Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

A new quadratic programming strategy for
efficient sparsity exploitation in SQP-based
nonlinear MPC and MHE *

Janick V. Frasch*** Milan Vukov* Hans Joachim Ferreau ***
Moritz Diehl *

* Department of Electrical Engineering, KU Leuven, Belgium (e-mail:
janick.frasch@esat.kuleuven.be).
** Department of Mathematics, Magdeburg University, Germany
*** ABB Corporate Research, Baden-Dadttwil, Switzerland

Abstract: A large class of algorithms for nonlinear model predictive control (MPC) and moving
horizon estimation (MHE) is based on sequential quadratic programming and thus requires the
solution of a sparse structured quadratic program (QP) at each sampling time. We propose a
novel algorithm based on a dual two-level approach involving a nonsmooth version of Newton’s
method that aims at combining sparsity exploitation features of an interior point method with
warm-starting capabilities of an active-set method. We address algorithmic details and present
the open-source implementation qpDUNES. The effectiveness of the solver in combination
with the ACADO Code Generation tool for nonlinear MPC is demonstrated based on set of
benchmark problems, showing significant performance increases compared to the established
condensing-based approach, particularly for problems with long prediction horizons.
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1. INTRODUCTION

Model predictive control (MPC) is an approach to obtain
a feedback control law taking physical process models and
problem-inherent constraints into account, cf. Rawlings
and Mayne (2009). It relies on the online solution of an op-
timization problem in each feedback-generating iteration.
For high predictive accuracy and good stability properties
it is desirable to design MPC controllers that can deal
with detailed process descriptions to reduce the prediction-
inherent uncertainty, resulting in big dynamic systems and
long prediction horizons. Particularly the long prediction
horizons, however, can render the underlying optimization
problem very challenging for a real-time implementation.

Most nonlinear MPC algorithms require the direct solution
of an (in general) nonlinear programming problem (NLP)
online. In this paper we focus on approaches that base
on sequential quadratic programming (SQP) like the real-
time iteration (RTI) scheme, see Diehl et al. (2002). Par-
ticularly in combination with automatic code generation,
the RTI scheme can lead to very short computation times
while retaining sufficient accuracy (see, e.g., Houska et al.
(2011)) and therefore seems to be a well suited approach
for embedded nonlinear MPC of high-speed applications.

* This research was supported by Research Council KUL:
PFV/10/002 Optimization in Engineering Center OPTEC,
GOA/10/09 MaNet and GOA/10/11 Global real- time optimal
control of autonomous robots and mechatronic systems. Flemish
Government: FWO: PhD/postdoc grants; IWT: PhD Grants,
projects: Eurostars SMART; Belgian Federal Science Policy Office:
IUAP P7 (DYSCO, Dynamical systems, control and optimization,
2012-2017); EU: FP7-SADCO ( MC ITN-264735), FP7-TEMPO(MC
ITN-607957), ERC HIGHWIND (259 166).

Copyright © 2014 IFAC

Due to the structural equivalence, mowving horizon es-
timation (MHE) can be cast into the same framework
and solved efficiently using the RTI scheme, see Kiihl
et al. (2011). We subsume both problem classes, MHE and
MPC, under the term MPC for clarity of the presentation.

A crucial step when using SQP-based algorithms on prob-
lems featuring long prediction horizons is the efficient
solution of the highly structured quadratic programming
problem (QP) in each iteration, which is usally performed
by tailored algorithms based on interior point methods
(e.g., Domahidi et al. (2012)), active-set methods (e.g.,
Ferreau et al. (2008)), or fast-gradient methods (e.g., Pa-
trinos and Bemporad (2014)). Both classes of methods,
interior-point and fast-gradient methods on the one hand,
and active-set methods on the other hand, have significant
shortcomings in the context of MPC and MHE. While the
former ones generally cannot exploit the knowledge about
similarity between the solutions of two subsequent QPs
in the MPC context, the latter ones typically require a
so-called condensing routine to benefit from the problem-
inherent sparsity. Even though recent results from An-
dersson et al. (2013) lead to an improved performance of
the condensing step, its overall runtime complexity is still
quadratic in the horizon length and cannot be expected to
be accelerated further.

In this paper, we present a new idea for solving strictly
convex quadratic subproblems in the context of nonlinear
MPC and MHE. It is based on ideas for a band-structured
QP solver that were introduced in Ferreau et al. (2012).
Based on original ideas from Li and Swetits (1997) the
stage coupling constraints of the MPC problem are dual-
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ized and the resulting QP is solved in a two level approach,
using a non-smooth Newton method in the multipliers of
the stage coupling constraints on the higher level, and a
primal active-set method in the decoupled parametric QPs
of each stage on the lower level. The advantage of this so-
called dual Newton strategy is that it combines structure
exploitation capabilities of interior point methods with
the warm-starting capabilities of active set methods; in
particular it comes with only a linear runtime complexity
in the horizon length. Note that in contrast to classical
active-set methods this approach permits several active-set
changes in each Newton-type iteration. Still, the resulting
algorithm has the flavor of an active-set method in the
sense that the exact optimal solution is obtained.

In this paper, we address the core ideas of the dual New-
ton strategy and show how it can be applied efficiently
for nonlinear MPC and MHE. Most importantly, we
present gpDUNES, an open-source implementation of the
DUal NEwton Stategy that is now available as structure-
exploiting QP solver in the open-source ACADO toolkit
(see Houska et al. (2011)) for nonlinear MPC and MHE
of high-speed applications. We demonstrate the effective-
ness of gpDUNES in comparison against a code-generated
condesing/qpOASES approach first described in Houska
et al. (2011); Ferreau et al. (2008) based on a selection of
challenging nonlinear MPC benchmark problems.

2. QP SOLUTION METHOD
2.1 Quadratic subproblem description

We assume familiarity of the reader with the RTI scheme
from Diehl et al. (2002). Within the RTI scheme we
repeatedly need solve the following subproblem, that can
be interpreted as a linear MPC problem. Here, we group
the optimization variables, state increments Ax;, € R™
and control increments Awup € R™, in stage variables
ZE = [Ax; Au;]—r € R"= for each stage k =0,..., N—1,
and zy = [Azy 0] for the terminal stage. Throughout

this paper we are consequently interested in repeatedly
solving the following problem in an efficient manner:

N
: L T T
—z, H 1
min kZ_O (sz K2k + g zk> (1la)
s.t. Egpy12k+1 = Crzr + ¢k Vk=0,...,N—1 (1b)

dkSDkz’dek szO,...,N. (1(3)
We assume positive definite second-order terms 0 < Hy €
R™=*"= and g, € R™ for each k € S := {0,...,N}
throughout the paper. Two subsequent stages k € S and
k+ 1 € S are coupled by first-order terms Cj, Exy11 €
R7=*"= and a constant term c,. We assume that all Cj
have full row rank; each Ej has the structure Ey, = [I 0],
with an identity matrix I € R"™*"» complemented by
zeros. Vectors dy, d, € R™¢  and a matrix Dy, € R™*"= of
full row rank denote stage constraints.

2.2 Dual decomposition

The main idea of our proposed QP solution algorithm is
to decouple the QP stages by dualizing constraints (1b).

Introducing A = [A] A - )\L]T € RV¥" we can
express (la) and (1b) by the partial Lagrangian function

N
1
L(z,\) = Z (22,1—sz;€ + 9 2

k=0
-
+ {)\:fl] [ka] 2K+ /\g+1ck>
N
=) Li(2h: Ak At
k=0
where we define zero matrices Fy := Cy := 0 € R"=X"=

and redundant multipliers \g := Any41 := 0 € R" only
for notational convenience.

By elementary Lagrangian duality theory the primal QP
(1) is equivalent to
N
max mzin kZLk(zk,)\k,)\k_,_l)
=0

S~t~dk§Dk:Zk§Ek Vk:07,N

Observe that this Problem is separable in the stage vari-
ables zj. Problem (1) can thus equivalently be written as

N
max f*(X) :=max ) _ fi (), (2)
k=0
where
1
»(A) == min §ZkTszk +mp(N) Tz + )\;_1%
2k

s.t. dk < Dkzk < Ek (QPk)
Ak
k41
of the dual function f* we can particularly see that z(\) :=

[20(A), ..., zn(A)] is optimal for each choice of A.

.
with my(\) :== g + { ] [_ka] . From this definition

2.8 Non-smooth Newton approach

Under the assumption that a feasible solution for (1)
exists, one can show that f*(\) exists on RV"= and further
is a concave, piecewise quadratic, and once continuously
differentiable function, cf. Ferreau et al. (2012); Frasch
et al. (2013) and the references therein. We solve the un-
constrained piecewise-quadratic program (2) by employing
a non-smooth Newton method, as originally proposed in
Li and Swetits (1997). The second derivative 862;; (%) is
unique everywhere but on a null set (the “seams” of f*),
where in general a jump occurs. The proposed QP solution
method is given by Algorithm 1, where we denote the
Lagrange multipliers of constraints (1c) by uy € R?" for
each k € S. We refer to Frasch et al. (2013) for a proof
of convergence of this algorithm to the (unique) optimal
dual solution A*, that is characterized by stationary of
£*(\) and implicitly defines z* := z(\*) via (QP},).

3. ALGORITHMIC DETAILS OF THE DUAL
NEWTON STRATEGY

Due to its temporal coupling, Problem (2) possesses a
specific structure that can be exploited for its efficient
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Algorithm 1: Dual Newton Strategy

Input: Initial guess A%, termination criteria nmyaxrt, €x
Output: Optimal solution (z*, \*, u*)
13:=0
2 while i < nyaxae dq 4 4
3 Solve all QP (A*) to obtain [z} (A"), pj(A)]
4 Compute [7%2){; ()\i)} and [%f; ()\i)}
analytically
s | it 4500 < then
6 | return [z;(\), A, p (A7)]

7 Solve Newton system —%(Ai) AN = %—J:(Ai)
Compute step size a

9 Update the current iterate \it1 := \* 4+ a AN
10 i:=1i41

solution. We analyze details for the individual steps of
Algorithm 1 in the following.

3.1 Structure-exploiting solution of the Newton System

The dual gradient %()\) € RV (as a column vector) is
easily seen to only depend on two neighboring stages in
each block Ag. It holds

[ Ofc | Ofi ]
o1 O\
of" off n of3
YJ — OXa  O)g
o s |,
Ofy—1 | Ofx
L OAN OAN |

The dual Hessian %(A) € RNnaXNns pogsesses a block
tri-diagonal structure, as only neighboring multipliers
Ak, Ak+1 can have a joint contribution to f*. We have

r 82f* 62 f* 1
X2 DM
82f* 62 f*
P OAA 0N
OAN_1AN
82f* 82 f*
I IANAn_1  ONZ

8.2 Dual function evaluation

Each stage problem (QP},) has a fixed second order term
Hj, and a parametric first-order term pg(\). An efficient
method to solve such parametric problems repeatedly for
changing parameter values A is the so-called online active-
set strategy (see Ferreau et al. (2008)); a well-established
implementation of this algorithm that we propose to
employ here is the open-source QP solver qpOASES; cf.
Ferreau et al. (2008).

In the special case where Hy is a diagonal matrix and
Dy, = I is an identity matrix (i.e., only bounds on states
and controls of the MPC problem exist) the optimal
solution z; can conveniently computed by component-wise

“clipping” of the unconstrained solution, here denoted by
2k, as it was presented in Ferreau et al. (2012):

2 = max(d,, min(zy, dy)) (3)
3.8 FExplicit derivative computation

Due to the strict positive definiteness of Hy, the derivative
of each dual function summand f; with respect to the

k

multiplier contribution [ )\2\ ) exists for all k € S, and is
+

given by (see Bertsekas and Tsitsiklis (1989), App. C for

a formal derivation)
of;" ofi T
O\ OAga1

]zz;T[E,j Crl+10 ] (4)

Observe that Equation (4) links the equivalence of primal
feasibility and stationarity of the dual function f*, justi-
fying the termination criterion in Step 5 of Algorithm 1.

Differentiating (4) once more with respect to A the non-
zero dual Hessian blocks read (cf. Frasch et al. (2013))

L/ R
eders Ok \Ohepr | Ok
aZ* az;: 1 *
=0
and
0 (i O
8)\k)\k a 8)\k 8>\k a>\k
921 7 Ozj; v
= — E
Oy Ch-r Oy k

= —Cy1P_,C}_ |- E.PE].

Here P; = Z(Z; HpZp) 27 € R™""= is an elimi-
nation matrix for the nullspace of the optimal active set
of QP,,, with a nullspace basis matrix Z}; € R % (7= —"act)
suitably chosen to project the Hessian matrix Hj onto
the active set of the (unique) optimal solution zj(\) of
QP,, where we use nae to denote the number of ac-
tive constraints. When employing a null-space QP solver
like qpOASES, Z; and a Cholesky factor R for RTR =
Z;TH x 2y, are directly available, making the computation
of P} rather cheap. In the case where Equation (3) is
used to solve the stage subproblems, P boils down to
a diagonal matrix with entries either from H, Lor 0,
depending on whether the corresponding variable bound
is inactive or active, cf. Ferreau et al. (2012).

8.4 Solution of the Newton system

The dual function f* is concave, but not strictly concave
2 o .
everywhere, so —%(/\1) is positive semi-definite. In case
—8;/{: (\") is rank-deficient, we propose to add a small
regularization term e AX for ¢ > 0 in Step 7 of Algo-
rithm 1. The resulting, possibly regularized, system system
M) AN = %()\i) therefore has unique solution, and a
Cholesky factorization M(A\) = LLT always exists. The
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fact that L possesses the same structural zero-blocks as
M(X") below the diagonal can be exploited in the fac-
torization algorithm by skipping all redundant blocks left

and below the subdiagonal block —% of each block

column 4. Utilizing this modified Cholesky decomposition
the solution of the (possibly regularized) Newton system
requires only O(Nn3) floating point operations (FLOPs).

3.5 Step size selection

The convergence of Algorithm 1 requires a globalization
strategy (Step 8 in Algorithm 1) that finds an (approxi-
mate) solution to

argmax f (N + aAN). (5)

ae(0,1]
Note that due to the piecewise quadratic nature of f*(\)
the exact solution of (5) is computationally tractable. Still,
we propose to employ an approximate line search strategy
for increased computational efficiency. It is important to
observe that, based on the fact that Newton’s method
minimizes a local quadratic model of f*, we are able to
state a lower bound for (5) based on the first primal active-
set change in search direction. Readers may convince
themselves of this by recalling that first-order kinks f*
are caused by primal active-set changes. A formal proof
can be found in Frasch et al. (2013). Step sizes « at
which an active set changes occurs are obtained for free
when employing an online active set strategy to solve each
(QPy,), cf. Ferreau et al. (2008). In cases where the solution
to (QP;) can be computed by Equation (3), points of
active-set changes can still be obtained by a ratio test
of the unconstrained and the clipped solution in each
component.

3.6 Warm-starting for series of QPs

A key advantage of the dual Newton strategy in the con-
text of nonlinear MPC and MHE are its warm-starting
capabilities. While interior point methods typically cannot
be warmstarted efficiently, and the active set of a con-
densed QP can, even in the nominal case, change quite
significantly from one sampling time to the next due to
shifted state constraints, the optimization variables A can
be shifted alongside with the sampling time in Algorithm
1. It is noteworthy that Newton’s method guarantees a 1-
step convergence in this context if the shifted A\-guess is
in the correct quadratic region, i.e., if the optimal primal
active set is consistent with the shifted one, even if the
QP data changes (e.g., through re-linearization of the
nonlinear problem in the RTI framework).

In detail, we suggest to shift from the optimal dual vector
of the QP at sampling time s, A\*, to an initial guess A" of
the subsequent QP at sampling time s + 1 as follows:

AD = Aoy Vk=1,...,N—1

A= Ay

In the nominal case, this shift ensures that A° already lies
in the correct quadratic region (and thus l-step conver-
gence) if the primal terminal stage variables zy lie in a
stable active set (e.g., given by a steady state).

4. OPEN-SOURCE SOFTWARE IMPLEMENTATION
4.1 The structure-exploiting QP solver gqpDUNES

The dual Newton strategy has been implemented in the
open-source software package qpDUNES, which is avail-
able for download at qpDUNES (2013). It is a plain, self-
contained C code written according to the C90 standard to
enlarge compatibility with embedded hardware platforms.
It comes with its own linear algebra module and efficient
data storage formats to better exploit the problem intrinsic
structures. Memory allocation is performed on a global
scale to enable reusability of memory blocks and to enable
switching between dynamic memory allocation for maxi-
mum flexibility and static memory allocation for increased
performance and deployment on embedded hardware. A
code generation routine for the linear algebra modules
tailored to the structure and dimensions of a specific
problem instance for even higher efficiency is currently
under development. Application of such code generation
techniques has lead to significant performance increases in
related areas like interior point solvers, cf. Domahidi et al.
(2012).

4.2 The ACADO Code Generation tool

The ACADO Toolkit (available at ACADO (2009-2013))
is an open source software for modeling, simulation and
control of nonlinear dynamic processes. It is particularly
suited to set up nonlinear MPC and MHE problems. It
was recently extended by the ACADO Code Generation
tool, see Houska et al. (2011), which allows to export a
lean RTT scheme tailored to a specific problem’s struc-
ture. It is essentially based on Bock’s multiple shooting
discretization, see Bock and Plitt (1984), and a Gauss-
Newton method for the solution of the resulting NLP. For
the evaluation of the dynamic system constant step-size
explicit and implicit Runge-Kutta ingrators are available,
cf. Quirynen et al. (2012). In its default configuration, the
solution of the structured quadratic subproblems is based
on an optimized condensing routine, cf. Andersson et al.
(2013) for reduction of the problem size. The dense QPs
are then solved using the online QP solver qpOASES, see
Ferreau et al. (2008). In the latest release, an alternative
interface for a direct solution of the sparse quadratic
subproblems via qpDUNES has been added, that avoids
the condensing step and to exploits the problem-inherent
sparsity structure directly as detailed above.

5. NUMERICAL TESTS

We provide a comparison of these two QP solution strate-
gies within the ACADO Code Generation tool in the
following. All simulations were performed on a 3.4GHz
Intel i7 based desktop computer, running the 64-bit version
of Ubuntu Linux 13.04. All codes are compiled with Clang
3.2.1, using the flag -03 and execution times are measured
with Linux function clock_gettime().

The first classes of benchmark problems deals with stabi-
lizing a strongly deflected chain of M masses connected
by springs after an initial perturbation, as described in
Wirsching et al. (2006) and also used for benchmarking in
Ferreau et al. (2008) and Vukov et al. (2013). One end of
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Fig. 1. Average computation time benchmark for three
chain-of-masses test cases

the chain is attached to a fixed point, while the velocity of
the other end can be controlled. Each mass is described by
its position and velocity coordinates, resulting in a total of
n, = 6M + 3 states and n, = 3 control inputs. We chose
a sampling time of Ts = 200ms and varying prediction
horizon lengths N € [10,...,100]. For integration of the
nonlinear system dynamics an implicit Gauss-Legendre
integrator of order four was used, with two integration
step per discretization interval.

In the RTT scheme each iteration is split in a preparation
and a feedback phase, which we consider separately (basic
familiarity of the reader with the RTI scheme again is
assumed here; otherwise we kindly refer to Diehl et al.
(2002)). In the condensing-based approach, the prepara-
tion phase consists of the linearization of the NLP and the
condensing routine that yields the reduced-size QP, both
of which are of significant computational effort. The time
spent in the feedback phase is dominated by the solution of
the condensed QP by qpOASES. In the sparse (qpDUNES-
based) approach, no condensing routine is needed, so the
preparation phase is dominated only by the effort for the
linearization of the NLP. Almost all time of the feedback
phase is then spent in the solution of the sparse QP.

We present average computation times for one RTI in
Figure 1 and highlight the time spent in the feedback
phase (note that the preparation phase factually has to
be shorter in the sparse QP strategy). It can be seen that
for a moderate number of states n,, the sparse approach
is already competitive on short horizon lengths, while it
clearly outperforms the condensing-based approach both
in terms of feedback time and in terms of total iteration
time on longer horizon lengths due to its lower per-
iteration computational complexity.
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Fig. 2. Maximum computation time benchmark for three
chain-of-masses test cases

A similar pattern can be observed when regarding maxi-
mum computation times over all simulation steps in Figure
2. For a small to medium number of states, the sparse
approach dominates already on relatively short horizon
lengths, both in the feedback phase and (thus even more)
in the total iteration time. Obviously the computational
efforts for integration and condensing are problem-data
independent and thus the relative gap between both ap-
proaches decreases a bit for long horizons in the consider-
ation of maximum computation times, as observed in the
test case of M = 3.

The rather large gap between average and maximum com-
putation times of qpDUNES can partly be explained by
the wrong initalization of the QP solver after the chain is
deflected; already excluding the first iteration from consid-
erations lead to significantly shorter maximum computa-
tion times. Obviously the active set method nature of the
dual Newton strategy is also reflected here.

While the first benchmark problem is purely academic
(but well scalable), we use a real-world motivated second
benchmark problem. Nonlinear MPC is used to prevent the
occurence of surge in centrifugal compressors (see Cortino-
vis et al. (2012) for details). Centrifugal compressors are
widely used in gas extraction plants or gas pipelines to
extract and transport natural gas from the source to the
consumer. As compressing is an energy-intensive process,
efficient compressor operation is desirable. This means to
operate them at working points that are close to surge, an
instable system state that can cause severe damage to the
compressor and piping system. We describe the compressor
by a nonlinear ODE model similar to the one presented
in Cortinovis et al. (2012). It comprises n, = 6 differential
states and n,, = 2 control inputs: the opening of the recycle
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Fig. 3. Average and maximum computation time benchmark for the compressor test case

valve as well as the torque of the compressor’s drive (which
are subject to physical limitations). Our nonlinear MPC
aims at tracking a given operating point in the event of a
simulated sudden closure of the compressor’s outlet valve.

The anti-surge controller is running at a sampling time
of 25ms on prediction horizons of length N as given in
Figure 3. The sparse approach performs competitively on
all considered horizon lengths, tieing for horizon lengths
around N = 30. For longer prediction horizons significant
computational savings can be achieved applying the sparse
approach. Due to the practical relevance we also include
maximum computation times in the right part of Figure
3, which essentially confirm the just-made observations.

6. CONCLUSIONS AND FUTURE WORK

We presented a new quadratic programming strategy for
an efficient solution of sparse quadratic subproblems in
and nonlinear MPC and MHE of long horizon problems.
Numerical results on several test cases showed the compet-
itiveness and and the potential of this approach in com-
parison with existing, already well-tuned methods. Cur-
rently ongoing research addresses parallelization aspects
and code-generation of the linear algebra routines.
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