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Abstract: In this work the stability properties of a nonlinear partial differential equation (PDE) with
state-dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff,
and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms of coefficient
functions, the PDE converges to a stationary solution given by (fixed) boundary conditions that make
physical sense. We illustrate the results with numerical simulations.
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1. INTRODUCTION

Freezing is an essential part of shelf life extension of foodstuff.
Especially for rapidly spoiling food, like e.g. fish, reliable and
gentle freezing is essential in order to guarantee a safe and
good product. Thus the physical process of freezing gets more
and more attention in the scientific community and various
mathematical tools describing heat transfer phenomena get
applied. These tools can also be applied to other applications
than freezing fish; in fact they can be applied to a whole range
of physical processes where phase change occurs.

As available computational power grows, the possibilities of
simulating complex heat exchange processes modeled by PDEs
are enhanced as well. Even if finding an explicit analytical
solution to the PDE is hard or impossible, simulations can pro-
vide qualitative and quantitative results. The process of freez-
ing foodstuff is described in a whole range of publications,
where Pham (2006b) and Pham (2006a) give an overview over
how to model heat and mass transfer in frozen foods. Woinet
et al. (1998) compare experimental and theoretical results of
freezing with a simplified heat equation model. Costa et al.
(1997) present numerical results for a latent heat thermal en-
ergy storage system modeled by a diffusion equation. Cleland
et al. (1987) give experimental data for freezing and thawing
of multi-dimensional objects modeled by finite element tech-
niques.

An example of a PDE model describing freezing of a specific
material (fish species), taking the phenomenon of thermal ar-
rest caused by latent heat of fusion into account, was introduced
in Backi and Gravdahl (2013). The parameters have to be state-
(i.e. temperature)-dependent because their values change sig-
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nificantly not just above and below, but also around the freezing
point according to the latent heat of fusion principle. In this
case, the method used to model the latent heat of fusion is the
so-called apparent heat capacity method, as introduced e.g. in
Muhieddine et al. (2008). In this paper, we wish to study the
stability properties of this model.

The model we consider is closely related to Burgers’ equation,

ut(t,x) = εuxx(t,x)+u(t,x)ux(t,x)

where subscript refers to partial derivative wrt. the argument,
e.g., ut(t,x)≡ ∂u(t,x)/∂ t.

This PDE is commonly used to describe turbulent flows and
is closely related to the Navier-Stokes equations. The Burgers’
equation is one of the very few nonlinear partial differential
equations that can be solved exactly (for a restricted set of initial
functions only, and for constant parameter ε). In the context
of gas dynamics, Hopf (1950) and Cole (1951) independently
showed that this equation can be transformed into the linear
diffusion equation and solved exactly for arbitrary initial con-
ditions (but again for constant ε). The study of the general
properties of the Burgers’ equation has motivated considerable
attention due to its applications in fields as diverse as number
theory, gas dynamics (Korshunova and Rozanova, 2009), heat
conduction (Hills, 2006), elasticity (Sugimoto and Kakutani,
1985), etc.

The stability properties of the Burgers’ equation with constant
and time-varying parameters have been studied previously.
Krstic (1999) presents stability results for both viscous and
inviscid Burgers’ equation by defining control laws satisfying
a Lyapunov analysis in the L2-norm. Balogh and Krstic (2000)
introduce H1-stability for the Burgers’ equation with nonlinear
boundary feedback. Krstic et al. (2008) show results in nonlin-
ear stabilization of shock-like unstable equilibria in the viscous
Burgers’ equation, whereas Krstic et al. (2009) go a step further
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and present results for the same problem in trajectory genera-
tion, tracking and observer design.

However, as explained above, the PDE considered here repre-
sents a freezing case with phase transition. This change in phase
is the reason for introducing state-dependent parameters due to
the fact that the physical properties of the material to be frozen
change significantly after crossing the freezing point.

This means that the parameter ε depends on the state variable
itself, namely ε = ε (u(t,x)), which is a more challenging case
than the situations outlined above. This problem was initially
introduced in Backi and Gravdahl (2013) for an application that
describes the freezing of fish in a vertical plate freezer. Inspired
by this problem, the present paper attempts to investigate the
stability properties of the Burgers’ equation with specific func-
tional forms of ε and its derivatives.

As this paper deals with nonconstant, state-dependent parame-
ters, the earlier described transformations from Burgers’ equa-
tion to linear heat equation cannot be applied. Furthermore,
the system considered in Backi and Gravdahl (2013) is quite
limited in actuation, meaning that only limited Dirichlet and
Neumann boundary control can be applied. Strictly speaking
the Dirichlet boundary condition is equal to the temperature of
the cooling medium, whereas the Neumann boundary condition
represents heat flux through the boundary which is proportional
to the difference between the temperature at the boundary and
the temperature of the cooling medium. The main contribution
of the paper is to generalize Backi and Gravdahl (2013) and
show that under certain assumptions, the version of Burgers’
equation we consider converges to a stationary solution deter-
mined by (constant) boundary conditions.

The rest of the paper is organized as follows. First, Section
2 provides a brief overview of previous results. Section 3 de-
scribes the problem setting of Backi and Gravdahl (2013). Sec-
tion 4 provides the main stability results, whereupon Section 5
shows a few numerical examples that highlight the results in the
previous section. Finally, Section 6 provides some concluding
remarks.

Notation: We write fx for the (partial) derivative of the function
f with respect to x. Moreover, let L2 ([0,1]) denote the space of
real-valued, square integrable functions f defined on [0,1] with
finite L2-norm; ‖ f‖2 =

∫ 1
0 f (x)2dx < ∞. The space H1([0,1])

is the subspace of L2([0,1]) consisting of functions g with
finite H1-norm; ‖g‖H1 = ‖g‖2 + ‖gx‖2 < ∞. In this paper we
deal with functions w = w(t,x) of time t and space x (the
spatial variable). To ease notation we frequently leave out the
dependency on t and/or x, e.g., ‖w(t)‖ is the L2-norm of the
function x 7→ w(t)(x) = w(t,x).

2. PRELIMINARIES

First of all the diffusion equation for a constant parameter ε

is introduced. Let u = u(t,x) be a function of two variables,
time t ∈ R+ and space x. For simplicity and without loss
of generality, only one spatial dimension x ∈ [0,L] ⊂ R is
considered.

The function u must satisfy a partial differential equation of the
form

ut = [εux]x , u(0,x) =U(x), (1)
where ε is a parameter and U(x) denotes an initial condition.
For the problem to be well posed, u must also satisfy various

relevant boundary conditions. With constant ε , the diffusion
equation (1) can be rewritten as the linear heat equation

ut = εuxx. (2)
The stability properties of (1) and thus of (2) have been studied
extensively in many publications, see for example Krstic and
Smyshlyaev (2008). In particular, it is known that the heat
equation is stable in the sense that u(t,x)→ ū(x) for any ε > 0,
where ū(x) describes the steady-state solution.

If the parameter ε depends on the spatial variable x, i.e. ε =
ε (x), we obtain the slightly more complicated expression for
(1)

ut = εxux + εuxx. (3)
This may be handled by means of so-called gauge transfor-
mations, which eliminate the spatial dependency of ε (x), see
e.g., Smyshlyaev and Krstic (2010). In addition, the spatial
derivative of the parameter, εx, vanishes after transforming the
system; hence system (3) can be transformed into system (2)
for which the stability properties mentioned above are known
to hold.

Similar techniques can be applied to Burgers’ equation. Heredero
et al. (1999) showed that the standard Burgers’ equation with
parameters set to 1,

ut = uxx +2uux (4)
can be transformed into the Potential Burgers’ equation by
using the transformation u = vx, resulting in

vtx = vxxx +2vxvxx.

After integrating this expression we obtain
vt = vxx + v2

x
which represents the potential form of the Burgers’ equation.
After introducing the transformation w = ev the Potential Burg-
ers’ equation then boils down to the linear heat equation, as
outlined above.

Finally, if the coefficient ε is a known function of time, Burgers’
equation becomes

ut = ε(t)uxx +uux (5)
For this case, it was shown in Sophocleous (2004) that a
time-dependent gauge transformation exists that transforms the
nonlinear PDE into a linear one.

In the sequel, we shall refer to the following two well-known
lemmas taken from Krstic and Smyshlyaev (2008).
Lemma 1. (Poincaré’s Inequality) For any continuously differ-
entiable function ω = ω(z), the following inequalities hold:

‖ω‖2 ≤ 2ω(0)2 +4‖ωz‖2,

‖ω‖2 ≤ 2ω(1)2 +4‖ωz‖2.

Lemma 2. (Agmon’s Inequality) For any function ω = ω(t,x)
with ω(t) ∈ H1([0,1]), the following inequalities hold:

max
x∈[0,1]

|ω(t,x)|2 ≤ω(0)2 +2‖ω(t)‖‖ωx(t)‖,

max
x∈[0,1]

|ω(t,x)|2 ≤ω(1)2 +2‖ω(t)‖‖ωx(t)‖.

3. PROBLEM FORMULATION

In the case considered in the present paper and Backi and
Gravdahl (2013), a parabolic PDE is formulated in the state
variable T representing temperature, as follows:
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ρ (T )c(T )Tt = [λ (T )Tx]x
subject to Dirichlet boundary conditions

T (t,0) = T (t,L) = T̄ (6)
where ρ (T ) denotes the density, c(T ) indicates the specific
heat capacity at constant pressure and λ (T ) describes the
thermal conductivity of the medium to be frozen. Note that
ρ (T ), c(T ) and λ (T ) all depend on the temperature T . The
boundary condition T̄ is given by the refrigerant temperature at
x = 0 and x = L. Since λ depends on T , differentiation yields

λx (T ) = λT (T )Tx

and thus
ρ (T )c(T )Tt = λT (T )T 2

x +λ (T )Txx. (7)

Figure 1 displays a qualitative sketch of parameter variations
in λ (T ) and c(T ) over T . Note that the variation in ρ(T )
over T is of minor consequence and therefore negligible, i.e.
ρ(T ) = const.

  

  

  

    

     

Fig. 1. Parameter variations in λ and c over T

To keep notation simple, two new parameters can be introduced
as

k (T ) =
λ (T )

ρ (T )c(T )
(8)

and

κ (T ) =
λT (T )

ρ (T )c(T )
. (9)

This leads to a rewritten form of (7):
Tt =κ (T )T 2

x + k (T )Txx, (10)
which is still subject to the boundary conditions defined in (6).

Here we remark that differentiating (10) with respect to x yields

Ttx =
[
κT 2

x + kTxx
]

x

= κT T 3
x +2κTxTxx + kT TxTxx + k Txxx

= κT T 3
x +2TxTxx

(
κ +

kT

2

)
+ k Txxx. (11)

After introducing a change of variable ϕ = Tx the following
equation is obtained:

ϕt = κT ϕ
3 +2ϕϕx

(
κ +

kT

2

)
+ k ϕxx (12)

which, apart from the additional term κT ϕ3, is similar to the
standard Burgers’ equation in (4). As (10) is closely related to
the Potential Burgers’ equation, it will thus be referred to as a
Potential Burgers’-like equation.

As mentioned, the stability properties of the Burgers’ equation
have been subject to many publications. However, these results
are not applicable to (12) due to the fact that an additional
term ϕ3 is present and also that the effect of the non-constant
parameters κT , κ , kT and k on the stability properties of the
overall PDE are unknown. This motivates the subsequent in-
vestigation.

4. STABILITY ANALYSIS

The PDE (10) in the previous section is specific for the freezing
application. In this section, however, we choose to take a more
general view of the problem and to indicate this, we follow
the general notation from the Introduction and change the state
variable from T to u.

In general, the function u is the sum of a transient part w(t,x)
and a stationary part ū(x), i.e. u(x, t) = w(x, t) + ū(x). In the
present case we have ū(x) = const due to the symmetric bound-
ary conditions (6); for the general case, refer to Kreiss and
Kreiss (1986). We normalize the spatial coordinate to belong
to [0,1] and, with slight abuse of notation, let k = k (w+ ū) and
κ = κ (w+ ū). With these conventions, we study the following
equivalent form of (10):

wt =
κ

L2 w2
x +

k
L2 wxx (13a)

with boundary conditions

w(t,0) = w(t,1) = 0. (13b)

Moreover, we will only be interested in continuously differ-
entiable solutions with finite H1-norm. Although the question
of existence of such solutions is an important issue from a
stringent mathematical point of view, we will not address that
here. However, we note that our application studies indicate that
at least some solutions of this form exist. With this remark we
proceed to state the following result.
Lemma 3. Let w satisfy (13). Suppose that there exists con-
stants β > α > 0 such that α ≤ k ≤ β . If

(κ + ku)
2 < 2

(
κku− kuuk+ k2

u
)

(14a)

kuuk < k2
u +κku (14b)

then ‖w(t)‖→ 0 as t→ ∞.

Proof. Define the Lyapunov candidate V by

V =

1∫
0

1
k

w2 dx (15)

and note that

V ≥ 1
β
‖w(t)‖2 (16)

since k ≤ β by assumption.

Differentiating (15) with respect to time leads to
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V̇ =

1∫
0

2
k

wwt −
ku

k2 wtw2 dx

=
1
L2

1∫
0

[
2κ

k
ww2

x +2 wwxx−
κku

k2 w2w2
x−

ku

k
w2wxx

]
dx.

(17)
Integrating the term wwxx by parts yields

1∫
0

wwxx dx =[wwx]
1
0−

1∫
0

w2
x dx (18)

with [wwx]
1
0 = 0 due to (13b). Furthermore, by integrating the

term ku
k w2wxx by parts as well, we arrive at

1∫
0

ku

k
w2wxx dx =

[
ku

k
w2wx

]1

0
−2

1∫
0

ku

k
ww2

x dx

−
1∫

0

kuuk− k2
u

k2 w2w2
x dx.

(19)

Then, after inserting (18) and (19) into (17) and collecting terms
the following expression is obtained

V̇ =
1
L2

1∫
0

−w2
x

k

[
aw2 +bw+ c

]
dx (20)

where we have used the shorthand

a =
κku− kuuk+ k2

u

k
(21a)

b =−2(κ + k) (21b)
c =2k. (21c)

Now, if (14) hold, we see that a > 0 and b2− 4ac < 0; hence
there exists a lower bound 0<K for aw2+bw+c, and therefore

V̇ ≤− K
L2

1∫
0

1
k

w2
x dx. (22)

Moreover, using that α ≤ k followed by Poincaré’s Inequality
(Lemma 1), we obtain

V̇ ≤− K
L2α

1∫
0

w2
x dx≤− K

4L2α

1∫
0

w2 dx =− K
4L2α

‖w(t)‖2

(23)
which, together with (16) and (Henry, 1981, Theorem 4.1.4),
proves the lemma.

Remark: Stability for Neumann boundary conditions can be
investigated in much the same fashion as above. Indeed, the
main difference boils down to the term [wwx]

1
0 in (18), which is

now not guaranteed to hold. In order for Lemma 3 to hold for
Neumann boundary conditions as well, we would thus need the
extra condition

[w(t,1)wx (t,1)−w(t,0)wx (t,0)]
!
≤ 0. (24)

We now extend Lemma 3 to the H1-case.
Lemma 4. Suppose that the assumptions of Lemma 3 hold true.
If moreover

2kκu− kuκ ≤ 0 (25a)
4κ + ku ≤ 0 (25b)
wx(t,1)wxx(t,1)−wx(t,0)wxx(t,0)≤ 0 (25c)

then ‖w(t)‖H1 → 0 as t→ ∞.

Proof. Define the Lyapunov candidate Λ by

Λ =V1 +V =

1∫
0

1
k

w2
x dx+V (26)

where V denotes the Lyapunov function defined by (15).

Note that

Λ≥ 1
β
‖w(t)‖H1 (27)

since k ≤ β by assumption.

The time derivative of V1 is

V̇1 =
∫ 1

0

2
k

wxwtx dx− ku

k2 wtw2
x . (28)

To obtain an expression for wtx in terms of spatial derivatives of
w only, the derivative of (13) with respect to x is calculated and
one obtains

wtx =
1
L2

(
κuw3

x +2κwxwxx + kuwxwxx + kwxxx

)
. (29)

Combining (29) and (28) gives

V̇1 =
1
L2

1∫
0

(2κu

k
w4

x +
4κ +2ku

k
w2

xwxx +2wxwxxx

− κku

k2 w4
x−

ku

k
w2

xwxx

)
dx.

(30)

Integrating the term 2wxwxxx by parts yields
1∫

0

2 wxwxxx dx = [2 wxwxx]
1
0−2

1∫
0

w2
xx dx

and putting this into (30) one obtains

V̇1 =
1
L2

1∫
0

[
2kκu− kuκ

k2 w4
x−2w2

xx +
4κ + ku

k
w2

xwxx

]
dx

+
1
L2 [2 wxwxx]

1
0

=
1
L2

1∫
0

[
2kκu− kuκ

k2 w4
x−2w2

xx

]
dx

+
1
L2

∫ 1

0

4κ + ku

k
w2

x dwx +
1
L2 [2 wxwxx]

1
0 .

Using (25) and Poincaré’s Inequality one receives

V̇1 ≤−
2
L2

1∫
0

w2
xx dx≤− 2

L2

1∫
0

w2
x dx.

Hence by (23) and with C = min{ K
4L2α

, 2
L2 } > 0 it can be

concluded that
Λ̇≤−C‖w(t)‖H1 ,

which, together with (27) and (Henry, 1981, Theorem 4.1.4),
proves the lemma.

Together with Agmon’s Inequality, Lemma 4 now immediately
implies the following main result of the paper.
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Theorem 5. Let w satisfy (13). Suppose that the assumptions
of Lemma 4 hold true. Then w(t,x) → 0 as t → ∞, hence
u(t,x)→ ū(x) = const as t→ ∞.

5. SIMULATION EXAMPLES

We now return to the original freezing application discussed in
Section 3. Simulations were conducted for different boundary
conditions (BCs) and initial conditions (ICs) for the purpose of
illustrating the theoretical developments in Section 4.

Strictly speaking, the assumptions (25) are not satisfied by
the freezing application in the minute region from TF +∆T to
where c becomes constant in Figure 1. However, the assump-
tions (25) are conservative and can be relaxed by adding some
technical adjustments to the proof of Lemma 4. These adjust-
ments would be sufficient to prove formally that the freezing
application is indeed stable, but would make the presentation
and arguments in the previous section much more cumbersome
and are therefore left out.

The simulation parameters for an actual physical freezing pro-
cess have been used and can be found in Backi and Grav-
dahl (2013). The PDE has been discretized in the spatial do-
main only, using second order central differences and first or-
der backward differences. This approach resulted in a set of
coupled ODEs representing a spatial resolution of 1 · 10−3 m
(N = 100 discretization steps).
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Fig. 2. Symmetric BCs and evenly distributed IC

In Figure 2 a case with BCs T (t,0) = T (t,0.1) = 235 K
and an evenly distributed IC T (0,x)) = 283 K is shown. The
figure shows how a ‘flattened triangular’ profile is prevalent
in the temperature distribution until about 4000 s due to the
removal of latent heat around the freezing point. Subsequently,
the temperature profile converges smoothly towards a constant
level of 235 K, the stationary solution given in Theorem 5.

To illustrate the conservativeness of Theorem 5, we now con-
sider cases not covered by it, but where the PDE exhibits ex-
actly the same stable behavior.

Figure 3 shows a more general case with asymmetric BCs
T (t,0) = 250 K and T (t,0.1) = 235 K and evenly distributed
IC T (0,x) = 283 K. In comparison to the first case it takes
longer to observe the convergence trend towards the steady
state solution but the solution is clearly stable in accordance
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Fig. 3. Asymmetric BCs and evenly distributed IC

with Theorem 5. The reason for the slower convergence lies
in the fact that T (t,0) is larger than in the first case, resulting
in a smaller temperature difference between the initial and the
boundary temperature at x = 0 m.
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Fig. 4. Asymmetric BCs and noisy IC

In Figure 4 a simulation with asymmetric BCs T (t,0) = 275 K
and T (t,0.1) = 235 K as well as noisy IC can be seen. Note
that the BCs at x = 0 m and at x = 0.1 m are above and below
the freezing point (TF = 272 K), respectively. The noisy IC
is represented by a sum of sinusoidal functions with different
frequencies and added white gaussian noise. Converging to the
steady state solution takes excessively longer than for the case
demonstrated in Figure 3, due to the much larger boundary
temperature T (t,0) and the yet smaller difference between the
initial and the boundary temperature at x = 0 m.

Figure 5 shows the behaviour in the first 50 seconds for the case
shown in Figure 4. This shall illustrate the converging character
even for noisy IC. As can be seen, the high frequency peaks
caused by gaussian white noise get flattened out quite quickly,
whereas the lower frequency sinusoidals need more time to be
flattened out.
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Fig. 5. Asymmetric BCs and noisy IC - 0 to 50 s

6. CONCLUSION

In this paper a stability investigation of a partial differential
equation derived from the diffusion equation has been per-
formed. The PDE has similarities to the potential form of the
Burgers’ equation and thus to the Burgers’ equation itself.
However, gauge transformations like the ones used in previous
literature could not immediately be applied due to the presence
of state-dependent coefficient functions. Therefore, we first
showed stability in the sense of convergence in norm, and then
in terms of absolute value of the transient part of the solution.
This came at the price of some conservativeness, as we were
forced to impose restrictions on derivatives and signs of the
coefficient functions, see (25).

The simulation examples presented in Section 5 show that
the final temperature distribution converges to the steady state
solution in all cases, further indicating conservativeness of the
analysis.
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