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Abstract: Rapid process diagnosis is a very challenging task for the manufacturing industries
in order to maintain the product quality and to reduce the production cost. Process diagnosis
became a complex and time-consuming task in semiconductor industries due to the big
variability of the products, the long cycle time, the re-entrant flow of the process, the restricted
number of controlled lots, and the huge amount of collected data. In order to cope with the
complexity and the time-consuming problems, a rapid qualitative diagnosis method based on
process history is proposed in this paper. Logic programming is used to describe the algorithm.
A prototype has been developed for the defectivity workshop in St-microelectronics and the
result shows strong defect source identification and a significant reduction of diagnosis time.

1. INTRODUCTION

Rapid process diagnosis in manufacturing industries con-
sists on quickly detecting the anomalies and identifying
their root cause in the process.

Process diagnosis approaches are classified into two classes:
Model-based approaches where a priory knowledge of the
process is needed, and process history based approaches
where only historical process data is needed. See Venkata-
subramanian et al. [2003¢c] and Venkatasubramanian et al.
[2003a]. Fig. 1 illustrates the different classes of diagnostic
methods.

Based on the input data, methods in process history
based approach could be classified into two categories:
Quantitative methods such as the expert systems and
trend modeling methods, and qualitative methods that are
classified as non-statistical or statistical methods. Neural
networks are an important class of non-statistical classi-
fiers while Principal component analysis (PCA), partial
least squares (PLS), support vector machines (SVM), and
statistical pattern classifiers form a major component of
statistical feature extraction methods. See Thieullen et al.
[2012]. A comparative study of these methods is reported
in Venkatasubramanian et al. [2003b] where the authors
conclude that no single method has all desirable features.
Semiconductor manufacturing line is a high-mix and low
value manufacturing system where more than two hundred
products can be concurrently run. The re-entrant flow of
the process and the high number of operations increase
the cycle time of the products to more than three months.
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Fig. 1. Classification of diagnostic methods

Terabytes of data are collected every day and stored in
databases for the analysis. Products are made in lots of
25 wafers that travel through cluster machines where the
wafers are processed simultaneously. Samples of lots are
controlled following the control plan during the process
while a test is performed at the end on all released lots.

Model-based diagnosis approaches in high-mix manufac-
turing plant such as semiconductor are limited at the
priory knowledge of the new products process. However,
a variety of diagnosis approaches based on process his-
tory have been developed for the process control. Most of
these diagnosis approaches were treating the root cause
identification of yield loss event. The proposed methods
correlate statistically the end of line control data with the
process history data in order to highlight the process step
which may cause the yield loss. Yield diagnosis methods
are reviewed in Milor [2013]. The insufficient number of
controlled lots at the inline control and the long cycle time
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of products to arrive at the end of line control remain the
limitations of quantitative diagnosis approaches.

In order to respond to the need of process control in high-
mix manufacturing plants, this paper proposes a qualita-
tive process diagnosis method based on the inline control
data, to quickly identify the source of defects detected
on the controlled lots. At this end, data to be analyzed
is bounded by two process horizons: Tools Horizon and
Analysis Horizons. Commonality of impacted lots in these
horizons aims to highlight the tool most likely to be the
source of defect. A prototype has been developed for the
defectivity workshop in St-microelectronics in France and
is used for the process diagnosis.

This paper is structured as follows. Section 2 describes
the problem and lists the desirable characteristics of the
diagnosis method. Section 3 reviews the diagnosis methods
developed in semiconductor manufacturing industries and
discusses their limitation. Section 4 shows how the diagno-
sis can be rapid and efficient. Section 5 discusses the result
of the prototype test comparing to the existing method
and section 6 concludes the paper with recommendations
for further researches.

2. PROBLEM STATEMENT

To ensure the performance of the tools as well as the
process line, two sampling strategies of lots are used:
The first one is the Start Sampling Strategy where lots
are selected at the beginning of the process and will be
controlled following the control plan until the end of the
manufacturing line. The second one is the smart sampling
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Fig. 2. Inline process monitoring

strategy which has been introduced to the system in order
to reduce the number of controlled lots without any impact
on the tools monitoring. See Dauzére-Péres et al. [2010].
Since control step does not detect all the defects, a set of

4341

covered tools is defined for each control step throughout
the control plan to guarantee all defects detection.
During the control, lots are classified as impacted or non-
impacted lots. Whenever an impacted lot is detected, en-
gineers are required to identify the defects source. Based
on their business knowledge, engineers identify a list of
suspected tools. Analysis of the historic process data of
these tools aims to select similar lots for the control in
order to confirm or reject the analyzed tools. This task
will be repeated for all suspected tools which will increase
the analysis time to more than seven days in some cases.
An overview of the inline process monitoring is illustrated
in Fig. 2.

Identification of defects source while the plant is still
operating can help avoid more impacted lots and reduce
productivity loss. Furthermore, a set of desirable char-
acteristics of the diagnostic system is presented in the
following.

2.1 Quick analysis

Reducing analysis time is challenging for the industries in
order to quickly stop producing impacted lots. To prove
the impact of analysis time on the number of impacted
lots, we define:

TC" The time for lot to arrive to control step.

T A: The analysis time to identify defects source.

T Hn: The throughput of tooln.

The lots processed by tooln after the impacted lot are most
probably impacted. The number of these lots is calculated
as follows:

TC+TA

N = 1
umberoflots THn (1)

TC and T Hn are process dependent variables that are not
modifiable. According to (1), the number of lots processed
during an abnormal event in the process depends to the
analysis time T A.

2.2 Identification of multiple defects source

The ability to identify multiple defects sources is an
important but a difficult requirement for industries that
are characterized by the re-entrant flow of the process.
Defects diagnosis is more complex in such industries when
the defects are generated by a combination of tools.

2.8 Classification error estimation

The defect diagnosis of impacted lots takes into account
the defects classes. A misclassification of multiple defects
classes on the same impacted lot causes a false diagnosis
result.

2.4 Adaptability

More than two hundred products can be concurrently run
in semiconductor plants. Process operating conditions can
change due to changing the product and also production
quantities. The process diagnosis should be adaptable to
changes and able to identify the defect source of different
products.



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2.5 Data Extraction

In worldwide industries, process data are collected every
day and stored in several databases. Therefore, two factors
need to be considered by the process diagnosis method:
First, the huge amount of data that has a direct impact
on the extraction time. Second, the different format of data
that has to be analyzed differently.

The challenge in our work is to develop a diagnosis method
respecting the desirable characteristics in order to quickly
identify the defects source and to stop producing impacted
lots.

3. LITERATURE REVIEW

Tool Commonality Analysis (TCA) is believed to be an
effective approach to identify defects source for yield di-
agnosis. Many successful applications of TCA has been
reported in Langford et al. [2000] and Malinaric et al.
[2000].

The formal term of TCA for semiconductor manufacturing
yield diagnosis is first proposed by Kong [2002] where the
author discusses and summarizes the critical elements of
successful TCA, including sample size selection, raw data
classification, statistical analysis, time series and analysis
of tools with multiple entry points within the same process
flow. Various researches of defects source identification
based on TCA have been reported in Chen and Fan [2012],
Kupp et al. [2011], and Hsu et al. [2012].

TCA methodologies apply statistical methods to compare
the behaviors of each tool during the process of impacted
and non-impacted lots and highlights the tool having dif-
ferent behavior during the process. The efficiency of these
methods requires a large population of control data which
is not found in case of defectivity control since smart
sampling strategies are applied to select lots for inspection.
When the defects on the wafer produces spatial pat-
terns, it is usually a clue for the identification of defect
source. Therefore, defect pattern recognition was the main
topic of many studies during these last twenty years in
semiconductor fabrication. Chen and Liu [2000] use the
neural-network approach to recognize defect spatial pat-
tern. Yuan and Kuo [2008] use a model-based clustering
via Bayesian inference for detecting defect patterns. Li and
Huang [2009] used a hybrid approach that integrates the
Self-Organizing Map and Support Vector Machine while
Ooi et al. [2013] generate in their system the Alternating
Decision Tree (ADTree) that achieve pattern recognition.
These methods provide information about the defect but
do not indicate how to identify the source of these defects.
Close to our study, authors in Shindo et al. [1997] and
Shindo et al. [1999] propose a methodology for identifying
the source of defects using defect type Pareto. By grouping
a class of defect with the killer class, their result show that
it is possible to guess the potential source of the excursion
and prioritize the problem fixing procedure. Pepper et al.
[2005] propose a classification scheme based on the optical
attributes of inline, low resolution images in order to
separate killer defects from non-killer ones. This allows
lots to be automatically flagged and accelerated for further
analysis. Munga et al. [2011] used the indicators of the
smart sampling to provide in real time the number of lots
potentially impacted in order to minimize yield losses.

In this paper, we draw our inspiration from these previous
research works to develop a real time diagnosis system
based on inline defectivity control.

4. APPROACH OVERVIEW

Terabytes of process data are collected every day and
stored for the process analysis. Thus, analysis data should
be bounded in order to reduce the diagnosis time. At
this end, two horizons are defined: the first one is the
set of tools to be analyzed and the second one is the
manufacturing period of each tool to be analyzed. Process
data and control data of the selected tools are collected
from several databases. Studying the lots and the control
data allow identifying more impacted lots that are similar
in term of process. Intersection of the sets of tools that
processed these impacted lots provide the set of suspected
tools while intersection of the sets of process chambers that
processed the impacted wafers provide the set of suspected
chambers. The chart of Fig. 3 illustrates the algorithm of
the proposed approach.

( Impacted Lot )
.

Identifying tools horizon

.

Identifying Analysis horizons
¥ ¥
Cuollecting control data ‘

Collecting process data

|

Selecting similar lots

'

Identification of suspected tools

!

Identification of suspected
chambers

( Defect source identification )

Fig. 3. Diagnosis approach of an impacted lot

4.1 Methodology Description

Tools horizon T H is the set of tools to be analyzed while
analyses horizon AH is a tool-specific horizon defined as
the manufacturing period of the process to be analyzed. To
explain the tools horizon, we use the example illustrated
in Fig. 4. Only tooll, tool2, and tool3 are covered by
the defectivity control step, thus defects detected on lot
L1 are made by one of these three tools where TH =
{tool1,tool2,tool3}.
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Fig. 4. Process flow of the impacted lot L1
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Based on this example, we introduce the activities of tools
in Fig. 5 to explain the analysis horizons. Each tool has
its own limit and its own counter. Lots LA and LE are
selected by the counter of tooll while LF and L1 are
selected by the counter of tool2 and lots LN and LB are
selected by the counter tool3 for the defectivity control.
Impacted lots are in red, non-impacted lots are in gray
while lots in white are not controlled. Each tool in TH

Tool 1 (fimit = 4) Tool 2 (limit = 4) [ Tool 3 (limit =5) | Control step

Lot Counter Lot Counter Lot Counter LA

LA 4 LM 3 LE

LM i1 LF 4 Lo 1 (I3

LD 3 Lo 2 Lc 3 -
1B 5

Fig. 5. Process tools activities and control

could be the source of defects. Thus, AH of tooli is defined
as the interval between the process time of the last non-
impacted lot on the tooli and the process time of the first
impacted one.

In the analysis case of tooll, lot LA is classified as non-
impacted lot in the defectivity control. LA is the last
non-impacted lot before L1, it means that tooll is not
generating defects during the process of LA. Thus, AH!°!
is the interval time between LA and L1. LF selected by the
counter of tool2 is classified non-impacted in the control
step while L1 and LN are classified as impacted lots.
AH"°2 ig the interval time between LF and L1. tool3
processed the non-impacted lot LB before L1. Therefore,
AH? is the interval time between LB and L1.

Lots processed in these analysis horizons in this example
are LM ,LC,LO,LN,LF LB, and L1 . Synchronizing these
lots with the control data provides a list of impacted lots
that are similar to L1.

In the given example, the set of impacted lots contain
now two lots: L1 and LN. LN has not been processed on
tooll while it has been processed before L1 in the analysis
horizon of tool2 and it has been processed out of analysis
horizon of tool3. Noting that on tool3, two non-impacted
lots LB and LF are processed after LN and before L1.
Therefore, tooll and tool3 are removed from the set of
suspected tools and tool2 that processed LN and L1 in the
same analysis horizon, is the tool that generated defects.

To generalize the above interpretation, the following nota-
tions are introduced:

La: Lot to be analyzed.

LIM: Set of impacted lots.

LIMH: Set of impacted lots in the analyzed horizons.

TSUS: Set of suspected tools.

T(Li): Set of tools processed the lot Li.

TH: Tools horizon.

AH?TI: Analysis horizon of tool T’j.

TCOV(D0): Set of covered tools of the defectivity control
step DO.

tLNLT3: Process time of last non-impacted lot of produc-
tion tool T7j.

tLILT7: Process time of last impacted lot of production
tool T'j.

tTj(Li): Process time of lot Li on the tool T'j.

The analysis begin whenever an impacted lot La is de-
tected at control step DO0. Covered tools set defined for
this control step represents the tools set to be analyzed
(Tools Horizon).

TH = TCOV (D) (2)

The analysis time is impacted by the amount of data
needed for the defect source identification. This data is
proportional to the number of tools in TH. Thus, the
number of tools to be analyzed has an impact on both
analysis time and defect source identification.

Thanks to the smart sampling, performance of tools is
guaranteed by a systematic sampling of lots on each tool
for the control. Controlled lots (last non-impacted lot and
last impacted lot) enclose the analyses horizon of tools as
follows:

AHY =t LNL";tLIL")NTj € TH (3)

Degradation time of each tool belongs to the Analysis
horizon defined in (3). Therefore, the tools horizon and the
analysis horizon allow look up for similar lots processed in
the same context as the lot La. These lots are examined
in order to select more impacted lots for the analysis.

LIMH = {Li |VLi € LIM ANtT7(Li) € AHTT}  (4)

The set of lots identified in (4) brings the impacted lots
that are not only measured in a control step covering the
tools of TH, but also processed during the analysis period
of these tools.

The source of defects is common between all the impacted
lots that are processed in the analysis horizon. Thus,
suspected tools are given by the intersection of different
sets of tools that processed lots in LIMH.

TSUS = {(\T(Li) | VLi € LIMH} (5)

Set of suspected tools T'SUS in (5) depends to two
variables: The first one is the number of lots in LIMH
and the second one is the set of process tools of each
one. Therefore, increasing the number of lots in LIMH
decreases the number of tools in TSUS. If TSUS contains
only one tool, the source of defects is identified and the tool
is turned down for the maintenance. In other cases, an
advanced analysis of impacted wafers is useful to highlight
for the suspected tools, the chambers to be checked.

4.2 Advanced analysis
Cluster tools are special integrated tools where several

wafers can be processed in different chambers simultane-
ously. Analyzing the impacted wafers of lots provides the
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set of suspected chambers of the tools. If the impacted
wafers are processed in the same chamber, this chamber
will be classified as suspected chamber.

To formalize this analysis, we introduce the following no-
tions:

WIM(Li): The set of impacted wafers of lot Li.

WTIM: The total set of impacted wafers.
CHTI(WTIM): The chambers of tool T'j where the set of
wafers WTIM are processed.

SCH: The set of suspected chambers.

Identifying the suspected chambers requires at first the
selection of impacted wafers. At this end, the set of lots
identified in (4) is used as follows:

WTIM = {| JWIM(Li)|VLie LIMH} (6)

The set of wafers in (6) and the set of suspected tools in
(5) are used to identify which elements have processed only
the impacted wafers.

SCH ={(\CH™(WTIM) |VTj € TSUS}  (7)

Cluster tools have not the same number of process cham-
bers. Therefore, the distribution of 25 wafers in a tool
of ”N” process chambers is different from a tool of ” M”
process chambers. In almost all cases, whenever a part of
wafers in a lot are impacted, analysis identifies a unique
suspected chamber. However, no suspected chamber can
be identified in case all wafers of the lot are impacted.

5. INDUSTRIAL APPLICATION

A prototype has been developed in order to test the pro-
posed approach on real data in ST microelectronics. Based
on the control data and the process data, the prototype au-
tomatizes the analysis in order to display a list of suspected
tools and suspected chambers. The behavior information
of the tools such as alarms and maintenance interventions
could be displayed as option.

The algorithm was run in parallel with existing method
using the same data on different analysis examples. To
evaluate the result, we highlight three indicators which
are: the number of controlled lots, the number of suspected
tools and the analysis time in minutes.

Based on their business knowledge, engineers extract the
data to be analyzed in excel files for the manual analy-
sis while the automatic algorithm allow extracting larger
amount of data in less time. Realized tests are classified
depending on their number of controlled lots into three
categories (input) while the analysis time and the number
of identified tools (output) are collected for both meth-
ods. Table 1 shows that the proposed method is more
efficient than the existing one in time analysis as well as in
suspected tools identification. Using the previous method,
analysis time required between 60 and 180 mins in order
to identify the suspected tools. While using the new one,
analysis time is reduced for all the studied cases which
now require not more than 5 to 10 mins, which means
economizing more than 60% of working cost. This is due
to the effectiveness of analyzing data identification in (2)
and (3).

In the first case studies where there are more than four
controlled lots, one suspected tool has been identified by
both methods. While in the second case studies where

% from total mii Analysis Number of
L controlled e suspected
lots(NL) H tools(NT)
Existing method
60 =1=90 NI =1
50% NL > 4
Prototype method
J=t=10 NI =1
Existing method
g0=r=120 2ANT=5
35 % 2=NL=4
Frototype
5<t<10 I=NT=3
Existing method
90 <t=<180 NT =5
15% NL =1
Prototype method
310 I=NT =5

Table 1. Comparison Table

there are from two to four controlled lots, this new method
helps decreasing the number of suspected tools to less
than three instead of five.This reduction is mainly due
to the advanced analysis of impacted wafers shown in (7).
However, in the third case studies where the impacted lot
is unique, both methods did not succeed into finding one
suspected tool. Even though, the new one has reduced the
number of suspected tools from more than five til three to
five suspects.

The remarkable feature is the correlation between number
of impacted lots and the suspected tools as demonstrated
in (5). The more affected lots are available the less sus-
pected tools are identified. Affected lots which are pro-
cessed in the same analysis horizons are similar in term of
production tools and process time.

6. DISCUSSION AND CONCLUSION

Real time process diagnosis for semiconductor manufac-
turing line is described in this paper. Tools horizons and
analysis horizons are defined in order to identify the data
to be analyzed. Based on defectivity control, analyzing the
impacted lots aims to identify the set of suspected tools
and analyzing the impacted wafers highlights the chambers
that are most likely the source of defects.

A prototype has been developed and result shows a correla-
tion between the number of impacted lots and the number
of suspected tools. This brings to our attention the need
for a sampling algorithm that takes into account the degree
of similarity of lots. Using such an algorithm, classification
of lots will be performed in order to select lots from the
same class to be measured. For this purpose, future work
will be dedicated to two researches axes:

(1) Classification of lots based on the process steps align-
ment using T-Coffee method presented in Notredame
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et al. [2000]. This method has been used successfully
to align process plans in semiconductor applications
by Viale et al. [2011].

(2) Calculating of decision support indicator for each
suspected tool using the collected information such
as alarms and maintenance interventions.

The re-entrant flow of the process and the cluster tools
used in semiconductor manufacturing line allow using the
commonality analysis for process diagnosis in two levels:
Impacted lots analysis and impacted wafers analysis. This
diagnosis approach can be used in other industries having
at least one of the above characteristics.
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