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Abstract: The concept of predictive functional control is a simplified method for model based predictive 

control, which allows an implicit regulator calculation in special cases. Mostly, the concept is used for 

SISO-systems or MIMO-systems with two input and two output variables. In this paper, the theory will be 

extended for regular MIMO-systems. The concept is demonstrated by a simulation case study of a three 

tank system, whereby the functionality of the controller and a suggested anti-wind-up method is analyzed. 



1 INTRODUCTION 

A typical task of control engineering is to control systems 

with multiple inputs and multiple outputs (MIMO). Therefore 

various control methods are established, whereby special 

issues for MIMO-control occur, which may easily be handled 

in the control of systems with single inputs and single outputs 

(SISO). For instance intuitive parameterization of the 

controller and avoidance of wind-up effects may be named.  

In conventional MIMO-control theory, the design of diagonal 

controllers is very popular (see Zacher and Reuter 2009) like 

shown in fig. 1. Diagonal controllers compensate the 

influence of the proper process controllers. This approach 

works well for low-order systems; in high-order systems, the 

controller structure is not very obvious and the controller 

parameterization is not intuitive. Furthermore the integration 

of anti-wind-up strategies has to be done very carefully and at 

least in each diagonal controller. Another conventional 

method for the control of MIMO-systems is the design of 

state-space controllers (see Lunze, 2012) as shown in fig. 2. 

This concept is very often applied and anti-wind-up strategies 

are also suggested in several papers. A weakness of this 

concept is that the stationary exactness of the controlled 

variables is not given by designing only the state-space 

regulator. Also a pre-filter has to be designed to minimize the 

control error in the stationary case; if there is an error in the 

process model the pre-filter without any dynamical terms will 

not lead to stationary exactness of the controlled variables. 

Hence, an additional controller has to be designed (like the 

PI-controller in fig. 2). 

The approach of predictive functional control (PFC) is a 

simplified method of model based predictive control, in 

which it is possible to calculate the regulator implicit in some 

cases. As shown in (Richalet and O’Donavan, 2009 or Luft, 

2009), PFC becomes more and more accepted in industrial 

applications. Initially the PFC was designed for SISO-control 

or MIMO-control with two inputs and two outputs.  

In this paper we present an extended approach of PFC, which 

allows the control of MIMO-systems that have the same 

number of inputs than process states; we name these systems 

regular MIMO-systems in the following. The aim of this 

paper is not to contest existing concepts for MIMO-control or 

compare the dynamical behavior of controlled MIMO-

systems with the suggested approach; we just want to 

demonstrate, that it is very easy and intuitive to configure a 

PFC controller for regular MIMO-systems considering an 

anti-wind-up method. 

 

Fig. 1. Control of a MIMO-process with dialog controllers 

(FC12, FC21) and process controllers (FC11, FC22).  

 

Fig. 2. Control of a MIMO-process with state-space 

controller and a preceding PI-controller. 
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2 PREDICTIVE FUNCTIONAL CONTROL FOR 

REGULAR MIMO-PLANTS 

Model based predictive control (MPC) is a very common 

method of advanced control strategies. The principle of MPC 

can be explained as follows: at first, the future process 

behavior without control is predicted based on a process 

model, which is initialized by measurements or observations 

of process states. The control sequence gets optimized in 

such a way, that an objective function of the future control 

deviation (difference between set point and controlled 

process variable) will be minimized. To calculate a control 

sequence for the control of complex processes (maybe with 

constrained process values or nonlinear processes) typically a 

solver with an (maybe iterative) optimization method is used 

(see Adamy, 2009 and Dittmar 2004). In case of dealing with 

simple problems, like processes that can be described by a 

linear state-space system without any constraints, it is 

possible to calculate an analytic solution. This method of 

predictive functional control (PFC) for SISO-systems was 

presented in (Richalet, 1978), even for simple processes with 

time delay and constraints in the manipulated variable. 

Particularly the benefit of this concept is, that instead of 

solving a complex problem by an iterative optimization, 

simplified solving methods or even an analytical solution can 

be calculated , which allows also an easy implementation in 

practice. This may be the reason, why PFC is getting more 

and more accepted and applied in industrial applications (see 

Richalet and O’Donavan, 2009 or Luft, 2009). The PFC is 

described by two main characteristics to simplify the 

optimization problem, which are coincidence points and basis 

functions (Valencia-Palomo and Rossiter, 2012). The task is 

not to minimize a function of the control error in the 

complete prediction horizon (like the mean squared error) in 

this concept; only the control error at a coincidence point has 

to be minimized, so that the objective function gets 

simplified. Furthermore, basis functions of the manipulated 

variable are used for possible control actions in the prediction 

horizon, so that the solution space gets reduced by computing 

only a reduced sequence of manipulation variable.  

We focus on a process, which may be formulated as a linear 

differential equation system with a state vector  tx  and the 

vector of the manipulated variables  tu  the systems 

matrix CA  and the input matrix CB : 

     tuBtxAtx CC   (2.1) 

To transform the continuous linear differential equation 

system into a discrete-time difference equation system with 

the matrices DA  and DB  

     11  kuBkxAkx DD  (2.2) 

we apply: 

  C
TA
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D

BeAB
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1
 (2.3) 

The future process states will also be influenced by a 

disturbance on the process output: 

 

Fig. 3. Controller structure with calculation of the reference 

trajectory (2.5), the transformation of the systems equations 

(2.3), the internal model (2.2) and the control law (2.8). 

       11  kzkuBkxAkx DD  (2.4) 

The future process state has not to be predicted; for control, 

the future process states should be reached. To reduce the 

variations in manipulated variables, a dynamic behavior of 

the process states should be defined. Therefore we introduce 

a reference trajectory with the time constant Ri  for each 

process state, which describes, in which way  the control 

error between the set point iw  and the current process state 

ix  has to be minimized in future: 
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 (2.5) 

Hence, a vector of the expected values of the process states in 

the next sample is: 

        TRnRRR kxkxkxkx 1...111 21   (2.6) 

In the simplified case, we assume that the disturbance of the 

next sample will be the same as for the current one. The 

current disturbance is estimated by the difference of the 

process states and the output of an internal process model: 

       kxkxkzkz ˆ1   (2.7) 

Finally the values of the manipulated variables are calculable, 

if the inverse of DB  exits; therefore we use equation (2.7) in 

(2.4) and solve  ku : 

            kxAkxkxBku DRD 


1ˆ1
1

 (2.8) 

In doing so, the values of the controlled variables may be 

implicit calculable, if the observability and the controllability 

of the system is given, the number of the process states is 

equal to the number of the manipulated variables and the 

manipulated variables are not constrained. The structure of 

the controller is shown in fig. 3. 

Constraints in the manipulated variables lead to suboptimal 

solutions of the closed loop behavior. For handling these 
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constraints, we have to distinguish two demands. On the one 

hand, the constraints should be considered in the regulator 

calculation to get an optimal solution for the control task. On 

the other hand, wind-up effects in the controller should be 

avoided.  

If the constraints have to be considered explicit in the 

regulator calculation, an objective function has to be defined 

and the resulting optimization problem has to be solved with 

an optimization solver. The focus of this paper lies on an 

implicit regulator calculation, so that this task will not be 

considered here. Hence, we just consider the anti-wind-up 

criterion and accept suboptimal solutions for control tasks for 

constrained manipulated variables. 

Richalet suggest avoiding wind-up effects in predictive 

functional control by using the constrained manipulated 

variable instead of the prior calculated manipulated variable 

(shown in fig. 4) (Richalet, 2009). In the following 

simulation case study, we demonstrate the functionality of the 

implicit regulator calculation by predictive functional control 

for MIMO-systems. Furthermore we analyze the effect of the 

anti-wind-up method described above. 

 

Fig. 4. Neglecting constraints (above) and simplified anti-

wind-up method in predictive functional control (below). 

3 PROCESS OF A TRHEE TANK SYSTEM 

In the simulation case study, we will focus on a version of a 

three tank system (fig. 5), which is a common benchmark 

example. . The floor area for each tank i  is defined by FiA . 

The task  is to control the level ih  in each tank by adjusting  

 the water supply INQ  to tank 1,  

 the cross sectional area  12A  in the connection pipe 

from tank 1 to tank 2 (via valve position) and 

 the cross sectional area  23A  in the connection pipe 

from tank 2 to tank 3 (via valve position). 

Every tank level may be disturbed by a leakage of ZiA . In 

this section we will describe at first the physical process 

model of the system. After that, the process model will be 

linearized for using it in the controller as described above. 

 

Fig. 5. Schematic illustration of the process with tank floor 

areas FiA , the controlled variables ih , the disturbances ZiA  

the manipulated variables INQ , 12A and 23A . 

3.1 Process Model 

The change of volume V  inside a tank may be calculated by 

the balance of mass flows into inQ  and out outQ  of a tank: 

         VdttQtQthAtV outinF     (3.1) 

Hence, the derivative of the tank level h  is: 

 
       tQtQ

A
th

dt

tdh
outin

F

1  (3.2) 

The complete model of the three tank system is defined as 

 
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 (3.3) 
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Whereby the mass flow rate ZiQ  is the disturbance and the 

mass flow ijQ  rate is the mass flow from tank i to tank j. 

These mass flow rates are defined by Torricelli's law with the 

gravity g : 

   

   thgAtQ

thgAtQ

iijij

iZiZi





2

2
 (3.4) 

Appling (3.4) in equations (3.3) will result in the following 

systems model, which is used as process model in simulation: 

 
     
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 (3.5) 

3.2 Stationary Values of the manipulated variables  

For given initialization states of the tank levels 0ih  and the 

disturbances 0ZiA , we have to calculate the initialization 

values of the manipulated variables 0INQ , 120A  and 230A  

for stationary initialization ( 0ih ). These will be: 
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 (3.6) 

3.3 Linearization of the process model 

In order to linearize the nonlinear systems equations, we use 

the Taylor Series expansion of functions. Therefore we define 

operating points and the variation around these manipulation 

variables and the process states: 

   
   
   

   
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 (3.7) 

Hence, the linearized model in state-space notation is  
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For 02010  ZZ AA  and 030 ZA  the system matrices are: 
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A discrete formulation of the system is given by: 
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 (3.10) 

To transform the linear differential equation system into a 

discrete difference equation system, we apply equation (2.3). 

4 SIMULATION CASE STUDY 

For the case study a simulation scenario is defined. Therefore 

the parameters for configuration and initialization are defined 

as shown in table 1. At first, we define a step for the set 

points for each tank level simultaneously. Then we admit 

various disturbances as shown below in fig. 6. And finally we 

define new set points for each tank level again. To simplify 

the configuration of the controllers, all reference trajectories 

are defined with the same time constant. Initially we want to 

compare the systems reaction with SISO-controllers, whereby 

the coupling effects are neglected. The controller architecture 

is shown in fig. 7. 

4.1 Simulation of an unconstrained process 

Initially, we simulate unconstrained manipulated variables. 

Fig. 9 illustrates the simulation results. It is obvious, that the 

controlled variables following the desired behavior better by 

using the MIMO-controller as using the SISO-controller. The 

coupling effects of the manipulation variables and process 

states are considered in the MIMO-controller, what is 

neglected in the SISO-controllers. Hence, it is easy to 

indicate, that the consideration of the coupling effects works 

in the suggested MIMO-controller. Furthermore the dynamic 

behavior during changing set points and compensate 

disturbances of all tank levels is similar, as desired with the 

equal time constant for all reference trajectories. 
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4.2 Simulation of a constrained process 

In the simulation of the control with constrained manipulated 

variables, we focus four control approaches:  

 SISO-controllers without considering constraints 

 SISO-controllers considering constraints  

 MIMO-controller without considering constraints  

 MIMO-controller considering the constraints 

The constraints are listed in table 2. Fig. 10 shows the tank 

levels in the simulations scenario for the various controllers. 

At first, it is not easy to evaluate the work of each controller. 

Hence, we compare the simulations results by the sum of the 

control errors: 

     



3

1

,,

i

XiWi ththte  (4.1) 

and also by the cumulative sum of the absolute control error 

     




t i

XiWi ththte
3

1

,,
~  (4.2) 

The results are shown in fig. 8. Especially by looking at the 

cumulative sum of the absolute control error, it is obvious, 

that the wind-up effects are avoided in the suggested way. 

The results of the MIMO-controller neglecting coupling 

effects are already better than the SISO-controllers 

considering them. Finally it may be noted, that the anti-wind-

up method for the MIMO-controller works in the desired way 

and improves the dynamic behavior of controlled variables. 

5 CONCLUSIONS 

We presented an approach for the implicit regulator 

calculation for MIMO-systems applying model predictive 

control. The functionality of the suggested methods was 

demonstrated at a three tank system with coupled process 

states. A weakness of this concept is, that constraints may not 

be considered explicit in the regulator calculation (but this is 

also not possible in conventional approaches without using 

any solvers). Furthermore the approach is just useable in 

processes where the number of the controlled process states is 

equal to the number of manipulated variables. Nevertheless, 

the proposed approach seems to be a very transparent and 

easy method to design a MIMO-controller. Hence we close 

the paper with a statement of Richalet: to predictive 

functional control: “it is easy to understand, to implement, to 

tune”. 

Table 1.  Model parameters 

 tank 1 tank 2 tank 3 

FiA  1m 2m 1m 

ZiA  0m² 0m² 0.1m² 

0ih  0.5m 0.5m 0.5m 

0u  0INQ =312l/sec 120A =0.1m² 230A = 0.1m² 

Table 2.  Constraints of the manipulated variables 

 tank 1 tank 2 tank 3 

FiA  412l/sec ∞ ∞ 

0ih  0 0.075m² 0.075m² 

 

 

Fig. 6. Defined simulation scenario with set points (above) 

and disturbances (below). 

 

Fig. 7. Structure of control approach with SISO-controllers 

(right) and the MIMO-controller (left). 

 

Fig. 8. Comparing the simulations with constrained 

manipulated variables, sum of control error (above) and 

cumulative control errors (below) of all tanks. 
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Fig. 9. Simulations results of the unconstrained scenario for each tank level. In contrast to the SISO-controllers, the MIMO-

controller considers the coupling effects, what leads to a better dynamic behaviour of the controlled variables. 

 

Fig. 10. Simulations results of the constrained scenario for each tank level. Caused on the constraints it is not possible to reach 

a stationary exactness in all cases. To compare the simulations results in a more objective way, fig. 8 should be focused. 
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