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Abstract: This paper addresses the problem of finding the trajectory, for a glider, that
maximizes the final velocity and respect both initial and terminal conditions on the state. A
new set of differential equations governing the system, deduced using optimal control theory, is
proposed. To solve this system of equations, an algorithm based on an indirect shooting method
is described. It provides paths for which the final speed is higher than the one obtained by a
current common closed-loop method.

1. INTRODUCTION

The purpose of this paper is to present a new guidance
method for a glider. A glider is an unpowered aircraft that
can maneuver using only aerodynamic forces generated by
tail fins or wings. Many flying devices can be considered as
gliders such as sailplanes, rockets or missiles during their
non-propelled phases or high-speed gliders. To increase its
range, a glider needs to maintain its speed. In other words,
it needs to minimize the effect of the drag force along
its trajectory while maintaining enough lift to be able to
maneuver and reach the target position.

The guidance scheme we propose in this paper is efficient
for all gliders which flies at a speed high enough to neglect
the gravity. It ensures boundary constraints on both po-
sition and orientation, and maximizes the final velocity
of the system. It takes into account the heterogeneous
environment in which the glider moves. Indeed, when the
glider is climbing, the density of air changes and the effects
of both drag and lift forces are reduced.

The methods the most commonly used to solve such a
problem come from the missile guidance community. These
guidance laws simplify the problem in order to find an
analytic solution to the problem in order to obtain a fully
closed-loop guidance law. These laws can be embedded
on real gliders and compute control inputs online since
they require low computational time. Most analytical so-
lutions are derived from the proportional navigation law
[Newman, 1996]. They include a proportional navigation
term that moves the vehicle towards the final position and
a shaping term to reach this position with the desired
orientation. These laws are very classical but the numerous
approximations made in order to find an analytical form,
imply that the resulting trajectories are often far from
the optimal one. The best known is probably the kappa
guidance law ([Lin, 1991]) which maximizes the final ve-
locity of an unpowered system under several simplifying
assumptions. More details on this law are given in section
5.1. Other closed-loop guidance laws exist, using singular
perturbation theory [Cheng and Gupta, 1986], [Menon
and Briggs, 1990], [Dougherty and Speyer, 1997] or lin-
ear quadratic regulators [Imado et al., 1990], [Imado and

Kuroda, 1992] for example. Simplifications and assump-
tions made to obtain these fully closed-loop guidance laws
imply that they are either only locally optimal or optimal
under some unrealistic conditions.

On the other hand, many direct numerical methods exist
to solve this problem [Hull, 1997]. In direct methods,
the states and control inputs of a problem are approxi-
mated using a specified functional form. Direct collocation
methods, especially global orthogonal collocation methods
(also called pseudo-spectral methods) are the most popu-
lar for solving constrained trajectory optimization prob-
lems. These methods use polynomials to approximate the
state and collocation is performed at some chosen points.
Chebyshev or Lagrange polynomials are often used. Collo-
cation points can be Gauss-Lobato points [Elnagar et al.,
1995] [Fahroo and Ross, 2002], Legendre-Gauss points
[Benson et al., 2006] and more recently Legendre-Gauss-
Radau points [Kameswaran and Biegler, 2008] [Fahroo
and Ross, 2008] [Garg et al., 2011]. These methods are
efficient to solve trajectory optimization problems. They
are nowadays mainly used offline and cannot be easily
embedded since they need a large computing power.

In this paper, we propose an indirect method (i.e. a
method where optimality conditions are determined by the
calculus of variations) for solving the problem of trajectory
optimization. This method is an alternative to direct
methods and has the advantage of being less expensive
in computation time than a direct method. It also does
not make many approximations as classical guidance laws.
It allows to find optimal trajectories and can be considered
embedded on a glider.

The body of the paper consists of three sections. The
problem and models are detailed in section 2. In section
3, conditions of optimality are enumerated and, using
the maximum principle, a new optimal guidance equation
is presented. An implementation of this equation using
a shooting method is described in section 4. Finally,
compared results between our indirect method and kappa
guidance are presented.
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2. PROBLEM STATEMENT

The problem solved in this paper can be described as
follows: find the trajectory for a high speed glider from
an initial state x0 = (x0, z0, θ0) with an initial velocity
v0 to a goal state xf = (xf , zf , θf ) that maximizes the
terminal velocity vf .

2.1 System modeling

The glider is modeled as a rigid body of mass m ma-
neuvering in a vertical 2D plane. The coordinate system
(x, z, θ) ∈ R

3 is used to represent the position ξ = (x, z)
of the center of mass G where z is the altitude and the
orientation θ of the glider which is the angle between the
glider and the x-axis. The missile dynamics are



























ẋ = v cos θ

ż = v sin θ

θ̇ =
fL
mv

v̇ =
fT − fD

m

(1)

where v > 0 is the longitudinal speed, gravity is neglected,
the thrust force fT = 0 since the glider is unpowered, fD
is the drag force defined as

fD =
ρSCDv

2

2
and fL is the lift force defined as

fL =
ρSCLv

2

2
where ρ is the density of air, S is the glider reference area,

CD = CA cosα+ CN sinα, (2)

CL = CN cosα− CA sinα. (3)

CD and CL are respectively the drag and the lift co-
efficients in velocity frame, CA and CN = CNα

α are
respectively the drag and lift coefficients in body frame,
α is the angle of attack of the missile and CNα

= dCN/dα
is the lift coefficient curve slope.

2.2 Environment modeling

In the followings, the density of air ρ is modeled as an
exponential function decreasing with the altitude

ρ(z) = ρ(0) e−
z
zr (4)

where zr is a reference altitude. As we consider a glider
with only aerodynamic flight controls, the maneuvering
capabilities are linked to the density of air (4) and ap-
proach zero at 35 km.

3. OPTIMALITY CONDITIONS

In this section, optimality conditions are determined using
the maximum principle [Pontryagin, 1962].

Considering (1) and an unpowered aircraft, v̇ can be
expressed as

v̇ = −
1

2m
ρv2SCD. (5)

Since small angles of attack are considered, (2) and (3)
become

{

CL = (CNα
− CA)α

CD = CA + (CNα
− CA/2)α

2

and CD can be written as

CD = CA +
(CNα

− CA/2)

(CNα
− CA)

2 C
2
L.

Let u ∈ [−1, 1] denote the control input defined as

u =
CL

CLmax

.

Thus, we obtain

CD = CA + η CLmax
u2 (6)

where η =
(CNα−CA/2)

(CNα−CA)2
CLmax

is an aerodynamic efficiency

factor.

Using (5) and (6), v̇ becomes

v̇ = −(d+ ηcu2)v2 (7)

where d(z) = 1
2mρ S CA and c(z) = 1

2mρ S CLmax
is the

maximum curvature.

A change of variable is done from time t to curvilinear

abscissa s(t) =
∫ t

0
v(t) dt. Thus, dynamics can be rewritten

as






x′ = cos θ

z′ = sin θ

θ′ = c(z)u

(8)

and
v′ = −(d+ ηcu2)v. (9)

Our goal is to maximize the final velocity vf . Let w =
ln(v), then w′ = −(d + ηcu2) and maximizing the final
velocity vf is equivalent to maximizing wf = ln(vf ).

Since w does not appear in the right side of equations (8),
the dimension of the system considered in our optimization
problem can be reduced to 3. The speed only appears in
the cost function.

The subsequent optimal control problem is defined as
follows: given the system of ordinary differential equations
(8) with the initial state x0 = (x0, z0, θ0) and the final
state xf = (xf , zf , θf ), it is required to find an optimal
control, i.e. a function u∗(s) and the corresponding path
x∗(s) for which the functional

J =

∫ sf

0

(

d+ ηcu2
)

ds (10)

is minimized.

The Hamiltonian function is

H(x, u, λ) = (d+ ηcu2) + λ1 cos θ + λ2 sin θ + λ3 c u (11)

where λ = (λ1, λ2, λ3)
⊺ is the costate vector of the system.

Pontryagin’s minimum principle (Pontryagin [1962]) states
that the optimal control u∗, path x∗ and costate vector λ∗

must minimize the Hamiltonian H so that for all u ∈ R

H(x∗, u∗, λ∗) 6 H(x∗, u, λ∗)

for every curvilinear abscissa s.

In the followings, we consider that u is not constrained
thus ∂H

∂u = 0, hence

u = −
λ3
2η

(12)

Using the costate equations, we obtain

λ′1 = −
∂H

∂x
= 0.
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Using λ′2 = −∂H/∂z, (4) and (12), it follows that

λ′2 =
1

zr

(

d− η c u2
)

. (13)

And finally λ′3 is given by

λ′3 = −
∂H

∂θ
= λ1 sin θ − λ2 cos θ. (14)

By differentiating (12) with respect to s and using (14),

u′ = −
λ1 sin θ − λ2 cos θ

2η

is obtained and its second derivative, using (13), is

u′′ =
d− η c u2

2η

(

c u+
cos θ

zr

)

. (15)

To sum up, the Ordinary Differential Equations (ODE)






































x′ = cos θ

z′ = sin θ

θ′ = c(z)u

u′ =
du

ds

u′′ =
d− η c u2

2η

(

c u+
cos θ

zr

)

(16)

solve the trajectory optimization problem for a glider.
(16) has no analytic solution and can only be solved with
numerical methods, for example the Runge-Kutta method
or the Hermite-Simpson method.

One may notice that if ρ does not change with the altitude
(i.e. ρ(z) = ρ0) and if we consider only small curvatures
c u, then solving (15) yields

u = Ae
−

√

cd
η +Be

√

cd
η (17)

which is the equation of kappa guidance presented in [Lin,
1991] page 570. Consequently, (16) generalizes the kappa
guidance law. However, it does not provide an explicit
guidance law of the form u = f(x, z, θ).

4. IMPLEMENTATION

In this section, an implementation of (16) to solve the
optimal trajectory problem is provided (section 4.1). This
implementation is based on a simple shooting method and
only aims to illustrate the efficiency of our approach to
provide optimal trajectories, it does not focus on any other
aspects such as computational time or robustness (section
4.2). This method is named Indirect Method for Glider
Guidance (IMGG) in the followings.

4.1 Indirect Shooting Method

The propagation of the trajectory from the start to the
end can be done using the solution of the ODE initial
value problem as the control function u(s) is defined for
every curvilinear abscissae.

To demonstrate the efficiency of (16), a shooting method
is used to solve the trajectory optimization problem. Since
(16) has been obtained using the maximum principle,
this shooting method is said indirect. This method is
described in the algorithm 1. It requires an initial guess
on the unknown conditions: the control input u0, its first

Algorithm 1 Indirect Shooting Method

Input: Initial guesses on initial values u0, u
′

0, sf
Output: Trajectory from x0 to xf that maximize vf
1: repeat
2: Integrate (16) on s = [0, sf ] to obtain x̂f

3: Constraints evaluation in terminal conditions, eval-
uate ψ(x̂f ) using (18)

4: Update initial values u0, u
′

0, sf
5: until ψ(x̂f ) < ǫ

derivative u′0 and the path length sf . (16) is integrated
from s = 0 to s = sf using 4th order Runge-Kutta
method. The final state is x̂f . The boundary condition
ψ(x̂f ) between xf and x̂f is computed on line 3. ψ(x̂f ) is
then used to update the initial values u0, u

′

0 and sf . These
three lines are repeated until the error ψ(x̂f ) becomes less
than a given ǫ.

The cost function ψ(x̂f ) that evaluates the terminal con-
straints has to consider both position ξ = (x, z) and
orientation θ at the final state. An example of cost function
is the pseudo-metric

ψ(x̂f ) =

(

‖ξ̂f − ξf‖

‖ξf − ξ0‖

)2

+ ‖θ̂f − θf‖
2. (18)

Gradient methods cannot be used without finite-difference
approximations of derivatives to update the values u0, u

′

0
and sf since the derivative of the cost function cannot
be obtained analytically. In our implementation, we use
a Nelder-Mead algorithm (Nelder and Mead [1965]) as
described in Lagarias et al. [1998] which allows to avoid
approximations of derivatives and appears to be more
efficient than gradient methods to get out of local minima.

4.2 Issues

The main issue with this simple implementation of the
indirect shooting method is the initialization of the itera-
tion process. It is hard to find a first estimate (also called
a guess) of the unknown initial conditions that provides a
trajectory that is not “wild” as mention in Bryson and
Ho [1975] page 215. This initialization is all the more
important as the solutions are very sensitive to changes
in the initial conditions.

Since our goal in this paper is to prove the effectiveness of
our indirect method to find optimal trajectories and not to
improve its execution time or its robustness, we will not go
further into the analysis of this well known problem. The
reader can refer to Bryson and Ho [1975] or Betts [1998]
for more information on it.

5. RESULTS

In this section, the kappa guidance is presented in section
5.1 and compared results between our indirect method
IMGG and kappa guidance are given in section 5.2.

5.1 Reminder on kappa Guidance

The kappa guidance is a closed-loop guidance law de-
scribed in Lin and Tsai [1987] and Lin [1991]. This
curvature-based guidance law, designed for non-propelled
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Fig. 1. IMGG, trajectory (x,z), x0 = (100, 3000, 0), xf =
(20000, 3000, 0)

rocket, aims to maximize its final velocity. Since dynamics
(1) are close to those used in Lin [1991], the kappa guidance
law can be used to guide a glider efficiently. This law makes
numerous of approximations (see section 3), especially on
the environment modeling. The control input a returned
by this guidance law is a lateral acceleration perpendicular
to the longitudinal velocity vector v:

a =
v

‖v‖
×

(

γ ×
v

‖v‖

)

with

γ =
K1

tgo
(vf − v) +

K2

t2go
(ξf − ξ − v tgo)

where K1 and K2 are gains obtained using (17), tgo is the
time-to-go (i.e. the estimate duration to reach the goal),
vf is the terminal velocity vector and ξf is the terminal
position vector.

K2

t2go

(

ξf − ξ − v tgo
)

,

is called the proportional navigation term and tends to
moves the aircraft to the target position.

K1

tgo
(vf − v)

where ‖vf‖
def
= ‖v‖, is called the shaping term and tries

to reach the target with the desired orientation. ‖a‖max is
the maximum lateral acceleration the glider can perform.
It is straightforward to see that u = ‖a‖ / ‖a‖max.

This law does not provide globally optimal trajectories.

As many closed-loop guidance laws, a good guess of the
time-to-go tgo is needed to compute the control input a.
Such a good guess is hard to obtain since it depends on the
trajectory from the current position to the target position.

The trajectories provided by kappa guidance are only lo-
cally optimal if ρ changes since it does not anticipate future
changes in flight conditions along the trajectory. Moreover,
if the flight conditions change significantly between the
start point and the end point, the trajectories returned by
the kappa guidance tend to be impossible to follow by the
real glider: lateral accelerations returned by the guidance
law are higher than that the glider is actually capable of
performing.

Finally, the kappa guidance law does not take into account
the dynamic of ρ and so it does not take advantage of the
heterogeneity of the environment. For example, if the air
density is identical between ξ0 and ξf , the kappa guidance
law does not take into account the heterogeneous nature
of the environment, i.e. the fact that the effect of the drag
force can be reduced by climbing up and then climbing
down to reach ξf . Thus, the terminal velocities obtained
with the kappa guidance can be far from the optimal ones.

These remarks are illustrated in the next section.

5.2 Compared results

In this section, results showing the trajectories provided
by IMGG are presented. These results are compared with
trajectories returned by the kappa guidance law.

The first example is typical of how our indirect method
based on (16) works. In this example, the initial and
terminal points, respectively x0 = (100, 3000, 0) and xf =
(20000, 3000, 0), are located at the same altitude (3000 m).
The initial speed of the glider is v0 = 1000 m/s.

In the case of kappa guidance, the trajectory between those
two points is a straight line which length is 19900 m,
the control input u is always equals to 0. As explained
in the previous section, this is due to the fact that the
kappa guidance does not handle properly heterogeneous
environments. Instead, using IMGG (Figure 1), the glider
climbs to an altitude of 5000 meters to reduce the effect
of the drag force along its trajectory (since the density of
air decreases with altitude). The generated trajectory is
20404 m long. Thus, although the path is longer than in
straight line, the terminal velocity is higher: 290 m/s for
our method against 263 m/s for the kappa guidance.

The second example shows a case where IMGG is able
to find an admissible trajectory (i.e. a trajectory where
u always stays between -1 and 1) while in the case of
kappa guidance, the normalized control input ‖a‖ / ‖a‖max
does not stay in this interval. The initial configuration is
x0 = 100 m, y0 = 500 m, θ0 = π/8 rad and the final
configuration is xf = 5000 m, yf = 15000 m, θf = π/8
rad. The initial speed is still v0 = 1000 m/s.

The solid line in figure 2(a) represents the trajectory
generated by the indirect method described in this paper.
The path is made up of two main turns, the first one starts
at about z = 2000 m and the second one starts at z = 8000
m. Our method can take into account the fact that the
final state is at an altitude where the air density is low. At
this altitude, the aircraft can not operate effectively. So in
order to find a solution, it is necessary to anticipate this
and to start shaping the trajectory from the beginning of
the flight. As we see on figure 2(b) (solid line), u stays
between −0.8 and 0.5.

Such an anticipation is impossible for closed-loop laws
such as kappa guidance. These laws tend to favour the
proportional navigation term at the beginning of the flight
(when the time-to-go is large) and only really consider the
shaping term at the end. This explains why the first turn
starts later than for IMGG (dashed line on figure 2(a)).
It starts at an altitude z = 3000 m. Then, the second
turn starts at z = 9500 m and the kappa guidance law
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Fig. 2. Compared results between IMGG and kappa guidance, x0 = (100, 500, π/8), xf = (5000, 15000, π/8)
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Fig. 3. IMGG, x0 = (100, 500, π/2), xf = (5000, 25000, 0)

needs to increase the control inputs to reach the terminal
conditions (figure 2(b), dashed line). Since the glider can
no longer operate effectively at this altitude and speed,
its normalized control input ‖a‖ / ‖a‖max becomes greater
than 1: the path is invalid since he could not be followed
by the real glider.

6. PERSPECTIVES

In section 5.2 are shown some results to illustrate the
effectiveness of (16) presented in section 3 using a simple
implementation (section 4). This implementation needs
to be improved to satisfy constraints such as real time
execution, robustness to initial unknown conditions and
the need to take into account saturation. Thus, it could
allow our indirect method to be embedded on an actual
autonomous glider. This is the purpose of this section,
which presents our current and future works, in addition
to the transition from 2D to 3D.

6.1 Real-time computation

One interesting perspective is related to the computation
time of the trajectories generated by IMGG. Although
the implementation done in section 4 is not optimized for
that, the computation time is still less than what can be
achieved with optimization software using pseudo-spectral
methods (eg GPOPS (Rao et al. [2010]).

The first step in this optimization process aim at changing
the algorithm that searches for the minimum of the cost
function (line 5 of the algorithm 1). The Nelder-Mead
algorithm, at least the basic implementation we used,
allows us to get results but tends to converge slowly to
the optimal solution.

The second way to improve the computation time is to
change the shooting method. This method, in addition
to being highly sensitive to initial conditions, cannot
be optimized from the computation time point of view.
Indeed, it requires to fully integrate the system (16) from
s = 0 to s = sf before moving to the next stage of the
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algorithm. No parallelization of the algorithm is possible.
Using a multiple-shooting method (by dividing the interval
s = [0, sf ] in small pieces) could allow us to parallelize
a piece of the algorithm. Furthermore, multiple shooting
methods are more robust to initial conditions (see Betts
[1998]).

The underlying objective is to run the algorithm in real-
time and to obtain a fully closed-loop guidance law.

6.2 Saturations

Saturations, i.e. cases where |u| becomes greater that 1 and
so curvatures are greater than those that the real glider can
achieve, are not taken into account in (16).

For example, in figure 3, the initial state is x0 =
(100, 500, π/2) and the final state is xf = (5000, 25000, 0).
In this example, IMGG is able to find a trajectory. How-
ever, as the altitude at the final state is very high, the
maneuvering capabilities of the glider are almost zero near
xf . The glider must go at the opposite of the desired
final position at the beginning of its flight to minimize
the curvature at the end. Despite this, the control input is
greater than 1 at the end of the trajectory. This problem
appears when the problem is really hard to solve or when
an admissible solution does not exist.

The results of Hérissé and Pepy [2013] could be used to
address this problem and to take into account saturations
in the guidance algorithm. The authors generate the
shortest paths by extending the concept of Dubins curves
in a heterogeneous environment and illustrate this using a
glider. The trajectories are composed of curves where the
control input u is either 1, -1 (maximum curvature curves)
or 0 (segment lines) analogously to Dubins’ curves.

7. CONCLUSION

This paper presented a new indirect method for finding
the optimal trajectory between two states of a glider
that maximizes its terminal velocity. Equations of guid-
ance are deduced using optimal control theory. A simple
implementation is performed using an indirect shooting
method. The results presented illustrate the performance
of our indirect method compared to current fully closed-
loop methods. Future work will focus on improving the
computation time of a path and making the algorithm
robust to initialization errors.
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