
Passive Phase Design of a Pumping Kite
Wind Generator ?

Ramiro Saraiva ∗ Marcelo De Lellis ∗∗ Alexandre Trofino ∗∗∗

Department of Automation and Systems, Federal University of Santa
Catarina, ZIP 88040-900, PO box 476, Florianópolis, Brazil.
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Abstract:
In this paper, the passive phase of a pumping kite wind generator is designed. A robustness index
against wind turbulence is proposed and analyzed, and an offline algorithm for generating a flight
trajectory reference, which maximizes the cycle power while considering a desired robustness
index, is presented. Based on a given tracking controller, simulation results are discussed.

1. INTRODUCTION

According to the International Energy Agency [2012],
renewable energy sources are expected to account for
almost one-third of the total world electricity output by
the year 2035. Among them, wind power offers advantages
like having a low environmental impact, and being an
excellent supplement to other energy sources.

Archer et al. [2014] showed that, since the wind power
depends on the cube of the wind speed, which usu-
ally increases with altitude, High-Altitude Wind Energy
(HAWE) is an abundant energy source highly available
worldwide. However, it cannot be harnessed by conven-
tional wind turbines because their use is technically and
economically viable only in altitudes up to 150 m. Given
that no breakthrough in the current technology is ex-
pected, Airborne Wind Energy (AWE) offers a new ap-
proach to exploit HAWE at a competitive cost.

Tethered airfoils, also known as power kites, have been
investigated in the last decade as an AWE alternative to
the wind turbines. Ahmed et al. [2012] and Ahrens et al.
[2013] made a comprehensive overview of the configura-
tions of such systems proposed thus far. The majority of
the studies found in the literature addresses the pumping
kite (yoyo) configuration, which employs a single kite.
Electric power is obtained by unwinding a tether from a
drum 1 connected to a generator/motor on the ground.

Houska and Diehl [2007] investigated a pumping kite flying
closed orbits, in which the tether is reeled both out and
in within a single orbit. Argatov and Silvennoinen [2010]
showed that the orbits which allow for maximum energy
efficiency have the shape of a “lying-eight” (∞) figure.
More recently, Baayen and Ockels [2012], De Lellis et al.
[2013], and Jehle and Schmehl [2014] have studied the
open-orbit configuration, in which the tether reaches its
maximum length after several orbits, at the end of the
traction phase. Between two adjacent traction phases there
? This work was financially supported by CAPES, Brazil.
1 there may be two tethers connecting the kite to the drum,
depending on the concept.

is a passive phase, during which the cable is reeled back
in. To this end, Fagiano [2009] proposed two maneuvers
(Fig. 1):

Fig. 1. Pumping kite, wind window, and reel-in maneuvers.

• the wing glide maneuver consists of orientating the
kite with its lateral axis, yb, aligned upwind, similarly
to a flag, while pulling the tether. This reduces the
air drag on the kite, allowing it to be retrieved with
only a small energy expense, even though the kite
remains in the high power zone. The main drawback
of this maneuver are implementation challenges to re-
orientate the kite, reliably, for the traction phase;

• the low-power maneuver, through which the tether
is reeled-in while the kite is kept at the edge of the
wind window, where the traction force is reduced.
This maneuver requires a longer flight path, yielding
a lower cycle power.

The main contribution of this work is the investigation
of a dive maneuver that combines short duration with
robustness, as an attempt to keep the angle of attack of
the kite above a critical value in spite of wind turbulence.

The rest of the paper is organized as follows: Section 2
presents the kite model, followed by a robustness analysis
in Section 3. A flight path reference is designed in Section
4, whereas simulation results with a tracking controller are
discussed in Section 5. Section 6 concludes the paper.
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Notation: ‖v‖ is the euclidean norm of a vector v, its
transpose is v′, and its representation in the inertial and
local frames is (·)i and (·)l, respectively. The inner and
cross product of two vectors are v1•v2 and v1×v2, whereas
|u|, u, u, ũ and û represent the magnitude, maximum,
minimum, mean and equilibrium values of a scalar u.
Vectors and scalars are continuous-time variables, if not

otherwise stated. ˙(·), (̈·) and
...
(·) are their 1st, 2nd and 3rd

time-derivatives.

2. SYSTEM MODEL

The kite is modeled as a point-mass tethered to a fixed
point on the ground, where both the origin of the inertial
frame and the electric machine are located (Fig. 1). The

kite position is ra := ra [sin θa cosφa sin θa sinφa cos θa]
′
i
,

where θa is the complementary elevation angle, φa is the
azimuth angle, and ra is the cable length. The tether
attachment point at the kite is the origin of the local frame,
defined by the vectors eθ := dra/dθ, eφ = dra/dφ, and

er := dra/dr. The nominal wind, Wn := [Wn(za) 0 0]
′
i
,

defines the x direction of the inertial frame, and depends
on the flight altitude, za. The body frame is fixed to
the airfoil, originated at the kite attachment point, and
is composed by the orthonormal vectors xb, yb, and
zb = xb × yb. The orientation of xb with respect to
the tangent local plane, (eθ, eφ), is represented by the
base angle of attack, α0 := arccos (−eθ • xb). We assume
a pitch dynamics α̇0 := kαuα, where uα is the voltage
applied to the pitch motor. With turbulence Wt in any
direction, the resulting wind is Wl := Wn +Wt. The kite

velocity in the local frame is Wa :=
[
raθ̇a sin θaraφ̇a ṙa

]′
l
,

and the effective wind is

We := RliWl −Wa

=

[
cos θa cosφa cos θa sinφa − sin θa
− sinφa cosφa 0

sin θa cosφa sin θa sinφa cos θa

][
Wx

Wy

Wz

]
i

−Wa ,

(1)

where Rli is the rotation matrix from the inertial to the
local frame. We can now define a wind frame, composed by
the orthonormal vectors xw := −We/‖We‖, which points
opposite to the effective wind direction, and zw := xw ×
yw. The definition of yw can be found in Fagiano [2009]
and Diehl [2001], where this model is derived from. Due to
the kite position and velocity, the total angle of attack is

α := α0 + ∆α = α0 + arcsin

(
We • er

‖We‖

)
. (2)

Flight dynamics is determined by the following forces. The
weight, G := (m + 0.5mc)g [sinθa 0 − cos θa]

′
l
, acts upon

the kite mass, m, and the cable mass, mc := 0.25ρcπd
2
cra,

where ρc is the cable density, dc is the cable diameter,
and g is the gravity acceleration. The apparent forces
(inertial and Coriolis) are P := [Pθ Pφ Pr]

′
, with Pθ :=

m(φ̇2ara sin θa cos θa − 2ṙaθ̇a), Pφ := −2mφ̇a(ṙa sin θa +

raθ̇a cos θa), and Pr := mra(θ̇2a + φ̇2a sin2 θa). The cable
traction force is T := Ter. The aerodynamic forces
are: the kite drag, Da := −0.5ρACd(α)‖We‖2xw, where

ρ is the air density, A is the kite characteristic area,
and Cd(α) is the kite drag coefficient; the cable drag,
Dc := −0.125ρCcradc cos ∆α‖We‖2xw, where Cc is a
constant cable drag coefficient; and the kite lift, L :=
0.5ρACl(α)‖We‖2zw, where Cl(α) is the lift coefficient.
Note that the drag forces are collinear with We, whereas
L ⊥We. In Fig. 2 we present the aerodynamic coefficients,
obtained from Ostowari and Naik [1984], for a NACA 4415
airfoil with infinite aspect ratio 2 , ε. We will assume this
aerodynamic behavior for our kite, even though a typical
value would be ε = 6. As ε decreases, the second peak on
the lift curve tends to decrease and eventually disappear.

Fig. 2. Kite lift, Cl(α), and drag, Cd(α), coefficients.

The electric machine dynamics is Jω̇ := Trd + τe, where
J is its moment of inertia, ω its angular speed, and rd
is the drum radius. In the passive phase the machine
operates as a motor, and we model the electric torque as
τe := −kmue, where km is a torque constant, and ue is the
voltage applied to the motor.

We define the control input vector v := [ψ uα ue]
′
, where

ψ is the roll angle, which determines the projections of
the aerodynamic forces in the local frame. With Γ :=
L(q, ψ,Wl) +Da(q, ψ,Wl) +Dc(q,Wl) being the result-

ing aerodynamic force, and q :=
[
θa φa ra θ̇a φ̇a ṙa α

]′
the state vector, the equations of motion of the system are

 mraθ̈a
mra sin θaφ̈a
(m+ J/r2d)r̈a


l

= G+P+Γ(q, ψ,Wl)−

 0
0

km
rd
ue

 , (3)

with q̇7 = α̇ = kαuα + ∆̇α. We assume all states and the
local wind, Wl, are measured.

2.1 Longitudinal Model in the Downwind Plane

For the sake of analysis and control design simplification,
we propose the dive maneuver in the downwind (x, z)i
plane, as depicted in Fig. 3. We assume the airfoil is kept
at φa = 0◦ by a closed-loop controller that manipulates
ψ, which is not in the scope of this work. Hence, defining
L := ‖L(x,Wl)‖, and D := ‖Da(x,Wl)‖+ ‖Dc(x,Wl)‖,
the control vector as u := [uα ue]

′
, and the state vector as

x :=
[
θa θ̇a ra ṙa α

]′
, the longitudinal downwind system

2 refers to the ratio between wing length and width.
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dynamics, in the local frame, can be represented in the
state space as

Fig. 3. Longitudinal downwind model definitions.



ẋ1 = x2

ẋ2 =
βθ
x3

[(G + P) • eθ − L sin ∆α+D cos ∆α]

ẋ3 = x4
ẋ4 = βr [(G + P) • er + L cos ∆α+D sin ∆α− βeue]
ẋ5 = kαuα + ∆̇α ,

(4)

where βθ := 1/m, βr := 1/(m+ J/r2d), and βe := km/rd.

We note that (4) is only valid if the tether is under positive
tension, i.e.

T = (J/r2d)r̈a + βeue > 0 . (5)

If this is not satisfied, the cable becomes loose and control
over the kite is lost.

3. ROBUSTNESS ANALYSIS

The stability of the pumping kite generator in the passive
phase is more susceptible to wind disturbances than in the
traction phase. This is because, in order to minimize the
energy expense to reel in the cable, T needs to be small,
and consequently α becomes small, close to a critical value,
α�, below which the kite may collapse due to aerodynamic
effects not modeled herein. Hence a margin on the angle
of attack, α − α� > 0, is necessary for a robust passive
phase. Depending on how much We is composed by Wn,
this margin can be more or less susceptible to be altered
by variations in the magnitude or direction of Wl = Wn+
Wt. With that in mind, we define the robustness index as

σ :=
(
‖We‖/‖Wn‖

)
(α− α�) , (6)

i.e., the ratio ‖We‖/‖Wn‖ can amplify the margin of

attack angle. Observe that, by imposing θ̇a < 0 more nega-
tive, a greater ‖We‖/‖Wn‖ is obtained and the needed α
to sustain this angular motion becomes, generally, greater.
As a consequence, the margin α − α� tends to increase,
and so does σ. On the other hand, if we reel in the tether

faster, with ṙa < 0 more negative, although the said ratio
increases, the margin of attack angle needed to maintain θ̇a
constant decreases and, in general, the robustness index is
reduced. To illustrate this behavior let us assume a passive
phase with θ̇a = 0. For the following numerical analysis we
will consider α� = −2◦,Wn = 10 m/s, and a kite with mass
m = 7 kg, whose characteristic area is A = 16 m2. The
cable diameter is dl = 5 mm, of density ρl = 970 kg/m3,
drag coefficient Cc = 1.2, and length ra = 500 m. The θa-

equilibria of model (4), θ̂a, as a function of α0 and ṙa, are
shown in Fig. 4. The equilibrium angle of attack, α̂, and

σ, are additional information and refer only to θ̂a in the
Main Stable Node Segment (MSNS), which spans up to

θ̂a → 90◦.

Fig. 4. Equilibria of θa as a function of α0 and ṙa.

Considering the scenario with ṙa = 0 (Fig. 4a), by

inspection in (2) we get that ∆̂α = θ̂a. Observe that, for

high θ̂a, the lift force, L, is more aligned with the direction
of −eθ, and thus must have a lower magnitude. This
requires a smaller α, and therefore σ diminishes. However,

as θ̂a approaches the zenith point, L tends to become
perpendicular to eθ, hence a higher ‖L‖ is needed for
the equilibrium, causing α̂ and σ to rapidly increase. The
tether force follows this behavior. Note the existence of
two α̂0 for small equilibria inside the approximate interval

5◦ < θ̂a < 10◦. By further increasing α̂0 outside the MSNS
the airfoil stalls, i.e. θa → 90◦ with T > 0, due to an
increase in the drag and a decrease in the lift caused by a
high angle of attack.

Note that, as the unwinding speed is taken negative in Fig.

4b, the edge of the wind window, θ†a = min(θ̂a), crosses
the zenith point and reaches into negative values, whereas

α̂, σ and T̂ maintain the trend to increase as θ̂a → θ†a.
However, if ṙa is negative enough, as illustrated in Fig. 4c,
α̂, σ and T̂ fall as the wind window edge is approached. As
a consequence, conditions α−α� > 0 and (5) are eventually
violated. This inversion in the behavior occurs because, if
θa → θ†a with θ†a < 0◦, the gravity forces start acting, along
with L, in the direction of −eθ. The more negative ṙa is,
and consequently θ†a, the greater is the projection of the G
onto −eθ, requiring a progressively smaller ‖L‖, causing
α̂, σ and T to decrease.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6766



Even though σ > 0 for most of the equilibria in Fig.
4, the index may not be high enough to cope with the
wind turbulence. A passive phase with a greater σ can be
achieved by imposing θ̇a < 0 to the kite while the cable is
being retrieved, as illustrated in Fig. 5. Observe that, by
making θ̇a faster, we can improve σ for a given ṙa and θa.
Nevertheless, a disadvantage of choosing θ̇a too negative
is the increase in T , and consequently in the power
consumption. Therefore a compromise between robustness
and cycle power maximization has to be established. In
Section 4.1 we will use (6) to determine reference values

for θ̇a and ṙa for the dive maneuver.

Fig. 5. T ( ) and σ( ) as a function of θa, given θ̇a and ṙa.

4. CONTROL DESIGN

4.1 Offline Generation of the Flight Path Reference

The flight trajectory in the proposed passive phase is
determined by θ̇a(t) and ṙa(t). Therefore we can find

offline-calculated reference values, θ̇ref(t) and ṙref(t), that
respect a desired robustness index, σref, while maximize
the cycle power,

Pcyc :=

∫ t1
t0
Pt(τ)dτ +

∫ t2
t1
Pp(τ)dτ

(t1 − t0) + (t2 − t1)
, (7)

where Et :=
∫ t1
t0
Pt(τ)dτ and ∆tt := t1 − t0 are the

traction phase electric energy and duration, respectively,
known a priori. The instantaneous electric power in the
passive phase, of duration ∆tp := t2 − t1, is Pp(t) :=

T (θa, θ̇a, ra, ṙa, t)ṙa(t)/η, where 0 < η < 1 is the overall
efficiency in converting electric to mechanical power.

Given the complexity in finding an analytical, continuous-
time solution to this problem, our approach was to work
in a discrete domain, i.e. with vectors of known resolu-
tion and size. Because we do not know ∆tp, we choose
not to work with a discrete-time domain. Instead, given
that the system equilibria depend more strongly on θa
than on ra, we specify the optimization domain as ϑ ={
ϑ[i] ∈ R : ϑ[i] := θa − δϑ(i− 1); i = 1, . . . , p

}
, where 0 <

θa < 90◦ occurs at the beginning of the passive phase,

δϑ > 0 is the domain resolution, and p > 1 is the domain
vector size. The idea is to make the optimizer apply a
reference pair (θ̇a, ṙa)ref[i] to the system as long as θa is in
the i-th slot, i.e. ϑ[i] ≤ θa < ϑ[i+1]. Thus, we approximate
the electric energy spent in the passive phase as

Ep :=

∫ t2

t1

Pp(τ)dτ ≈ (1/η)

n∑
i=1

T[i]ṙa[i]δt[i] , (8)

where n corresponds to the slot in which the passive phase
ends, characterized by ra ≤ ra = ra −∆ra, with ∆ra > 0
being the amount of tether to reel in. The duration of each
slot is defined as

δt[i] =


δϑ

θ̇ref[i]
if ra[i] + ṙref[i]

δϑ

θ̇ref[i]
> ra

ra − ra[i]

ṙref[i]
else .

(9)

The if -condition in (9) means that ϑ[i+ 1] will be needed
to complete the passive phase, else the integration stops
at i = n. To calculate T [i] = T

(
ϑ[i], ra[i], (θ̇a, ṙa)ref[i])

)
,

we define the tether length of each slot as ra[i] := ra[i −
1] + ṙref[i− 1](δϑ/θ̇ref[i− 1]).

Preliminary optimization tests with an unconstrained tra-
jectory showed that the solutions presented a higher |θ̇a|
and a lower |ṙa| in the beginning of the passive phase,

changing approximately linearly to lower |θ̇a| and higher
|ṙa|. Nevertheless, for high enough σref, reference values
between adjacent slots could vary abruptly in magnitude
and direction. This is undesired, since it poses a challenge
to the tracking controller, specially in terms of avoiding an
undershoot in the angle of attack below α� when slowing
down θ̇a. Hence, aiming at a monotonically, smooth vari-
ation of the reference pair, we constrain the θ̇ref[i], ṙref[i]
trajectories to straight lines (in the ϑ-domain), establish-
ing the optimization solution, Ω = (γθ, µθ, γr, µr), as the
coefficients of such linear curves

θ̇a[i] = γθ + µθ(θa − ϑ[i])

ṙa[i] = γr + µr(θa − ϑ[i]) .
(10)

We highlight that these constrained trajectories showed
similar Pcyc values as the unconstrained ones.

During the maneuver, the instantaneous references can be
determined by replacing ϑ by θa and [i] by (t) in (10).
With the definitions above, we can state the optimization
problem as

Ω = arg max
θ̇a[i],ṙa[i]

(
Et + η

∑n
i=1 T [i]ṙa[i]δt[i]

∆tt +
∑n
i=1 δt[i]

)
such that

σ ≥ σref
0 < Pcyc < P̃t ,

(11)

where the constraint 0 < Pcyc < P̃t is added to reduce the
search domain, helping the algorithm to converge.
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4.2 Reference Tracking Control

Differently from Fagiano [2009], we designed our passive
phase maneuver considering we can manipulate α0 and
taking into account the electric motor/winch dynamics.
Hence we have a square system with output vector y =[
θ̇a ṙa

]′
and input vector u = [uα ue]

′
. Given the highly

nonlinear behavior of this system, and the fact that its
outputs are coupled, we used a static, locally regular
state-feedback control law in the form u = a(x) + b(x)v.
According to Isidori [1995], it yields a decoupled, linear
system with same outputs, but a new input vector v,
which is used for stabilization and reference tracking. Due
to space limitations, details on this controller are being
published in another paper.

5. SIMULATION RESULTS

To test the robustness of our passive phase, we use the Dry-
den wind turbulence model (see e.g. Cook [2013]). It cre-
ates turbulence as a stochastic process by applying band-
limited white noise through digital filters. RMS-turbulence
intensity, ζ(za), for za < 304.8 m (1000 ft), is defined in the
longitudinal (lo) and vertical (ve) components as

ζve := 0.1W20 = µWn (12a)

ζlo :=
1

(0.177 + 0.0027za)0.4
ζve , (12b)

where W20 is the wind speed at 20 ft. Note that ζlo ≥ ζve.
Although the kite may reach za > 304.8 m, for the sake
of simplicity, we will remain with this model as a worst-
case turbulence scenario. We will also assume a constant
nominal wind speed, Wn(za) = 10 m/s ∀za > 0, and hence
define ζve in (12) in terms of a factor, µ > 0, of Wn. This
way we can check how much turbulence is endured by the
system without violating either of the stop conditions

a) α > α�, b) T > 0, c) θa < 90◦ . (13)

Condition (13a) means that the kite does not collapse,
(13b) refers to (5), guaranteeing that model (4) remains
valid, and (13c) checks for a collision with the ground.

To optimize the dive maneuver, it was considered ∆ra =
100 m, and a traction phase with P̃t = 15 kW and ṙa,p =
2 m/s. Other parameters were set as rd = 0.3 m, J =
2.25 kg m2, km = 2 Nm/V, and kα = 0.3 deg(sV)−1. The
domain resolution was δϑ = 2.5 deg. Table 1 contains
some optimization and simulation results as a function of
a critical angle of attack, α�, and a desired robustness
margin, σref. The cycle power calculated by the optimizer
is Pcyc, which accounts for an efficiency of η = 0.8. The

θ̇ref and ṙref columns contain the initial and final values
of the references. The solution components are limited
to the intervals γθ ∈ [−8,−0.1] deg/s, µθ ∈ [0, 0.6] s−1,
γr ∈ [−6,−0.1] m/s, and µr ∈ [−0.6, 0] m (s deg)−1. The
passive phase is assumed to start at θa = 70◦, and finishes
at θa after a time interval ∆tp. The amount of admissible
perturbation is indicated by µ†, which corresponds to

the highest µ in (12) for which 20 maneuvers 3 could be
completed, with at most 1 failure, with respect to the stop
conditions (13). ‖Wt‖ indicates the maximum turbulence
intensity registered during these completed simulations.

α� σref Pcyc θ̇ref ṙref θa ∆tp µ† ‖Wt‖
[deg] [kW] [deg/s] [m/s] [deg] [s] [%] [m/s]

−3

1 10.9 −(0.4, 0.4) −(6.0, 6.0) 64 17 3 1.1
2 10.5 −(1.2, 1.2) −(6.0, 6.0) 50 17 6 1.9
3 10.0 −(1.8, 1.7) −(6.0, 6.0) 41 17 8 3.2
4 9.4 −(2.3, 2.1) −(6.0, 6.0) 34 17 10 3.8
5 8.7 −(2.7, 2.4) −(6.0, 6.0) 28 17 12 4.7
6 8 −(3.1, 2.6) −(6.0, 6.0) 22 17 12 5.9
7 7.2 −(3.3, 2.7) −(5.0, 6.0) 15 18 14 6.0
8 6.5 −(3.5, 2.6) −(3.9, 5.7) 7 21 16 7.8
9 5.8 −(3.5, 2.1) −(2.0, 5.1) −6 28 20 6.4

−2

1 9.5 −(2.0, 2.0) −(5.6, 6.0) 35 17 2 1.1
2 8.8 −(2.7, 2.2) −(5.6, 6.0) 28 17 5 2.7
3 7.9 −(2.9, 2.4) −(4.2, 6.0) 18 20 6 3.0
4 7.1 −(3.1, 2.1) −(3.0, 5.3) 7 24 8 4.5
5 6.4 −(3.3, 1.7) −(1.8, 4.7) −3 30 9 5.3
6 5.9 −(3.4, 1.3) −(0.5, 4.4) −11 37 11 6.1

Table 1. Dive maneuver optimization

Observe in Table 1 that indeed the system tends to endure
more turbulence, both in terms of µ† and ‖Wt‖, when
more robustness, σref, is required. Also, as α� is increased,
less turbulence is endured by the system for a same σref.
On the other hand, the cycle power obtained by the opti-
mizer, Pcyc, has an opposite behavior. This occurs because,
if one wants more robustness, a higher combination of
attack angle (α) and effective wind magnitude (‖We‖) is
needed, according to (6). As a consequence, T increases,
and so does the energy expense in the passive phase.
It is also noteworthy that, as α� and σref increase, the
maneuver ends at a lower θa, eventually even crossing the
zenith point, and takes more time. This longer duration
also reduces the cycle power, according to (7). During the
simulations, we recorded that the cycle power obtained
with and without turbulence were close to Pcyc.

We note that, for higher σref, the optimized trajectories
take the kite closer to the edge of the wind window (θ†a),
where the tracking controller is subject to singularity,
which can easily be induced by turbulence. To avoid this
issue, we reel-in the tether faster as the offline optimized
value. This causes θ†a < 0◦ to decrease, and unfortunately
also σ (see Fig. 5), rendering the system less robust to
perturbations. That is why no results for higher σref are
shown in Table 1. Other strategies to avoid singularity
without affecting σ are being investigated.

Simulation results of a single maneuver with (α�, σref) =
(−2◦, 6◦) are presented in Fig. 6. The robustness index,
which with Wt = 0 is kept always above σref, due to
turbulence reached peaks of approximately 3◦. The cycle
power obtained was approximately 6.3 kW, and the passive
phase lasted for 36 s, values close to those in Table 1. If
the maneuver is simulated a high enough number of times,
average values of cycle power and duration get closer to
the optimized ones.

3 The seeds of the deterministic and stochastic Dryden model are
reshuffled before every simulation, in order to reproduce different
scenarios of wind turbulence.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6768



Fig. 6. Dive maneuver simulation under turbulent wind.

In Fig. 7 we illustrate how the maneuver path changes,
depending on σref, for α� = −2◦, without turbulence.

Fig. 7. Dive maneuver paths with α� = −2◦ and Wt = 0.

6. FINAL REMARKS

This work dealt with the design of a robust passive phase
for a pumping kite generator. As contributions, a robust-
ness index was proposed, which quantifies how susceptible
the airfoil angle of attack is to fall under a critical value.
This is an important feature in the analysis of the practical
feasibility of the passive phase for power kites. Also, an
offline optimization of the flight trajectory was carried
out to meet the compromise between robustness and cycle
power maximization. It became evident that kites should
be designed to operate at low attack angles, in order to
allow for greater cycle power and robustness.

The optimization results found depend on the lift and
drag coefficient curves, which in practice might be different
than the ones considered. Therefore the intervals of critical
attack angles and the trajectories obtained may vary

accordingly. Also, the amount of admissible perturbation
depends on how fast the response of the pitch actuator
and ground motor are, as well as on the control dynamics.

As future work, a passive phase with φa 6= 0 and nominal
wind that varies with altitude is to be investigated. Also,
another strategy for dealing with the tracking control
singularity without affecting the robustness index is de-
sirable. Finally, an approach for measuring the effective
wind and angle of attack is to be developed to allow the
dive maneuver to be tested on a prototype.

7. ACKNOWLEDGMENTS

The authors would like to thank Hector B. Silveira for
valuable support on the tracking controller design.

REFERENCES

M. Ahmed, A. Hably, and S. Bacha. High Altitude Wind
Power Systems: A Survey on Flexible Power Kites. In
20th International Conference on Electrical Machines,
pages 2083–2089, Marseille, France, September 2012.

U. Ahrens, M. Diehl, and R. Schmehl, editors. Airborne
Wind Energy. Green Energy and Technology. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

C. L. Archer, L. Delle Monache, and D. L. Rife. Airborne
wind energy: Optimal locations and variability. Renew-
able Energy, 64:180–186, April 2014.

I. Argatov and R. Silvennoinen. Energy conversion effi-
ciency of the pumping kite wind generator. Renewable
Energy, 35:1052–1060, 2010.

J. H. Baayen and W. J. Ockels. Tracking control with
adaption of kites. IET Control Theory & Applications,
6:1–20, 2012.

M. V. Cook. Flight Dynamics Principles: A Linear
Systems Approach to Aircraft Stability and Control.
Butterworth-Heinemann, 3rd edition, 2013.

M. De Lellis, R. Saraiva, and A. Trofino. Turning angle
control of power kites for wind energy. In 52nd IEEE
Conference on Decision and Control, pages 3493–3498,
Firenze, Italy, December 2013. IEEE.

M. Diehl. Real-Time Optimization for Large Scale Nonlin-
ear Processes. PhD thesis, Ruprecht-Karls-Universität,
Heidelberg, Germany, 2001.

L. Fagiano. Control of Tethered Airfoils for High-Altitude
Wind Energy Generation. PhD thesis, Politecnico di
Torino, Torino, Italy, 2009.

B. Houska and M. Diehl. Optimal control for power
generating kites. In European Control Conference,
page 14, 2007.

International Energy Agency. World Energy Outlook
2012. Paris, France, 2012.

A. Isidori. Nonlinear Control Systems. Springer, 3rd
edition, 1995.

C. Jehle and R. Schmehl. Applied Tracking Control for
Kite Power Systems. Journal of Guidance, Control, and
Dynamics, pages 1–12, February 2014.

C. Ostowari and D. Naik. Post Stall Studies of Untwisted
Varying Aspect Ratio Blades with an NACA 4415
Airfoil Section – Part I. Wind Engineering, 8:176–194,
1984.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6769


