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Abstract: The extension of the backstepping-based state observer design is considered for
general periodic quasi-linear parabolic PDEs in one space dimension. Here, the extended
linearization combined with a suitable coordinate and state transformation is employed. This
allows for the application of the backstepping method for the determination of an extended
Luenberger observer with observer gains entering the PDE and the boundary condition which
ensures an exponential decay of the linearized observer error dynamics. This is confirmed
analytically, while the convergence of the quasi-linear observer error system is studied in
numerical simulations.

1. INTRODUCTION

In technical applications, quasi-linear partial differential
equations (PDEs) arise in mathematical modeling of, e.g.,
chemical reactions (Jakobsen [2008]), semiconductor de-
vices (Jüngel [2009]), or thermal processes in steel pro-
duction (Speicher et al. [2012]). Thereby, the solution of
the state estimation problem plays a crucial role for the
design of state feedback control or monitoring purposes.

An extended distributed-parameter Luenberger observer
is proposed by Zeitz [1977] for a semi-linear model of
a chemical fixed-bed reactor. Here, correction terms are
designed by following a heuristic and physics based ap-
proach. Similar observer design methods are applied by
Hua et al. [1998] and Kreuzinger et al. [2008]. State ob-
servers based on optimal estimation are addressed, e.g.,
by Mangold et al. [2009], where an unscented Kalman
filter is developed for a population balance model, and by
Speicher et al. [2013], where an extended Kalman filter is
proposed for the estimation of the spatio-temporal plate
temperature evolution governed by a quasi-linear PDE.
The backstepping-based state estimation for a non-linear
Navier-Stokes PDE can be found in Vazquez et al. [2008]
and for semi-linear parabolic PDEs in Meurer [2013] and
Jadachowski et al. [2013].

This contribution presents a generalization of the results
outlined by Meurer [2013] and Jadachowski et al. [2013]
by addressing the distributed-parameter extended Luen-
berger observer design for the class of periodic quasi-linear
PDEs in one space dimension. For the determination of
the observer gains, the extended linearization is applied
to the quasi-linear observer error dynamics. This results
in a linear diffusion-convection-reaction equation (DCRE)
with spatially and time-varying parameters governing the
observer error dynamics. Followed by successive evaluation
of the Hopf-Cole transformation (see, e.g., Hopf [1950]),
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the observer gains are determined by extending the classi-
cal time-invariant backstepping method (Smyshlyaev and
Krstic [2005]) to the considered time-varying problem. For
numerical computation of the observer gains, an efficient
solution approach proposed by Jadachowski et al. [2012]
is suitably modified.

The paper is organized as follows: In Section 2, the state
estimation problem for the class of periodic quasi-linear
parabolic PDEs is considered. Moreover, the extended
Luenberger observer is formulated and observer gains are
determined. Section 3 provides analytical results on the
convergence of the linearized observer error dynamics.
Simulation results of an exemplary set-up are presented
in Section 4. Final remarks close the paper.

Notation: Wherever it is clear from the context, arguments
of functions are omitted. Moreover, ∂x, ∂xz

and ∂xzz

denote partial derivatives with respect to x(z, t), ∂zx(z, t)
and ∂2

zx(z, t), respectively.

2. STATE ESTIMATION PROBLEM

Let us consider the quasi-linear parabolic PDE

∂tx(z, t) = a(z, t, x)∂2
zx(z, t) + f(z, t, x, ∂zx) (1)

defined on (z, t) ∈ (0, L) × R
+
t0
, R+

t0
= {t ∈ R

+ | t > t0},
with boundary conditions (BCs)

∂zx(0, t) + p(t)x(0, t) = 0, t ∈ R
+
t0

(2a)

∂zx(L, t) + q(t)x(L, t) = 0, t ∈ R
+
t0
, (2b)

and the consistent initial condition (IC) according to

x(z, t0) = x0(z) z ∈ [0, L]. (3)

Assumption 1. For (1)–(3) it is assumed that:

(i) a(z, t, x) is C2 in z, t, x and periodic in t with the
period T . Moreover, let 0 < al ≤ a(z, t, x) ≤ ar < ∞
with positive constants al and ar.

(ii) f(z, t, x, ∂zx) is C2 in z, t, x, ∂zx and periodic in t
with the same period T .

(iii) p(t) and q(t) are C2-functions and T -periodic.
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For results on the existence and uniqueness of classical
solutions for such PDEs, the interested reader is referred
to, e.g., Brunovský et al. [1992] and the references therein.

The system output restricted to the boundary z = 0 is
given by

y(t) = ∂zx(0, t), t ∈ R
+
t0
. (4)

Remark 2. It is required that the T -periodic function
p(t) 6= 0 for any period T to guarantee the observability
of the system (1)–(4). This avoids that (4) vanishes iden-
tically according to (2a). However, the proposed observer
design approach is not restricted to systems with BCs (2)
and is in principle identical for other types of BCs.

2.1 Extended Luenberger observer

Extending the results from Meurer [2013] and Jadachowski
et al. [2013], a distributed-parameter Luenberger-type
state observer in the observer state x̂(z, t) is set-up as

∂tx̂(z, t) = a(z, t, x̂)∂2
z x̂(z, t) + f(z, t, x̂, ∂zx̂)

+ l(z, t)ỹ(t), (z, t) ∈ (0, L)× R
+
t0

(5)

with ỹ(t) = y(t)− ŷ(t). The BCs with an IC are chosen as

∂zx̂(0, t) + p(t)x̂(0, t) = l0(t)ỹ(t), t ∈ R
+
t0

(6a)

∂z x̂(L, t) + q(t)x̂(L, t) = 0, t ∈ R
+
t0

(6b)

x̂(z, t0) = x̂0(z), z ∈ [0, L]. (6c)

The output estimate evaluated with x̂(z, t) is given by

ŷ(t) = ∂zx̂(0, t), (7)

while l(z, t) and l0(t) in (5) and (6a) denote the observer
gains to be determined. Introducing the observer error
e(z, t) = x(z, t) − x̂(z, t), it follows directly that the
observer error dynamics satisfies

∂te(z, t) = F (z, t, x, ∂zx, ∂
2
zx)− F (z, t, x̂, ∂zx̂, ∂

2
z x̂)

− l(z, t)∂ze(0, t)
(8)

defined on (z, t) ∈ (0, L)× R
+
t0

with F (z, t, x, ∂zx, ∂
2
zx) =

a(z, t, x)∂2
zx(z, t) + f(z, t, x, ∂zx). The BCs follow as

(

1 + l0(t)
)

∂ze(0, t) + p(t)e(0, t) = 0, t ∈ R
+
t0

(9a)

∂ze(L, t) + q(t)e(L, t) = 0, t ∈ R
+
t0

(9b)

with the IC

e(z, t0) = e0(z), z ∈ [0, L]. (10)

With this, the determination the observer gains l(z, t) and
l0(t) is based on the linearized observer error dynamics
with respect to the current state estimate x̂(z, t) and its
spatial derivatives. Considering that x(z, t) = x̂(z, t) +
e(z, t) this yields

F (z, t, x, ∂zx, ∂
2
zx) = ∂xzz

F (z, t, x̂, ∂zx̂, ∂
2
z x̂)∂

2
ze(z, t)

+ ∂xz
F (z, t, x̂, ∂zx̂, ∂

2
z x̂)∂ze(z, t)

+ ∂xF (z, t, x̂, ∂zx̂, ∂
2
z x̂)e(z, t) + F (z, t, x̂, ∂z x̂, ∂

2
z x̂). (11)

Substituting (11) into (8) results in the linearized observer
error dynamics

∂tẽ(z, t) = ã(z, t)∂2
z ẽ(z, t) + b̃(z, t)∂z ẽ(z, t)

+ c̃(z, t)ẽ(z, t)− l(z, t)∂z ẽ(0, t)
(12)

with

ã(z, t) = a(z, t, x̂) b̃(z, t) = ∂xz
f(z, t, x̂, ∂zx̂)

c̃(z, t) = ∂xa(z, t, x̂)∂
2
z x̂(z, t) + ∂xf(z, t, x̂, ∂zx̂).

(13)

Obviously, the BCs and the IC remain unchanged, i.e.,
(

1 + l0(t)
)

∂z ẽ(0, t) + p(t)ẽ(0, t) = 0, t ∈ R
+
t0

(14a)

∂z ẽ(L, t) + q(t)ẽ(L, t) = 0, t ∈ R
+
t0

(14b)

ẽ(z, t0) = ẽ0(z), z ∈ [0, L]. (14c)

Note that contrary to Jadachowski et al. [2013] (12) is
characterized by a spatially and time-varying diffusion
parameter ã(z, t). This has to be explicitly taken into
account in the subsequent design of the observer gains.

Remark 3. Although the presented linearization can be
formally applied to every quasi-linear parabolic PDE, in
general it is not ensured that the stability of the linearized
observer error system (12)–(14) implies stability of the
original nonlinear system (8)–(10). For the considered case
of periodic quasi-linear parabolic PDEs, see Assumption 1,
Brunovský et al. [1992] shows that the observer error e(z, t)
of (8)–(10) can be locally approximated by a classical
solution of (12)–(14) for l(z, t) = l0(t) = 0.

2.2 Transformation into a normalized form

For the determination of the observer gains l(z, t) and
l0(t), the linearized observer error dynamics is transformed
into a simpler equivalent form by normalization of the
diffusion parameter ã(z, t) and the spatial coordinate z
to unity. For this, the coordinate transformation

ζ = z̄(z, t) :=
1

z̄L(t)

∫ z

0

ã−
1

2 (s, t)ds (15a)

τ = t̄(t) :=

∫ t

t0

z̄−2
L (s)ds (15b)

with z̄L(t) =
∫ L

0 ã−
1

2 (s, t)ds followed by the Hopf-Cole
state transformation (see, e.g., Hopf [1950])

ĕ(ζ, τ) = ẽ(z, t) e
∫

ζ

0
χ(s,τ)ds

(16a)

χ(ζ, τ) =
z̄2L(t)

2

[

ã(z, t)∂2
z z̄(z, t) + b̃(z, t)∂z z̄(z, t)

− ∂tz̄(z, t)
]

(16b)

evaluated for

z = z̄−1(ζ, τ), t = t̄−1(τ) (17)

are applied to (12)–(14). As a result, the following normal-
ized diffusion-reaction PDE is obtained

∂τ ĕ(ζ, τ) = ∂2
ζ ĕ(ζ, τ) + c̆(ζ, τ)ĕ(ζ, τ)

− l̆(ζ, τ) (∂ζ ĕ(0, τ)− χ(0, τ)ĕ(0, τ))
(18)

defined on (ζ, τ) ∈ (0, 1)×R
+
0 , R

+
0 = {τ ∈ R | τ > 0} with

(

1 + l̆0(τ)
)

∂ζ ĕ(0, τ)

+
(

p̆(τ)− l̆0(τ)χ(0, τ)
)

ĕ(0, τ) = 0, τ ∈ R
+
0 (19a)

∂ζ ĕ(1, τ) + q̆(τ)ĕ(1, τ) = 0, τ ∈ R
+
0 (19b)

ĕ(ζ, 0) = ĕ0(ζ), ζ ∈ [0, 1].(19c)

In (18), the transformed reaction parameter is given by

c̆(ζ, τ) =
∫ ζ

0
∂τχ(s, τ)ds−χ2(ζ, τ)−∂ζχ(ζ, τ)+ c̄(ζ, τ) with

c̄(ζ, τ) = z̄2L(t)c̃(z, t) evaluated according to (17). With
(17) the mapping of the observer gains yields

l(z, t) 7→ l̆(ζ, τ) := l(z, t)
z̄L(t)

√

ã(0, t)
e
∫

ζ

0

χ(s,τ)ds
(20a)

l0(t) 7→ l̆0(τ) := l0(t), (20b)
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while the boundary parameters are defined by

p(t) 7→ p̆(τ) := p(t)z̄L(t)
√

ã(0, t)− χ(0, τ) (21a)

q(t) 7→ q̆(τ) := q(t)z̄L(t)
√

ã(L, t)− χ(1, τ). (21b)

Subsequently, the backstepping method is considered for

the computation of the observer gains l̆(ζ, τ) and l̆0(τ) to
stabilize (18)–(19).

2.3 Stabilization by means of the backstepping method

The main idea of the backstepping-based observer design
relies on the specification of the desired observer error de-
cay by an appropriate selection and mapping to a desired
target dynamics. Proceeding along the lines of the classical
backstepping approach (Smyshlyaev and Krstic [2005]),
the following steps are required for the observer synthesis
in presence of spatially and time-varying parameters.

Selection of the target dynamics The desired dynamics
for the linearized observer error ĕ(ζ, τ) is chosen to mimic
the behavior of the system

∂τw(ζ, τ) = ∂2
ζw(ζ, τ) − µ(τ)w(ζ, τ) (22)

defined on (ζ, τ) ∈ (0, 1)× R
+
0 with corresponding BCs

∂ζw(0, τ) + pww(0, τ) = 0, τ ∈ R
+
0 (23a)

∂ζw(1, τ) + qww(1, τ) = 0, τ ∈ R
+
0 (23b)

and the IC

w(ζ, 0) = w0(ζ), ζ ∈ [0, 1]. (24)

Thereby, a suitable choice of a design parameter µ(τ)
ensures the exponential stability of the target system. In
Meurer and Kugi [2009], the exponential stability of the
PDE (22)–(24) is proven in the L2-norm, if the inequality
µ(τ) + λ ≥ ε, ∀τ ≥ 0 is satisfied for some ε > 0. Here, λ
is the smallest eigenvalue of the Sturm-Liouville problem
∂2
ζw(ζ, τ) + λw(ζ, τ) = 0 with BCs (23). This implies that

‖w(ζ, τ)‖L2 ≤ exp(−ετ)‖w0(ζ)‖L2 . (25)

In the following, the observer gains are determined by
mapping the target dynamics to the linearized observer
error PDE by means of the backstepping transformation.

Determination of the observer gains The main step of
the backstepping approach is based on the use of the
Volterra integral transformation

ĕ(ζ, τ) = w(ζ, τ) −
∫ ζ

0

g(ζ, s, τ)w(s, τ)ds (26)

with the integral kernel g(ζ, s, τ) to map the target sys-
tem (22)–(24) to the observer error dynamics (18)–(19).
For this, expressions for the observer error (26) and its
partial derivatives are substituted into (18)–(19). Thereby,
differentiation of (26) with respect to ζ yields

∂ζ ĕ(ζ, τ) = ∂ζw(ζ, τ) − g(ζ, ζ, τ)w(ζ, τ)

−
∫ ζ

0

∂ζg(ζ, s, τ)w(s, τ)ds

∂2
ζ ĕ(ζ, τ) = ∂2

ζw(ζ, τ) − dζg(ζ, ζ, τ)w(ζ, τ)

− g(ζ, ζ, τ)∂ζw(ζ, τ) − ∂ζg(ζ, ζ, τ)w(ζ, τ)

−
∫ ζ

0

∂2
ζg(ζ, s, τ)w(s, τ))ds

with dζg(ζ, ζ, τ) = [∂ζg(ζ, s, τ) + ∂sg(ζ, s, τ)]|s=ζ
, while

evaluating the derivative of (26) with respect to τ in view
of (22) results after integration by parts in

∂τ ĕ(ζ, τ) = ∂2
ζw(ζ, τ) − µ(τ)w(ζ, τ)

−
[

g(ζ, s, τ)∂sw(s, τ) − ∂sg(ζ, s, τ)w(s, τ)
]∣

∣

s=ζ

s=0

−
∫ ζ

0

[

∂τg(ζ, s, τ) + ∂2
sg(ζ, s, τ)− µ(τ)g(ζ, s, τ)

]

w(s, τ)ds.

After some intermediate calculations, the so-called kernel-
PDE governing the evolution of the kernel g(ζ, s, τ) can be
deduced, i.e.,

∂τg(ζ, s, τ) = ∂2
ζg(ζ, s, τ)− ∂2

sg(ζ, s, τ)

+ γ(ζ, τ)g(ζ, s, τ)
(27a)

dζg(ζ, ζ, τ) =
γ(ζ, τ)

2
(27b)

∂ζg(1, s, τ) = −q̆(τ)g(1, s, τ) (27c)

g(1, 1, τ) = q̆(τ) − qw (27d)

g(ζ, s, 0) = g0(ζ, s) (27e)

defined on Ωg := {(ζ, s) ∈ R
2 | s ∈ [0, 1], ζ ∈ [s, 1]} with

γ(ζ, τ) = c̆(ζ, τ) + µ(τ) and g0(ζ, s) being consistent with

(27c) and (27d). Moreover, the observer gains l̆(ζ, τ) and

l̆0(ζ) follow as

l̆(ζ, τ) = −∂sg(ζ, 0, τ) + pwg(ζ, 0, τ)

χ(0, τ) + g(0, 0, τ) + pw
(28a)

l̆0(τ) =
p̆(τ) − g(0, 0, τ)− pw

χ(0, τ) + g(0, 0, τ) + pw
. (28b)

Herein, it is assumed that χ(0, τ) + g(0, 0, τ) + pw 6= 0.
Taking into account the inverse of (20) the observer gains
in (z, t)-coordinates are given by

l(z, t) =

√

ã(0, t)

z̄L(t)

(

l̆(ζ, τ) e
−

∫

ζ

0

χ(s,τ)ds
)
∣

∣

∣

∣

(17)

(29a)

l0(t) = l̆0(τ)
∣

∣

τ=t̄(t)
. (29b)

Since (28) is governed by the evolution of the integral
kernel g(ζ, s, τ), an explicit solution of the kernel-PDE (27)
is necessary to determine l(z, t) and l0(t).

2.4 Numerical computation of the observer gains

The numerical determination of the observer gains gov-
erned by the integral kernel g(ζ, s, τ) according to (27) is
computed by means of the solution procedure presented
by Jadachowski et al. [2012]. In view of the considered
case, a modification of the solution method is proposed
providing an algebraic equation for the discretized integral
kernel. Thereby, the remainder of this section relies on the
existence of a classical solution to the kernel-PDE (27).

Assumption 4. There exists a bounded strong solution
g(ζ, s, τ) ∈ C2(Ωg) ∩ C1(R+

0 ) to the kernel-PDE (27).

Remark 5. On the assumption that γ(ζ, τ) is analytic in
τ , the existence of a solution to the kernel-PDE (27) can
be ensured, see Colton [1977]. In Meurer and Kugi [2009],
a strong solution of the kernel-PDE is constructed by
means of successive approximation of integral operators,
presuming γ(ζ, τ) to be C0 in ζ and of Gevrey class 2 in τ .
At this point it is worth noting that Kannai [1990] shows
the nonexistence of a solution of (27) if γ(ζ, τ) is related
to an infinitely differentiable positive function ρ(τ), whose
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time derivatives cannot be bounded by |∂nρ(τ)/∂τn| ≤
Cn+2n2n for no values of C. However, the result of Kannai
[1990] imposes a very strong restriction on the time behav-
ior of γ(ζ, τ) and thus does not contradict our assumption
of the existence of a bounded strong solution to (27).

Kernel integral equation The subsequent solution proce-
dure is based on the trapezoidal quadrature of the kernel
integral formulation followed by a direct numerical time
integration (NTI) of the resulting ordinary differential
equation. Therefore, formal integration preceded by a co-
ordinate transformation ξ = 2 − ζ − s, η = ζ − s with
g(ζ, s, τ) = ḡ(ξ, η, τ) is applied to (27). This yields an
implicit integral equation of the PDE (27), i.e.,

ḡ(ξ, η, τ) = A(ξ, η, τ) +

∫ ξ

η

B(β, η, τ)dβ +

∫ η

0

C(β, τ)dβ
(30)

with A(ξ, η, τ) = − 1
2

∫ η

0 γ
(

1 − β
2 , τ

)

dβ − 1
4

∫ ξ

η
γ
(

1 −
β
2 , τ

)

dβ + q̆(τ) − qw, B(β, η, τ) = 1
4

∫ η

0

[

−∂τ ḡ(β, α, τ) +

γ
(

1− β−α
2 , τ

)

ḡ(β, α, τ)
]

dα and C(β, τ) = −q̆(τ)ḡ(β, β, τ)+
1
2

∫ β

0

[

−∂τ ḡ(β, α, τ)+γ
(

1− β−α
2 , τ

)

ḡ(β, α, τ)
]

dα, defined on

Ωḡ := {(ξ, η) ∈ R
2 | η ∈ [0, 1], ξ ∈ [η, 2 − η]}. Discretiza-

tion of Ωḡ and suitable approximation of (30) by means
of the composite trapezoidal rule yields the formulation
in terms of an explicit-in-time ODE, see, Jadachowski
et al. [2012]. However, a significant computational cost
due to the continuous update of the extended linearization
followed by successive evaluation of the transformation
(15)–(17) motivates to apply a sample-and-hold solution
approach to (30). This results in an algebraic formulation
for the discretized kernel ḡ(ξ, η, τ) solved in every sampling
interval providing an efficient solution procedure.

Sample-and-hold solution of (30) In the following, it
is assumed that the output (4) and the linearization are
updated only at tk = kTa+t0, k ∈ N0 with a sampling time
Ta. Consequently, the observer gains l(z, t) and l0(t) are
computed for t = tk+1 depending on the previous result
x̂k(z, t) = x̂(z, tk) and the output yk = y(tk) and are held
constant for t ∈ [tk+1, tk+2). In view of (13) evaluated

at t = tk, let ãk(z) := ã(z, tk), b̃k(z) := b̃(z, tk) and
c̃k(z) := c̃(z, tk). With this, (30) implies

ḡk(ξ, η) = Ak(ξ, η) + Bk(ξ, η) + Ck(η) (31)

with Ak(ξ, η) = A(ξ, η, τk), Bk(ξ, η) =
∫ ξ

η
B(β, η, τk)dβ

and Ck(η) =
∫ η

0
C(β, τk)dβ. Thereby, the time dependency

of ḡ(ξ, η, τ) in each time interval [τk, τk+1) is approxi-
mately neglected, which allows to discard the differenti-
ation with respect to τ in (30).

Remark 6. Note that (31) requires the reformulation of
the coordinate transformation (15a) according to ζ =

z̄k(z) := z̄−1
L,k

∫ z

0 ã
− 1

2

k (s)ds, while the time scaling (15b)
is computed by means of the trapezoidal quadrature with

z̄L,k =
∫ L

0
ã
− 1

2

k (s)ds. Hence, the Hopf-Cole transformation
can be evaluated at every sampling step tk according to

ĕ(ζ, τk) = ĕk(ζ) = ẽ
(

z̄−1
k (ζ), tk

)

e
∫

ζ

0

χk(s)ds (32a)

χ(ζ, τk) = χk(ζ) =
z̄2L,k

2

[

ãk(z)∂
2
z z̄k(z) + b̃k(z)∂z z̄k(z)

−Dt ◦ z̄k(z)
]∣

∣

z=z̄
−1

k
(ζ)

. (32b)

Here, Dt ◦ z̄k(z) denotes numerical differentiation with
respect to time t obtained from a one-sided difference
quotient (Stoer [2002]). Similarly, numerical differentiation

is used for the computation of c̆k(ζ) =
∫ ζ

0 Dτ ◦ χk(s)ds −
χ2
k(ζ) − ∂ζχk(ζ) + z̄2L,kc̃k

(

z̄−1
k (ζ)

)

. The inverse z̄−1
k (ζ) is

computed by means of cubic interpolation.

Subsequently, trapezoidal quadrature is applied to (31)

with spatially discretized kernel ḡi,jk = ḡk(ξi, ηj) and

discretized function γi,j
k = γ

(

1 − ξi−ηj

2 , τk
)

. With δ =
1/(Nδ − 1) the (ξ, η)-domain is divided into equidistant
intervals with ξi = δ(i − 1), i = 1, . . . , 2Nδ − 1 and
ηj = δ(j − 1), j = 1, . . . , Nδ. This yields a pointwise
approximation of the time discrete equation (31), i.e.,

ḡi,jk = Āi,j
k + B̄i,j

k (33)

with Āi,j
k = Ak(ξi, ηj) and B̄i,j

k = Bk(ξi, ηj) + Ck(ηj)
collected in Fig. 1, where κ

i,j
k = γi,j

k ḡi,jk and
∑∗,m

n =
∑m

n

if n−m < 1,
∑∗,m

n = 0 if n−m = 1 and
∑∗,m

n = −∑n−1
m+1

if n − m > 1. An appropriate indexing of (33) with

B̄n
k = B̄i,j

k explicitly depending on ḡi,jk , j > 1, Ān
k = Āi,j

k ,

and Ãn
k = Ãi,j

k , where Ãi,j
k combines the last line of B̄i,j

k ,
allows to obtain an algebraic expression for the vector
ḡk = [ḡnk ]n=1,...,N , N = (Nδ − 1)2, i.e.,

ḡk = − (Dk − IN )−1
bk. (34)

Here, IN denotes the identity matrix, Dk = [Dn,m
k ] is

given elementwise by Dn,m
k = ∂B̄n

k/∂ḡ
m
k and bk = [bnk ]

is defined as bnk = Ān
k + Ãn

k . By using (34) in view of
gk(ζ, s) = ḡk(2 − ζ − s, ζ − s) for the determination of

l̆k(ζ), l̆k from (28), the observer gains lk(z), l0,k at every
sampling step tk follow as

lk(z) =

√

ãk(0)

z̄L,k

l̆k(ζ) e
−

∫

ζ

0
χk(s)ds l0,k = l̆0,k. (35)

Remark 7. The direct NTI provides a significant reduction
of computing time as outlined in Jadachowski et al. [2012],
which is of major importance in view of the successive
evaluation in every sampling interval.

3. CONVERGENCE OF THE OBSERVER ERROR

The investigation of the stability of the nonlinear observer
error dynamics (8)–(10) is highly challenging and beyond
the scope of this paper. For semi-linear PDEs with lo-
cally and uniformly Lipschitz continuous non-linearities
f(z, t, x, ∂zx) ≡ f(z, t, x), the exponential convergence of
the semi-linear observer error dynamics is presented in
Meurer [2013]. In the following, the stability investigations
are restricted to the linearized observer error dynamics
(12)–(14), which, for periodic quasi-linear PDEs, is jus-
tified by the results of Brunovský et al. [1992], see also
Remark 3.

The exponential stability of (12)–(14) can be analyzed by
taking into account the inverse of (26), i.e.,

w(ζ, τ) = ĕ(ζ, τ) +

∫ ζ

0

m(ζ, s, τ)ĕ(s, τ)ds (36)

with the inverse kernel m(ζ, s, τ) mapping (18)–(19) to
(22)–(24). The resulting kernel-PDE for m(ζ, s, τ) is sim-
ilar to (27) with the coefficient γ(ζ, τ) in (27a) replaced
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Āi,j
k = − δ

2

[

1
2

(

γk
1,1 + γk

j,1

)

+
∑∗,j−1

k=2 γk
k,1

]

− δ
4

[

1
2

(

γk
j,1 + γk

i,1

)

+
∑∗,i−1

k=j+1 γ
k
k,1

]

+ q̆k − qw

B̄i,j
k = δ2

4

[

1
4

(

κ
j,j
k + κ

i,j
k

)

+ 1
2

∑∗,j−1
k=2

(

κ
j,k
k + κ

i,k
k

)

+ 1
2

∑∗,i−1
h=j+1 κ

h,j
k +

∑i−1
h=j+1

∑∗,j−1
k=2 κ

h,k
k

]

− δq̆k

[

1
2 ḡ

j,j
k +

∑∗,j−1
k=2 ḡk,kk

]

+ δ2

2

[

1
4κ
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2
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k=2 κ

j,k
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h=2 κ

h,h
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h=2
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k=2 κ
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k

]
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4

[
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(

κ
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k + κ
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k
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h,1
k

]
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[
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]

− δ
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k

Fig. 1. Trapezoidal quadrature approximation of the integral operators Āi,j
k = Ak(ξi, ηj) and B̄i,j

k = Bk(ξi, ηj) + Ck(ηj).

by −γ(s, τ) and qw substituted for the time-varying co-
efficient q̆(τ) in (27c). Hence, in view of Remark 5 the
assumption below is justified for m(ζ, s, τ).

Assumption 8. There exists a bounded strong solution
m(ζ, s, τ) ∈ C2(Ωg)∩C1(R+

0 ) to the integral kernel in (36).

With Assumptions 4 and 8 as well as the Cauchy-Schwarz
inequality let us consider the following estimates,

∥

∥

∥

∫ ζ

0

g(ζ, s, t)w(s, t)ds
∥

∥

∥

2

L2

≤ sup
ζ,s,τ

g2(ζ, s, τ)‖w(ζ, τ)‖2L2

∥

∥

∥

∫ ζ

0

m(ζ, s, 0)ĕ(s, 0)ds
∥

∥

∥

2

L2

≤ sup
ζ,s

m2
0(ζ, s)‖ĕ0(ζ)‖2L2 .

In view of (36) and the above estimates, an upper bound
of ‖w0(ζ)‖L2 is given by

‖w0(ζ)‖L2 ≤ Cm ‖ĕ0(ζ)‖L2 (37)

with Cm = 1 +
√

supζ,s m
2
0(ζ, s). Evaluating the L2-norm

of (26) taking into account the stability property of the
target system according to (25), it follows that

‖ĕ(ζ, τ)‖L2 ≤ CgCm exp(−ετ)‖ĕ0(ζ)‖L2 (38)

with Cg = 1+
√

supζ,s g
2
0(ζ, s, τ). With this, the exponen-

tial decay of the linearized observer error dynamics (18)–

(19) in the (ζ, τ)-coordinates with the observer gains l̆(ζ, τ)

and l̆0(τ) from (28) is guaranteed in the L2-norm. Taking
the L2-norm of (16a) and changing the limit of integration
results, together with Assumption 1(i), in

‖ĕ(ζ, τ)‖2L2 =

∫ 1

0

ẽ2
(

z̄−1(ζ, τ), t̄−1(τ)
)

e
2
∫

ζ

0

χ(s,τ)ds
dζ

≥ e
2 infζ,τ

∫

ζ

0

χ(s,τ)ds
∫ L

0

ẽ2(z, t)
1

z̄L(t)
ã−

1

2 (z, t)dz

≥ Cinf ‖ẽ(z, t)‖2L2 (39)

with Cinf = exp
(

2 infζ,τ
∫ ζ

0 χ(s, τ)ds
)
√

al/ar/L. Similar

computation for the upper bound of ‖ĕ0‖2L2 yields

‖ĕ0(ζ)‖2L2 ≤ Csup ‖ẽ0(z)‖2L2 (40)

with Csup = exp
(

2 supζ
∫ ζ

0 χ(s, 0)ds
)√

ar/al/L. Substi-
tuting (39), (40) into (38) taking into account that
exp(−2ετ) ≤ exp(−2ε̃(t−t0)) with ε̃ = εal/L brings along

‖ẽ(z, t)‖L2 ≤ C exp(−ε̃(t− t0)) ‖ẽ0(z)‖L2 (41)

with C = CgCm

√

Csup/
√
Cinf . This guarantees that the

linearized observer error dynamics (12)–(14) in the (z, t)-
coordinates with the observer gains l(z, t), l0(t) according
to (29) decays exponentially over time t in the L2-norm.

4. SIMULATION RESULTS

Motivated by the preceding results, the state estima-
tion problem is considered for a T -periodic quasi-linear
parabolic PDE (1)–(4) with non-linearities exemplarily
given by

a(z, t, x) = 4 + 2 cos(πx) + 2z sin(2πt)

f(z, t, x, ∂zx) = sin(2πx) + 10x2(∂zx)
3 cos(2πt)

and the time-varying parameters p(t) = −1− 0.5 sin(2πt),
q(t) = −0.4 − 0.3 sin(2πt) with T = 1. Hence, both the
BCs (2) are of mixed type. The IC (3) with t0 = 0 is
chosen as x0(z) = 0.2+ 0.1(sin(π/2z)). The target system
(22)–(24) is parameterized by pw = −1, qw = 1 and
µ(τ) ≡ µ ∈ {1, 4}. The numerical evaluation is carried
out using the pdepe-algorithm of Matlab. Thereby, the
spatial dimension z ∈ [0, L] with L = 1 is divided into
Nδ = 10 equidistant intervals of length ∆z = 1/Nδ = 0.1.
This defines at the same time the dimension of the matrix
Dk and vector bk in (34).
Simulation results are presented in Fig. 2, where a simple
simulator with l(z, t) = l0(t) = 0 is compared with the de-
termined backstepping-based observer. Thereby, Fig. 2(a)
presents the solution x(z, t) of (1)–(3), while in Fig. 2(b)
the evolution of the simulator error es(z, t) with the IC
x̂0(z) = −0.5x0(z) is shown. Due to the non-zero initial
error and the lack of the output injection, the state evo-
lution of the simulator diverges from the periodic equilib-
rium of the plant such that a significant oscillating ob-
servation error evolves. Fig. 2(c) shows estimation results
of the proposed observer design approach with observer
gains l(z, t) and l0(t) according to (29) with µ = 4.
The output injection is switched on for t ≥ 0.6 as ad-
dressed in Fig. 2(d), where the corresponding evolution
of the observer gains l(z, t) at z = L and l0(t) with
a sampling time Ta = 0.04 is depicted for µ ∈ {1, 4}.
Further results shown in Figs. 2(e)–(f) clearly confirm
a good estimation performance of the proposed observer
compared to the simple simulator. Fig. 2(e) depicts the
system output (4) compared with the simulator ŷs(t) and
observer output ŷo(t) for µ ∈ {1, 4}. The evolution of the
observer error norm ‖eo(z, t)‖L2 and the simulator error
norm ‖es(z, t)‖L2 is addressed in Fig. 2(f). It becomes clear
that higher values of the design parameter µ improve the
estimation performance.

5. CONCLUSIONS

This contribution presents a backstepping-based solution
of the state estimation problem for periodic quasi-linear
parabolic PDEs. For this, an extended linearization is ap-
plied to the quasi-linear observer error dynamics assuming
that the initial observer error is sufficiently small. The
resulting linear time-varying observer error dynamics is
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Fig. 2. Simulation results for the state estimation problem.

transformed into a normalized form, which serves as the
basis for the design of the observer gains. A modification of
the introduced numerical solution approach for the kernel-
PDE results in an efficient computation of the observer
gains. Convergence of the linearized observer error dynam-
ics is verified analytically. The estimation performance of
the proposed observer is illustrated by means of simulation
results.
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P. Brunovský, P. Poláčik, and B. Sandstede. Convergence
in general periodic parabolic equations in one space
dimension. Nonlinear Analysis: Theory, Methods &
Applications, 18(3):209 – 215, 1992.

D. Colton. The solution of initial-boundary value prob-
lems for parabolic equations by the method of integral
operators. J. Differ. Equations, 26:181–190, 1977.

E. Hopf. The partial differential equation ut+uux = µuxx.
Commun. Pur. Appl. Math., 3(3):201–230, 1950.

X. Hua, M. Mangold, A. Kienle, and E.D. Gilles. State
profile estimation of an autothermal periodic fixed-bed
reactor. Chem. Eng. Sci., 53(1):47 – 58, 1998.

L. Jadachowski, T. Meurer, and A. Kugi. An
Efficient Implementation of Backstepping
Observers for Time-Varying Parabolic PDEs.
In 7th MATHMOD Conference, pages 798–
803, Vienna, Austria, Feb. 14–17, 2012. URL
http://www.ifac-papersonline.net/58797.html.

L. Jadachowski, T. Meurer, and A. Kugi. State Estima-
tion for Parabolic PDEs with Reactive-Convective Non-
Linearities. In European Control Conference (ECC),
pages 1603–1608, Zurich, Switzerland, Jul. 17–19, 2013.

H. A. Jakobsen. Chemical Reactor Modeling - Multiphase
Reactive Flows. Springer, Berlin Heidelberg, 2008.
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