 1 and the feedback gain to K = 2, while
for the short case the initial investment is I0 = −1 and the
feedback gain is K = −2.

For the long trading example, in accordance with Theorem 2.1,
the formula for the PMF is

f100 (x) =
100∑
i=0

(
100

i

)
(0.55)

i
(0.45)

100−i

× δ
(
x− 0.5

[
(1.002)

i
(0.998)

100−i − 1
])

.

Since the probability of the stock going up is higher than
it is going down, the probability of winning, that is, having

a positive value of g(100), is greater than the probability
of losing. Using the theorem, we obtain gmin≈ − 0.09072,
gmax≈0.1106, E [g(100)]≈0.0101 and p

loss
≈0.1827.

For the short trading example, the formula for the PMF is

f100 (x) =
100∑
i=0

(
100

i

)
(0.55)

i
(0.45)

100−i

× δ
(
x− 0.5

[
(0.998)

i
(1.002)

100−i − 1
])

.

Since the probability of the stock going down is smaller
than 0.5, with probability greater than 0.5, we obtain ter-
minal gain g(100) < 0. Using the theorem, we obtain
gmin≈−0.09072, gmax≈0.1106, E [g(100)]≈−9.902×10−3

and p
loss

≈0.8654.

For comparison purposes, we show plots of the PMF for both
the long and short cases in Figure 3. The long case is repre-
sented by the green curve while the short case is represented by
the red curve. Note that for both PMF plots, we only show the
envelope of the central portions of the distributions so that their
overlapping regions can be clearly seen. The circles represent
the actual impulses of the PMFs.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Single Stock Long (Green) and Short (Red) PMF for f
100

(x)

x

Fig. 3. Binomial Lattice Examples

4.2 Quadrinomial Lattice Examples

For the two-stock trading case, for our first example, we provide
a plot of the trading gain PMF f100(x) where the first stock
is a long trade while the second stock is a short trade. The
quadrinomial lattice parameters are u1 = 1.001, u2 = 1.002,
d1 = 0.999, d2 = 0.998, p00 = 0.25, p01 = p10 = 0.125
and p11 = 0.5 . For the long trading stock, we take initial
investment I0,1 = 2 and the feedback gain K1 = 2, while for
the short trading case, I0,2 = −1 and K2 = −2.

For this example, using Theorem 3.1, we obtain PMF

f100 (x) =
100∑
i=0

i∑
k=0

100−i+k∑
j=k

(
100

i

)(
i

k

)(
100− i

j − k

)
× (0.25)

100−i−j+k
(0.125)

i+j−2k
(0.5)

k

× δ (x− x1,i − x2,j) ;

x1,i =
[
(1.002)

i
(0.998)

100−i − 1
]
;

x2,j = 0.5
[
(0.996)

j
(1.004)

100−j − 1
]
.
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This trade produces a probability of winning that is noticeably
bigger than 0.5 since p

loss
≈0.4145. Our calculations also lead

to gmin≈− 0.3465, gmax≈0.4665 and E [g(100)]≈0.003635.
A plot of the PMF is shown in Figure 4. Note that we only show
a smoothed envelope of the central portion of the distribution
since the actual distribution is somewhat noisy and contains
over 10, 000 point masses.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

2−Stock Trading Gain PMF for f
100

(x)

Fig. 4. Quadrinomial Lattice Example

Finally, we give an example of SLS trading with parame-
ters u1 = u2 = 1.001, d1 = d2 = 0.999, p00 = 0.45, p01 =
p10 = 0, p11 = 0.55, I0,1 = 1, I0,2 = −1, K1 = 2
and K2 = −2. From a “trading mechanics” point of view, this
reduces to the same scenario for the binomial lattice example in
Section 4.1. However, the PMF generated in this case is more
“informative” because we obtain a PMF for the “combined”
trading gain g(N) = g1(N)+g2(N) rather than two individual
PMFs, one for g1(N) and one for g2(N).

Figure 5 is a plot of the central portion of the PMF of g(N) for
this SLS case. Using the theorem we obtain gmin≈− 2×10−4,
gmax≈0.01986, E [g(100)]≈1.795×10−4 and p

loss
≈0.6174.

Notice that the probability of losing for SLS is less than that of
the binomial lattice short trade, but the probability of winning
is smaller than that of the long stock trading case.

0 0.5 1 1.5 2 2.5

x 10
−3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

SLS Trading Gain PMF for f
100

(x)

Fig. 5. SLS Quadrinomial Lattice Example

5. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we provided formulae for the probability mass
functions of the trading gains or losses g(N) resulting from
a linear feedback control strategy with prices generated via
a lattice model. For simplicity of the exposition, we first ob-
tained the PMF of g(N) for the case of a binomial lattice
with stock price S(k). Subsequently, we generalized this result
to the case of a quadrinomial lattice for a pair of correlated
stock prices (S1(k), S2(k)). We believe that it should be pos-
sible to extend the ideas used for n = 2 stocks to n = 3
and beyond. To sketch the key ideas for an octonomial lattice
obtained with n = 3 stocks, beginning with the transition
probabilities (p000, p001, p010, p011, p100, p101, p110, p111), cor-
responding to combinations of up-down stock moves (ui, di)
for i = 1, 2, 3, the PMF for the trading gain or losses

g(N)
.
= g1(N) + g2(N) + g3(N)

has the form

f
N
(x) =

N∑
i1=0

N∑
i2=0

N∑
i3=0

i1∑
k=0

C (N, i1, i2, i3, k)

× pN−i1−i2−i3+k
000 · · ·pk111

× δ (x− x1,i1 − x2,i2 − x3,i3) ;

xi,j
.
=

I0,i
Ki

[
(1 +Ki (ui − 1))

j
(1 +Ki (di − 1))

N−j − 1
]

for i = 1, 2, 3 and j = 0, 1, . . . , N . Note that the coef-
ficient C (N, i1, i2, i3, k) is a product of appropriately con-
structed binomial coefficients and there are (N + 1)

3 point
masses comprising the PMF.

As a result of the symmetry of gains and losses g(N) with
respect to returns ρ(k) entering into g(N), it was seen that the
computational complexity associated with PMF construction is
dramatically reduced. For the quadrinomial lattice case, out of
the possible 22N return sequences comprising the sample space,
we only end up dealing with (N + 1)

2 point masses. More
generally, for the case of n stocks with an associated lattice
of size 2n, using our method and fully exploiting symmetry,
the 2nN possible return sequences collapse down to (N + 1)n

probability mass points. This number, while manageable for
small (n,N) combinations, can easily become prohibitive for
larger N and n. For example, with N = 100, in the examples
given herein, the number of point masses in the two-stock case
was about 10, 000 and this number increases to over 1, 000, 000
for three stocks.

Given the growth rate described above, for n > 2 correlated
stocks, in many cases development of a general formula for the
PMF of g(N) may be more of an academic exercise than of
practical importance because the central portion of the PMF can
readily be estimated via Monte Carlo simulation. To illustrate,
for the case when n = 3 with N = 100, using 100, 000 sample
paths we generated an approximation for the PMF of g(100);
see Figure 6. Notice that we only show a smoothed envelope of
the central portion of the PMF since it consists of over a million
point masses. In this example the parameters are u1 = 1.001,
d1 = 0.999, u2 = 1.002, d2 = 0.998, u3 = 1.001, d3 = 0.999,
p000 = p001 = p010 = p011 = 1/8, p100 = p101 = 1/16,
p110 = 1/4, p111 = 1/8, K1 = K2 = K3 = 2 and I0,1 =
I0,2 = I0,3 = 1. Following the format of Section 4 we
find that gmin≈−0.3465, gmax≈0.4665, E [g(100)]≈0.04022
and p

loss
≈0.05004.
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