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Abstract: This paper focuses on the modeling and  𝑯𝑯∞  fault tolerant control of wind turbine system with 
actuator faults. Stochastic piecewise affine (PWA) modeling tool is adopted to establish the multiple 
operating points models of wind turbine system with actuator faults under different wind speeds. Based 
on stochastic PWA model of wind turbine system with actuator faults, the theorem of  𝑯𝑯∞  fault tolerant 
control strategy is presented to solve the PWA state feedback control law of wind turbine system. The 
performance and the efficiency of the proposed approach are validated via simulations. 

 

1. INTRODUCTION 

Wind turbine system is a mechanical electronic hydraulic 
integrated system which consists of rotor, drive train, gear 
box, generator and other mechanical equipment. Wind 
turbine driven by stochastic wind power signal indicates 
properties of nonlinear switching systems. Control systems 
perform a vital role in meeting power captured and load 
alleviation targets in wind turbines. The performance of the 
designed controller can be easily interrupted by possible 
faults and failures in different parts of the system. Thus, 
searching for fault-tolerant controller designs with early fault 
detection, isolation and successful controller reconfiguration 
would be very conducive to wind turbine operations. 

Fault-tolerant control designs for wind turbine systems are 
insufficient. In (C. Sloth et al., 2010), the authors presented 
active and passive fault tolerant control designs for wind 
turbines. Linear parameter varying control design method 
was applied which leads to LMI based optimization in the 
event that active fault tolerant and BLMI in case of passive 
fault-tolerant problems. The authors in (K. Rothenhagen et al., 
2009), presented model-based fault detection and control 
loop reconfiguration for doubly fed induction generators. In 
(M. A. Parker et al., 2013), generator-converter fault-tolerant 
control was investigated for direct drive wind turbines. In (M. 
Ruba et al., 2009), a fault-tolerant switched reluctance motor 
was designed for blade pitch control system.  

The above mentioned methods are all restricted to the 
nonlinear characteristics of wind turbines. To overcome this 
drawback,  𝐻𝐻∞ fault tolerant strategy for wind turbine is 
proposed in this paper based on stochastic PWA model 
framework.  

A number of results have been obtained on analysis and 
controller design of such piecewise continuous time linear 
systems during the last few years (M. Johansson et al., 1998; 
A. Rantzer et al., 2000; A Hassibi, et al., 1998; S Pettersson, 
et al., 1997) . In the case of discrete time, the authors in (O. 
Slupphaug, et al., 1999) presented an approach to 
stabilization of piecewise linear systems based on a global 

quadratic Lyapunov function. (F. A. Cuzzola et al.,2001; D. 
Mignone et al., 2000) presented a number of results on 
stability analysis, controller design,  𝐻𝐻∞  analysis, and 
 𝐻𝐻∞ controller design for the piecewise linear systems based 
on a piecewise Lyapunov function. In (F. A. Cuzzola et al., 
2001), the affine term was treated as a disturbance for  𝐻𝐻∞ 
control synthesis. In a recent paper (F. Gang, 2002), a new 
method was presented to synthesize a  𝐻𝐻∞ controller for the 
piecewise discrete time linear systems. Best to the author’s 
knowledge, there are no work to solve the fault tolerant 
control problem of the wind turbine within the stochastic 
PWA framework. In this paper, the stochastic PWA normal 
and actuator fault models for wind turbine including multiple 
work regions are established. A reliable piecewise linear 
quadratic regulator state feedback is designed such that it can 
make the actuator faults tolerant. A sufficient condition for 
the existence of the passive fault tolerant controller is derived 
based on some LMIs.  

The paper is organized as follows. In section 2, dynamic 
model of wind turbine and the control strategy are briefly 
described. The PWA modeling method of wind turbine is 
briefly described in section 3.  𝐻𝐻∞ Fault-tolerant control is 
discussed in sections 4. In section 5, simulation results and 
relevant analysis are given. Finally, conclusions are discussed 
in section 6. 

2. DYNAMIC MODEL OF WIND TURBINE AND THE 
CONTROL STRATEGY 

The inputs of wind turbine (Fig. 1) are wind speed   𝑣𝑣(𝑡𝑡), 
pitch angle reference  𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡)  and generator torque 
reference 𝑇𝑇𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡) . The outputs of the system are generator 
power 𝑃𝑃𝑔𝑔(𝑡𝑡) and high-speed shaft speed  𝜔𝜔𝑔𝑔(𝑡𝑡). 
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Fig. 1. The structure of wind turbine 
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2.1 Wind Model 

Wind is yielded by superposing two components (I. 
Munteanu, et al. 2008), as shown in (1). 

𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑠𝑠(𝑡𝑡) + 𝑣𝑣𝑚𝑚(𝑡𝑡)                            (1)  
where 𝑣𝑣𝑚𝑚 (𝑡𝑡)  is the low-frequency component (describing 
long term, low-frequency variations), i.e. average wind speed 
and 𝑣𝑣𝑠𝑠(𝑡𝑡) is the turbulence component (corresponding to fast, 
high-frequency variations). 

2.2 Aerodynamic Model 

The available power from the wind 𝑃𝑃𝑤𝑤  can be expressed as: 

𝑃𝑃𝑤𝑤 = 1
2
𝜌𝜌𝜌𝜌𝑣𝑣3                                   (2)  

where 𝜌𝜌 is the rotor swept area. 𝑣𝑣 is the rotor effective wind 
speed. 𝜌𝜌 is the air density, which is assumed to be constant. 

From 𝑃𝑃𝑤𝑤 , the power captured by the rotor 𝑃𝑃𝑎𝑎  is: 

𝑃𝑃𝑎𝑎 = 𝑃𝑃𝑤𝑤𝐶𝐶𝑝𝑝(𝜆𝜆,𝛽𝛽)                               (3)  
where 𝐶𝐶𝑝𝑝(𝜆𝜆,𝛽𝛽) is the power coefficient, which depends on 
the tip-speed ratio 𝜆𝜆 and the pitch angle 𝛽𝛽. 
The tip-speed ratio is defined as the ratio between the tip 
speed of the blades and the rotor effective wind speed:  

𝜆𝜆 = 𝑅𝑅𝜔𝜔𝑟𝑟
𝑣𝑣

                                      (4)  

where 𝜔𝜔𝑟𝑟  is the low-speed shaft speed, and 𝑅𝑅  is the blade 
length. 

2.3 Drive Train Model 

The drive train model includes a low-speed shaft, a high-
speed shaft, a gear box and flexible device. The drive train 
dynamics function is given: 

�
�̇�𝜔𝑟𝑟 = 𝑇𝑇r

𝐽𝐽𝑟𝑟
− 𝜔𝜔𝑟𝑟Ds

𝐽𝐽𝑟𝑟
+ 𝜔𝜔𝑔𝑔Ds

𝐽𝐽𝑟𝑟𝑁𝑁𝑔𝑔
− δKs

𝐽𝐽𝑟𝑟 
�̇�𝜔𝑔𝑔 = 𝜔𝜔𝑟𝑟Ds

𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔
− 𝜔𝜔𝑔𝑔Ds

𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔2 + δKs
𝐽𝐽𝑔𝑔
− 𝑇𝑇𝑔𝑔

𝐽𝐽𝑔𝑔

�                       (5)  

where 𝐽𝐽𝑟𝑟  and  𝐽𝐽𝑔𝑔  are the moments of inertia of the low-speed 
shaft and the high-speed shaft, 𝐾𝐾𝑠𝑠 is the torsion stiffness of 
the drive train, 𝐷𝐷𝑠𝑠 is the torsion damping coefficient of the 
drive train, 𝑁𝑁𝑔𝑔   is the gear ratio. 𝛿𝛿  is the twist of the flexible 
drive train with �̇�𝛿 = 𝜔𝜔𝑟𝑟 −

𝜔𝜔𝑔𝑔
𝑁𝑁𝑔𝑔

. 

2.4 Pitch System Model 

The pitch system can be modeled by a second order transfer 
function (T. Esbensen et al., 2009). The state equation is: 

�
�̇�𝛽 = �̇�𝛽
�̈�𝛽 = −𝜔𝜔𝑛𝑛2𝛽𝛽 − 2𝜉𝜉𝜔𝜔𝑛𝑛 �̇�𝛽 +𝜔𝜔𝑛𝑛2𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟

�                      (6)  

2.5 Generator and Converter Model 

The generator and converter dynamics can be modeled by a 
first order transfer function. 

 �̇�𝑇𝑔𝑔 = − 1
𝜏𝜏𝑔𝑔
𝑇𝑇𝑔𝑔 + 1

𝜏𝜏𝑔𝑔
𝑇𝑇𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟                                  (7)  

where 𝜏𝜏𝑔𝑔  is the time constant.  

The real-time power is described by 

𝑃𝑃𝑔𝑔 = 𝜂𝜂𝑔𝑔𝜔𝜔𝑔𝑔𝑇𝑇𝑔𝑔                                             (8)  

Finally, the dynamics of wind turbine can be achieved:  

⎣
⎢
⎢
⎢
⎢
⎡
�̇�𝜔𝑟𝑟
�̇�𝜔𝑔𝑔
�̇�𝛽
�̈�𝛽
�̇�𝑇𝑔𝑔 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇r
𝐽𝐽𝑟𝑟
− 𝜔𝜔𝑟𝑟Ds

𝐽𝐽𝑟𝑟
+ 𝜔𝜔𝑔𝑔Ds

𝐽𝐽𝑟𝑟𝑁𝑁𝑔𝑔
− δKs

𝐽𝐽𝑟𝑟
𝜔𝜔𝑟𝑟Ds
𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔

− 𝜔𝜔𝑔𝑔Ds

𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔2 + δKs
𝐽𝐽𝑔𝑔
− 𝑇𝑇𝑔𝑔

𝐽𝐽𝑔𝑔

�̇�𝛽
−𝜔𝜔𝑛𝑛2𝛽𝛽 − 2𝜉𝜉𝜔𝜔𝑛𝑛 �̇�𝛽

− 1
𝜏𝜏𝑔𝑔
𝑇𝑇𝑔𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
0      0
0      0
0      0
𝜔𝜔𝑛𝑛2   0
0     1

𝜏𝜏𝑔𝑔⎦
⎥
⎥
⎥
⎥
⎤

�
𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟

�      (9)  

2.6 Control Strategy 

The basic control strategy is described as Fig. 2. The control 
requirements for the power are different in different wind 
regions. If 𝑣𝑣 < 𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡−𝑖𝑖𝑛𝑛 , system stops. If 𝑣𝑣 ∈ [𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡 −𝑖𝑖𝑛𝑛  ,𝑣𝑣𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟 ], 
the system needs to maximize the wind harvested power. 
If 𝑣𝑣 > 𝑣𝑣𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟  , the system needs to limit power to the rated 
and maintain the stability of the system. 
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Fig. 2. The control strategy for wind turbine 

3. MODELLING WIND TURBINE WITHIN 
STOCHASTIC PWA MODEL FRAMEWORK 

In summary, wind turbine is mainly based on four regions for 
modeling and control. According to the different wind speeds, 
models and control strategies need to switch. This section 
introduces the basic principles of PWA modeling method, 
and gives modeling ideas of wind turbine. 

3.1 Stochastic PWA Model Form 
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A linear stochastic discrete-time PWA system is defined by 
the state-space equation 

𝑥𝑥𝑘𝑘+1 = 𝜌𝜌𝑖𝑖𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑖𝑖𝑐𝑐𝑘𝑘 + 𝐵𝐵𝑖𝑖𝑤𝑤𝑤𝑤𝑘𝑘 + 𝑎𝑎𝑖𝑖
𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑖𝑖𝑐𝑐𝑘𝑘 + 𝐷𝐷𝑖𝑖𝑤𝑤𝑤𝑤𝑘𝑘     �

𝑥𝑥𝑘𝑘
𝑐𝑐𝑘𝑘� ∈ 𝜒𝜒𝑖𝑖 , 𝑥𝑥𝑘𝑘 ∈ �̅�𝜒𝑗𝑗   (10)  

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛  is the state, 𝑐𝑐𝑘𝑘 ∈ ℝ𝑚𝑚  is the control input 
and 𝑧𝑧𝑘𝑘 ∈ ℝ𝑚𝑚  is a performance output. The set 𝕏𝕏 ⊆ ℝ𝑛𝑛+𝑚𝑚 of 
vector [𝑥𝑥𝑘𝑘𝑇𝑇 𝑐𝑐𝑘𝑘𝑇𝑇]𝑇𝑇 is ℝ𝑛𝑛+𝑚𝑚  or a polyhedron containing the 
origin, {𝜒𝜒𝑖𝑖}𝑖𝑖=1

𝑠𝑠  is a polyhedral partition of  𝕏𝕏  and 𝑎𝑎𝑖𝑖 ∈ ℝ𝑛𝑛  are 
constant vectors. Each 𝜒𝜒𝑖𝑖  is a cell. For simplicity, assume that 
cells are polyhedral defined by matrices  𝐹𝐹𝑖𝑖𝑥𝑥 , 𝐹𝐹𝑖𝑖𝑐𝑐  , 𝑟𝑟𝑖𝑖𝑥𝑥  and 
𝑟𝑟𝑖𝑖𝑐𝑐  as follows: 

𝜒𝜒𝑖𝑖 ≔ [𝑥𝑥𝑇𝑇 𝑐𝑐𝑇𝑇]𝑇𝑇  such that 𝐹𝐹𝑖𝑖𝑥𝑥𝑥𝑥 ≥ 𝑟𝑟𝑖𝑖𝑥𝑥  and 𝐹𝐹𝑖𝑖𝑐𝑐𝑐𝑐 ≥ 𝑟𝑟𝑖𝑖𝑐𝑐  

�̅�𝜒𝑖𝑖 ≔ 𝑥𝑥 such that 𝐹𝐹𝑖𝑖𝑥𝑥𝑥𝑥 ≥ 𝑟𝑟𝑖𝑖𝑥𝑥   

𝑆𝑆𝑗𝑗 ≔ 𝑖𝑖 such that ∃𝑥𝑥,𝑐𝑐 with 𝑥𝑥 ∈ �̅�𝜒𝑗𝑗 , [𝑥𝑥𝑇𝑇 𝑐𝑐𝑇𝑇]𝑇𝑇 ∈ 𝜒𝜒𝑖𝑖  

where  𝑆𝑆𝑗𝑗  is the set of all indices 𝑖𝑖  such that  𝜒𝜒𝑖𝑖  is a cell 
containing a vector [𝑥𝑥𝑇𝑇 𝑐𝑐𝑇𝑇]𝑇𝑇  with 𝑥𝑥 ∈ �̅�𝜒𝑗𝑗  is satisfied. 
Denote 𝐼𝐼 = {1, … , 𝑠𝑠}, which is the set of indices of the cells 
𝜒𝜒𝑖𝑖 ; Denote 𝒥𝒥 = {1, … , 𝑡𝑡}, which is the set of indices of the 
cells �̅�𝜒𝑗𝑗 . It is important to see that: ⋃ 𝑆𝑆𝑗𝑗 = 𝐼𝐼𝑡𝑡

𝑗𝑗=1 . 

3.2 Stochastic PWA Model for Wind Turbine 

The linearized drive train dynamics function can be follows: 

�
�̇�𝜔𝑟𝑟 = 1

3𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝛽𝛽
𝛽𝛽 + 𝐵𝐵𝑟𝑟𝑡𝑡

𝑁𝑁𝑔𝑔𝐽𝐽𝑟𝑟
𝜔𝜔𝑔𝑔 + �− 𝐵𝐵𝑟𝑟𝑡𝑡 +𝐵𝐵𝑟𝑟

𝐽𝐽𝑟𝑟
+ 1

𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝜔𝜔𝑟𝑟

�𝜔𝜔𝑟𝑟 + 1
3𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎 (𝑡𝑡)
𝜕𝜕𝑣𝑣𝑟𝑟

𝑣𝑣(𝑡𝑡)
 

�̇�𝜔𝑔𝑔 = − 1
𝐽𝐽𝑔𝑔
𝑇𝑇𝑔𝑔 − �𝜂𝜂𝑟𝑟𝑡𝑡 𝐵𝐵𝑟𝑟𝑡𝑡

𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔2
+ 𝐵𝐵𝑔𝑔

𝐽𝐽𝑔𝑔
� 𝜔𝜔𝑔𝑔 + 𝐵𝐵𝑟𝑟𝑡𝑡

𝑁𝑁𝑔𝑔𝐽𝐽𝑔𝑔
𝜔𝜔𝑟𝑟                                 

�    (11) 

where  𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝛽𝛽
、

𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝜔𝜔𝑟𝑟

 and 𝜕𝜕𝑇𝑇𝑎𝑎 (𝑡𝑡)
𝜕𝜕𝑣𝑣𝑟𝑟

 are the linearized parameters in 
different working points;  𝐵𝐵𝑔𝑔  is the viscous friction of the 
high speed shaft. 

Then a linearized overall state space model describing the 
dynamics of the wind turbine can be given: 

 

⎣
⎢
⎢
⎢
⎢
⎡ �̇�𝑇𝑔𝑔
�̇�𝛽
�̈�𝛽
�̇�𝜔𝑔𝑔
�̇�𝜔𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜌𝜌11     0      0       0      0  
0       0       𝐼𝐼        0      0
0     𝜌𝜌54    𝜌𝜌55    0    0
𝑎𝑎71    0   0    𝑎𝑎77     𝐵𝐵𝑟𝑟𝑡𝑡

𝑁𝑁𝑔𝑔𝐽𝐽𝑔𝑔
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⎥
⎥
⎥
⎤
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�̇�𝛽
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⎡

0
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0
0
𝑟𝑟81⎦

⎥
⎥
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⎤

𝑣𝑣(𝑡𝑡) +

⎣
⎢
⎢
⎢
⎡
𝐵𝐵11    0
0        0
0    𝐵𝐵42
0        0
0        0⎦

⎥
⎥
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�
𝑇𝑇𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟
𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟

�(12)         

where 𝜌𝜌11 = − 1
𝜏𝜏𝑔𝑔

,𝜌𝜌54 = −𝜔𝜔𝑛𝑛2,𝜌𝜌55 = −2𝜉𝜉𝜔𝜔𝑛𝑛 ,𝑎𝑎71 = − 1
𝐽𝐽𝑔𝑔

, 

𝑎𝑎77 = −�
𝜂𝜂𝑟𝑟𝑡𝑡 𝐵𝐵𝑟𝑟𝑡𝑡
𝐽𝐽𝑔𝑔𝑁𝑁𝑔𝑔2

+
𝐵𝐵𝑔𝑔
𝐽𝐽𝑔𝑔
�  ,𝑎𝑎84 =

1
3𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝛽𝛽

 , 𝑟𝑟81 =
1

3𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎(𝑡𝑡)
𝜕𝜕𝑣𝑣𝑟𝑟

,𝐵𝐵11 =
1
𝜏𝜏𝑔𝑔

, 

𝑎𝑎88 = −
𝐵𝐵𝑟𝑟𝑡𝑡 + 𝐵𝐵𝑟𝑟

𝐽𝐽𝑟𝑟
+

1
𝐽𝐽𝑟𝑟

𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝜔𝜔𝑟𝑟

 ,𝐵𝐵42 = 𝜔𝜔𝑛𝑛2. 

The effective wind (1) can be thought of as a superposition of 
the mean wind speed   𝑣𝑣𝑚𝑚  and a stochastic component   𝑣𝑣𝑠𝑠 . 
Following (J. Højstrup, 1982; S. Thomsen, 2006), the 
stochastic component   𝑣𝑣𝑠𝑠  can be approximated by a linear 

second order transfer function driven by a white noise 
process.  

�̇�𝜔1 = 𝜔𝜔2
�̇�𝜔2 = −𝑎𝑎1𝜔𝜔1 + 𝑎𝑎2𝜔𝜔2 + 𝑎𝑎3𝑟𝑟                      (13)  

where  𝜔𝜔1 = 𝑣𝑣𝑠𝑠 ,  𝑟𝑟 ∈ 𝒩𝒩(0,1)  and 𝑎𝑎1, 𝑎𝑎2,𝑎𝑎3 are parameters 
depending on the mean wind speed. 

Then, model (12) can be translated into the following form: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑇𝑇𝑔𝑔
�̇�𝛽
�̈�𝛽
𝜔𝜔�̇�𝑔
𝜔𝜔�̇�𝑟
𝜔𝜔1̇
𝜔𝜔2̇

̇

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

11

54 55

71 77

84 88

1 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0

0 0  0 0

0 0 0 0 0 0 1
0 0 0 0 0

dt
g g

dt
g r

A
I

A A
Ba a

N J

Ba a
N J

a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 − − 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑔𝑔
𝛽𝛽
�̇�𝛽
𝜔𝜔𝑔𝑔
𝜔𝜔𝑟𝑟
𝜔𝜔1
𝜔𝜔2⎦
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐵𝐵11 0

0
0
0
0
0
0

0
𝐵𝐵42
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑇𝑇𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟
𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟

� +

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
𝑟𝑟81
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝜐𝜐𝑚𝑚 +

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
𝑟𝑟81
0
𝑎𝑎3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Fig. 3 Wind speed and the corresponding working point 
According to Fig. 3, choose 3 working points, the values 
of   𝜕𝜕𝑇𝑇𝑎𝑎

𝜕𝜕𝛽𝛽
 , 𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝜔𝜔𝑟𝑟

 and 𝜕𝜕𝑇𝑇𝑎𝑎 (𝑡𝑡)
𝜕𝜕𝑣𝑣𝑟𝑟

  in different working points can be 
obtained according to different wind speeds by an effective 
wind estimator (K. Østergaard, et al. 2007), where the 
realization method is described in (R. M. Burkart et al., 2011). 
The parameters we needed are shown in Tables 1 and 2. 

Table 1.  Model parameters 

𝐽𝐽𝑟𝑟  90000 [kg ⋅ m2] 𝑃𝑃𝑔𝑔 ,𝑛𝑛𝑛𝑛𝑚𝑚  225 [kW] 
𝐽𝐽𝑔𝑔  10 [kg ⋅ m2] 𝜔𝜔𝑟𝑟 ,𝑛𝑛𝑛𝑛𝑚𝑚  4.29 [rad/s] 

𝐾𝐾𝑠𝑠  8 ⋅ 106 [Nm/rad] 𝜔𝜔𝑔𝑔,𝑛𝑛𝑛𝑛𝑚𝑚  105.534 [rad/s] 

𝐷𝐷𝑠𝑠 8 ⋅ 104 [kg ⋅ m2/(rad ⋅ s)] 𝜔𝜔𝑟𝑟 ,𝑚𝑚𝑖𝑖𝑛𝑛  3.5 [rad/s] 
𝑁𝑁𝑔𝑔  24.6 [-] 𝜔𝜔𝑔𝑔,𝑚𝑚𝑖𝑖𝑛𝑛  86.1 [rad/s] 

ℛ 14.5 [m] 𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛  0 [deg] 

𝜏𝜏𝜃𝜃  0.15 [s] 𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥  25 [deg] 

𝜏𝜏𝛤𝛤  0.1 [s] ��̇�𝜃�𝑚𝑚𝑎𝑎𝑥𝑥  10 [deg/s] 

Table 2.  Parameters of linearized model in different 
working points 

Wind 
(m/s) 

Parameter 
a84 a88 e81 a1 a2 a3 

V=7.5 0.409 0.50 1.90 0.3125 2.92 0.9375 
V=10 0.479 0.53 2.31 0.33 3.65 2.3 
V=16 0.833 0.53 2.50 0.625 5 5 

3.3 Wind Turbine Actuator Fault Model 

In this work, we consider actuator faults. Let 𝑐𝑐𝑗𝑗  denote the 
𝑗𝑗’𝑡𝑡ℎ  actuator and 𝑐𝑐𝑗𝑗 𝐹𝐹  denote the failed 𝑗𝑗’𝑡𝑡ℎ  actuator. We 
model a loss of gain in an actuator as: 
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𝑐𝑐𝑗𝑗 𝐹𝐹 = �1− 𝛼𝛼𝑗𝑗 �𝑐𝑐𝑗𝑗 , 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝛼𝛼𝑀𝑀𝑗𝑗              (15)  

where 𝛼𝛼𝑗𝑗   is the percentage of failure in the 𝑗𝑗’𝑡𝑡ℎ actuator, 𝛼𝛼𝑀𝑀𝑗𝑗  
is the maximum loss in the 𝑗𝑗’𝑡𝑡ℎ actuator. 𝛼𝛼𝑗𝑗 = 0  represents 
the case without faults in the 𝑗𝑗’𝑡𝑡ℎ  actuator, 0 < 𝛼𝛼𝑗𝑗 < 1 
corresponds to the partial loss of it, and 𝛼𝛼𝑗𝑗 = 1 corresponds 
to complete loss of it. We define  𝛼𝛼  as 
𝛼𝛼 = 𝑟𝑟𝑖𝑖𝑎𝑎𝑔𝑔{𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑚𝑚 }. Then 𝑐𝑐𝐹𝐹 = 𝛤𝛤𝑐𝑐, where 𝛤𝛤 = (𝐼𝐼 − 𝛼𝛼). 
Consider 𝛤𝛤𝒂𝒂 is the gain factor of actuator fault, which is a 
diagonal matrix of two elements. 

The model of the system with the loss of gain 𝛤𝛤𝑎𝑎   in actuators 
can be describe by 

𝑥𝑥𝑘𝑘+1 = 𝜌𝜌𝑖𝑖𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝑐𝑐𝑘𝑘 + 𝐵𝐵𝑖𝑖𝑤𝑤𝑤𝑤𝑘𝑘 + 𝑎𝑎𝑖𝑖
𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑥𝑥𝑘𝑘 +𝐷𝐷𝑖𝑖𝑐𝑐𝑘𝑘 + 𝐷𝐷𝑖𝑖𝑤𝑤𝑤𝑤𝑘𝑘     �

𝑥𝑥𝑘𝑘
𝑐𝑐𝑘𝑘� ∈ 𝜒𝜒𝑖𝑖 , 𝑥𝑥𝑘𝑘 ∈ �̅�𝜒𝑗𝑗    (16)  

4.  𝐻𝐻∞ FAULT TOLERANT CONTROL FOR ACTUATOR 
FAULTS 

Consider the PWA actuator fault system (16), define 𝑤𝑤𝑘𝑘  as 
follows: 

𝑤𝑤�𝑘𝑘 = �
𝑤𝑤𝑘𝑘
𝑎𝑎𝑖𝑖 �                              (17)  

Thus, system (16) can be rewritten as: 

𝑥𝑥𝑘𝑘+1 = 𝜌𝜌𝑖𝑖𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝑐𝑐𝑘𝑘 + 𝐵𝐵�𝑖𝑖𝑤𝑤𝑤𝑤�𝑘𝑘
𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑖𝑖𝑐𝑐𝑘𝑘 + 𝐷𝐷�𝑖𝑖𝑤𝑤𝑤𝑤�𝑘𝑘  

   �
𝑥𝑥𝑘𝑘
𝑐𝑐𝑘𝑘� ∈ 𝜒𝜒𝑖𝑖 ,𝑥𝑥𝑘𝑘 ∈ �̅�𝜒𝑗𝑗     (18)  

where  

 𝐵𝐵�𝑖𝑖𝑤𝑤 = [𝐵𝐵𝑖𝑖𝑤𝑤 𝐼𝐼], 𝐷𝐷�𝑖𝑖𝑤𝑤 = [𝐷𝐷𝑖𝑖𝑤𝑤 𝐼𝐼]                     (19)  

The 𝐻𝐻∞  framework considered here, is based on a finite 
horizon definition of the 𝑙𝑙2  gain and, consequently, the 
proposed extension of the disturbance input is sensible. 

Clearly, it is possible to apply the control approach proposed 
in (F. A. Cuzzola et al., 2001) directly to the extended system 
(18). This can be conservative because 𝑎𝑎𝑖𝑖  is not an unknown 
disturbance but a known term. Unfortunately, in general, 𝑎𝑎𝑖𝑖  is 
known only when the control signal 𝑐𝑐𝑘𝑘  has already been 
calculated. Notwithstanding this, under the standard 
assumption 

𝑎𝑎𝑖𝑖 = 𝑎𝑎�𝑗𝑗 ,∀𝑖𝑖 ∈ 𝒮𝒮𝑗𝑗 ,∀𝑗𝑗 ∈ 𝒥𝒥                              (20) 

an alternative control strategy can be proposed. More 
precisely, the control is assumed to have the following 
structure: 

𝑐𝑐𝑘𝑘 = �𝐾𝐾𝑗𝑗1 𝐾𝐾𝑗𝑗2� �
𝑥𝑥𝑘𝑘
𝑎𝑎�𝑗𝑗 �  𝑥𝑥𝑘𝑘 ∈ �̅�𝜒𝑗𝑗                       (21)  

In this way the controller can also take into account the 
displacement term 𝑎𝑎𝑖𝑖 = 𝐷𝐷𝑤𝑤�𝑘𝑘 , where 𝐷𝐷 = [0 𝐼𝐼]. 

By applying the control law (21) to the PWA system (18), we 
obtain the closed loop PWA actuator fault system: 

𝑥𝑥𝑘𝑘+1 = 𝒜𝒜𝑖𝑖𝑗𝑗 𝑥𝑥𝑘𝑘 + 𝐵𝐵�𝑖𝑖𝑗𝑗𝑤𝑤𝑤𝑤�𝑘𝑘  

𝑧𝑧𝑘𝑘 = 𝒞𝒞𝑖𝑖𝑗𝑗 𝑥𝑥𝑘𝑘 +𝐷𝐷�𝑖𝑖𝑗𝑗𝑤𝑤𝑤𝑤�𝑘𝑘   
       �

𝑥𝑥𝑘𝑘
𝑐𝑐𝑘𝑘� ∈ 𝜒𝜒𝑖𝑖 ,𝑥𝑥𝑘𝑘 ∈ �̅�𝜒𝑗𝑗         (22) 

where  
𝒜𝒜𝑖𝑖𝑗𝑗 = 𝜌𝜌𝑖𝑖 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗1, 𝐵𝐵�𝑖𝑖𝑗𝑗𝑤𝑤 = 𝐵𝐵�𝑖𝑖𝑤𝑤 + 𝐵𝐵𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷 
𝒞𝒞𝑖𝑖𝑗𝑗 = 𝐶𝐶𝑖𝑖 +𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗1,        𝐷𝐷�𝑖𝑖𝑗𝑗𝑤𝑤 = 𝐷𝐷�𝑖𝑖𝑤𝑤 +𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷 

             (23) 

From the above, we can have the following main results: 
Lemma 1. Consider system (22) with zero initial condition 

0 0x = , if there exists a function 𝑉𝑉(𝑥𝑥,𝑐𝑐) = 𝑥𝑥𝑇𝑇𝑃𝑃𝑖𝑖𝑥𝑥 
for  [𝑥𝑥𝑇𝑇   𝑐𝑐𝑇𝑇]𝑇𝑇 ∈ 𝜒𝜒𝑖𝑖  with 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑇𝑇 > 0, satisfying the 
dissipativity inequality 

 ∀𝑤𝑤 ∈ ℝ𝑟𝑟 ,∀𝑘𝑘 ≥ 0, 𝑉𝑉(𝑥𝑥𝑘𝑘+1,𝑐𝑐𝑘𝑘+1) −𝑉𝑉(𝑥𝑥𝑘𝑘 ,𝑐𝑐𝑘𝑘) < 𝑊𝑊(𝑧𝑧𝑘𝑘 ,𝑤𝑤𝑘𝑘) 
with supply rate  

𝑊𝑊∞(𝑧𝑧,𝑤𝑤) = (𝛾𝛾2‖𝑤𝑤‖2 − ‖𝑧𝑧‖2),𝛾𝛾 > 0, 

i.e.    ∀𝑘𝑘,𝑉𝑉(𝑥𝑥𝑘𝑘+1,𝑐𝑐𝑘𝑘+1)− 𝑉𝑉(𝑥𝑥𝑘𝑘 ,𝑐𝑐𝑘𝑘) < (𝛾𝛾2‖𝑤𝑤𝑘𝑘‖2 − ‖𝑧𝑧𝑘𝑘‖2)   (24) 

then, the 𝐻𝐻∞ performance condition (25) is satisfied. 

∑ ‖𝑧𝑧𝑘𝑘‖2N
k=0 < 𝛾𝛾2 ∑ ‖𝑤𝑤𝑘𝑘‖2𝑁𝑁

𝑘𝑘=0                    (25) 

Furthermore, if the following matrix inequalities (26) are 
satisfied, then condition (24) is fulfilled. 

∀𝑗𝑗 ∈ ℐ,∀𝑖𝑖 ∈ 𝒮𝒮𝑗𝑗 ,∀𝑙𝑙 𝑤𝑤𝑖𝑖𝑡𝑡ℎ (𝑙𝑙, 𝑖𝑖) ∈ 𝒮𝒮,𝑀𝑀𝑙𝑙 ,𝑖𝑖𝑗𝑗 < 0.            (26)  
where  

, 2

T T T w T w
ij i ij j ij ij ij j ij i j

l ij wT wT wT w wT w
j ij j i ij j i j j j

A P A P C C C D A PB
M

D C B P A B PB D D Iγ
 − + +

=  + + −  
 

In this last case, system (22) is PWQ stable. 
The proof can be found in (F. A. Cuzzola et al., 2001).  

Theorem 1. For PWA system (16), there exists a state 
feedback control law of type (21), which can guarantee PWQ 
Lyapunov stability and fulfill the dissipativity constraint 
∀𝑤𝑤 ∈ ℝ𝑟𝑟 ,∀𝑘𝑘 ≥ 0,𝑉𝑉(𝑥𝑥𝑘𝑘+1,𝑐𝑐𝑘𝑘+1)− 𝑉𝑉(𝑥𝑥𝑘𝑘 ,𝑐𝑐𝑘𝑘) < 𝑊𝑊(𝑧𝑧𝑘𝑘 ,𝑤𝑤𝑘𝑘) 

with supply rate 

 𝑊𝑊�∞(𝑧𝑧𝑘𝑘 ,𝑤𝑤𝑘𝑘) = (𝛾𝛾2|| [𝑤𝑤𝑘𝑘𝑇𝑇   𝑎𝑎𝑖𝑖𝑇𝑇]𝑇𝑇  ||2 − ‖𝑧𝑧𝑘𝑘‖2) = (𝛾𝛾2(‖𝑤𝑤𝑘𝑘‖2 +
‖𝑎𝑎𝑖𝑖‖2)− ‖𝑧𝑧𝑘𝑘‖2),𝛾𝛾 > 0, �

𝑥𝑥𝑘𝑘
𝑐𝑐𝑘𝑘� ∈ 𝜒𝜒𝑖𝑖                                                  (27) 

If there exist matrices 𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑇𝑇 > 0  with 𝑖𝑖 ∈ 𝐼𝐼  and 
matrices 𝐺𝐺𝑗𝑗 , 𝑌𝑌𝑗𝑗 , 𝐾𝐾𝑗𝑗2  with  𝑗𝑗 ∈ 𝒥𝒥 , such that ∀𝑗𝑗 ∈ 𝒥𝒥,∀𝑖𝑖 ∈ 𝑆𝑆𝑗𝑗 ,∀𝑙𝑙 
with (𝑙𝑙, 𝑖𝑖) ∈ 𝑆𝑆𝑎𝑎𝑙𝑙𝑙𝑙  

⎣
⎢
⎢
⎢
⎡𝑄𝑄𝑖𝑖 − 𝐺𝐺𝑗𝑗 − 𝐺𝐺𝑗𝑗

𝑇𝑇 (𝜌𝜌𝑖𝑖𝐺𝐺𝑗𝑗 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝑌𝑌𝑗𝑗 )𝑇𝑇

𝜌𝜌𝑖𝑖𝐺𝐺𝑗𝑗 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝑌𝑌𝑗𝑗 −𝑄𝑄𝑙𝑙

(𝐶𝐶𝑖𝑖𝐺𝐺𝑗𝑗 + 𝐷𝐷𝑖𝑖𝑌𝑌𝑗𝑗 )𝑇𝑇 0
0 𝐵𝐵�𝑖𝑖𝒲𝒲 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗2𝐷𝐷

𝐶𝐶𝑖𝑖𝐺𝐺𝑗𝑗 + 𝐷𝐷𝑖𝑖𝑌𝑌𝑗𝑗 0
0 (𝐵𝐵�𝑖𝑖𝒲𝒲 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗2𝐷𝐷)T

−𝐼𝐼 𝐷𝐷�𝑖𝑖𝒲𝒲 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷
(𝐷𝐷�𝑖𝑖𝒲𝒲 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷)T −𝛾𝛾2𝐼𝐼 ⎦

⎥
⎥
⎥
⎤

< 0  (28) 

holds, then the feedback gains 𝐾𝐾𝑗𝑗1 with 𝑗𝑗 ∈ 𝒥𝒥 are given by:  

𝐾𝐾𝑗𝑗1 = 𝑌𝑌𝑗𝑗𝐺𝐺𝑗𝑗−1                                           (29) 
Proof: Using Schurz’s lemma, (25) can be rewrite as follows: 

⎣
⎢
⎢
⎢
⎡ −𝑃𝑃𝑖𝑖 (𝜌𝜌𝑖𝑖 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗1)𝑇𝑇

𝜌𝜌𝑖𝑖 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗1 −𝑄𝑄𝑙𝑙

(𝐶𝐶𝑖𝑖 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗1)𝑇𝑇 0
0 𝐵𝐵�𝑖𝑖𝒲𝒲 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗2𝐷𝐷

𝐶𝐶𝑖𝑖 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗1 0
0 (𝐵𝐵�𝑖𝑖𝒲𝒲 + 𝐵𝐵𝑖𝑖𝛤𝛤𝑎𝑎𝐾𝐾𝑗𝑗2𝐷𝐷)T

−𝐼𝐼 𝐷𝐷�𝑖𝑖𝒲𝒲 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷
(𝐷𝐷�𝑖𝑖𝒲𝒲 + 𝐷𝐷𝑖𝑖𝐾𝐾𝑗𝑗2𝐷𝐷)T −𝛾𝛾2𝐼𝐼 ⎦

⎥
⎥
⎥
⎤

< 0    (30) 

where 1 1
ij i i a ij i ij jA A B ,C C DK K= + Γ = + . 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5841



     

Now, letting 𝑄𝑄𝑖𝑖 = 𝑃𝑃𝑖𝑖−1  and  𝑌𝑌𝑗𝑗  = 𝐾𝐾𝑗𝑗1𝐺𝐺𝑗𝑗  , we can obtain 
inequality (28) by multiplying (30) from the left by 
diag�𝐺𝐺𝑗𝑗𝑇𝑇  𝐼𝐼  𝐼𝐼  𝐼𝐼� and the right by diag(𝐺𝐺𝑗𝑗  𝐼𝐼  𝐼𝐼  𝐼𝐼). Obviously, 
being  𝑄𝑄𝑖𝑖 > 0 , ∀𝑖𝑖 ∈ 𝐼𝐼,  the control matrix 𝐾𝐾𝑗𝑗1  can be 
reconstructed as in (29). 

5. SIMULATIONS AND THE RESULT ANALYSIS 

According to the modeling method described in part 3, we 
can obtain the following PWA models of wind turbine: 

If 0 < 𝐸𝐸1𝑥𝑥𝑘𝑘 ≤ 8, then 

10 0 0 0 0 0 0
0 0 1 0 0 0 0
0 123.4 13.332 0 0 0 0
0.1 0 0 13.2 325.2 0 0
0 0.409 0 0.036 0.5 0 0
0 0 0 0 0 0 1

1 1
0 0 0 0 0 0.3125 2.92

2 2

T Tg g

g g

r r

β β

β β

ω ω

ω ω

ω ω

ω ω

   
    −
    
    
    − −
    

= − −    
   − −   
   
   

− −    
   





 









0 010 0
0 00 0
0 00 123.4
0 7.5 00 0
1.9 1.90 0
0 00 0
0 0.93250 0

Tgref
e

refβ

     
     
     
     

      
 + + × +     
        

     
     
     
      

  

If 8 < 𝐸𝐸1𝑥𝑥𝑘𝑘 ≤ 12, then 

10 0 0 0 0 0 0
0 0 1 0 0 0 0
0 123.4 13.332 0 0 0 0
0.1 0 0 13.2 325.2 0 0
0 0.479 0 0.036 0.53 0 0
0 0 0 0 0 0 1 11
0 0 0 0 0 0.33 3.65 22

TT gg

gg

rr
w
w

ββ
ββ
ωω

ωω
ω
ω

    −    
    
    − −    
   = − − 
    − −    
    
    
   − −     















0 010 0
0 00 0
0 00 123.4
0 10 00 0
2.31 2.310 0
0 00 0
0 2.30 0

Tgref
e

refβ

     
     
     
     

      
 + + × +     
       

     
     
     
        

If 12 < 𝐸𝐸1𝑥𝑥𝑘𝑘 ≤ 18, then 

10 0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 123.4 13.332 0 0 0 0
0.1 0 0 13.2 325.2 0 0
0 0.833 0 0.036 0.53 0 0
0 0 0 0 0 0 1 11
0 0 0 0 0 0.625 5 22

TT gg

gg

rr
w
w

ββ
ββ
ωω

ωω
ω
ω

    −    
    
    − −    
   = +− − 
    − −    
    
    
   − −     















0 00 0
0 00 0
0 00 123.4
0 16 00 0
2.5 2.50 0
0 00 0
0 50 0

Tgref
e

refβ

     
     
     
     

      
  + × +     
       

     
     
     
        

where 𝐸𝐸1 = [0 0 0 0 0 1 0]. 

According to Theorem 1, we can successfully obtain the 
piecewise linear state feedback matrixes of WECS system in 
normal case and actuator failure with the pitch system 
actuator gain fault fβ  and the generator gain fault gfT  (let 

gain loss factor 0.6 0
0 0.6a

 
Γ =  

 
) case. The feedback matrixes 

calculated in these two cases are shown as follows: 

The normal wind turbine: 

1

-0.0859   -0.0149   -0.0009    0.0018    0.2721    0.0000    0.0000    -0.0066   -0.0247
 -0.0334   -0.1671   -0.0121    0.0080    2.4130    0.0000    0.0000   -0.0130   0.0000

K  
=  
 

2

7.6202      -0.7650     -0.0482    0.0031   0.1483        0.0000   0.0000   -0.4561    -0.8690
 81.4923   -24.3547   -1.6292   1.4002    396.2525   0.0000   0.0000   -17.8043   -0.0099

K  
=  
 

3

0.3367  -0.0142   -0.0009    -0.0024    0.2854    0.0000    0.0000   -0.0055   -0.0142
3.9585  -0.1744   -0.0186    -0.0379    3.7296    0.0000    0.0000   -0.0441    0.0000

K  
=  
 

 

Actuator within fault tolerant:  

1

-0.1431   - 0.0248   - 0.0015    0.0030    0.4536    0.0000    0.0000   -0.0110   - 0.0411
-0.0556   - 0.2784   - 0.0201    0.0134    4.0216    0.0000    0.0000  - 0.0217    0.0000

K  
=  
   

2

 12.7003      -1.2750   -0.0804    0.0052    24.4886    0.0000   0.0000    -0.7601    -1.4483
135.8205   -40.5912   -2.7154    2.3337   660.4208   0.0000   0.0000   -29.6738   -0.0166

K  
=  
 

3

0.1833  -0.0077   -0.0005   -0.0013    0.1554    0.0000    0.0000   -0.0030   -0.0078
2.1305  -0.0967   -0.0102   -0.0202    2.0492    0.0000    0.0000     0.0222    0.0000

K  
=  
   

5.1 Validation of  𝐻𝐻∞ Control for the Normal Wind Turbine  

 
Fig.  4.  𝐻𝐻∞ reliable control for normal wind turbine based on 
stochastic PWA model 

Fig. 4 demonstrates the simulation results of wind turbine 
fault free dynamic response which is regulated by the robust 
H∞  controller. Fig. 4(a) is the test wind speed signal which 
is consisted of mean wind speed mv and wind speed turbulent 

sv ( m sv v v= + ). 7.5,  10,  16 ( / ),mv m s= which is switched at 
time of 100s, 200s, 300s, respectively; The tip speed ratio and 
the optimal generator power set point calculated by Max 
Power Point Tracking (MPPT) algorithm are given by Fig. 
4(b),(c), respectively, which are under the control of  reliable  
H∞ controller designed based on the stochastic PWA model 
of wind turbine. The generator speed and generator power 
responses are shown in Fig. 4(d),(e), from which we can 
conclude the  real generator power  tracks the optimal set 
point  quite well and the generator speed is controlled with 
good performance. Fig. 4(f),(g) give the H∞ controller output 
of pitch angle β  and generator torque gT . Fig. 4 shows that 
the H∞  controller of wind turbine designed based on 
stochastic PWA model, combining with MPPT works quite 
well. 

5.2 Validation of  𝐻𝐻∞ Control for Wind Turbine with 
Actuators Fault 

Fig. 5(a)-(c) show that the MPPT module works quite well. 
Comparing with Fig. 4(a)-(c), there are little changes. While, 
comparing with Fig. 4(d),(e), the performance of  generator 
power gfP and generator speed gfω  have deteriorated, and 
begin to show the trend of losing stability. The control 
variables display wide range oscillations in Fig. 5(f),(g).It is 
seen that the normal H∞ controller for wind turbine cannot 
deal with the actuator faults with gain factor loss aΓ . 
Comparing with Fig. 5(d),(e), Fig. 6(d),(e) demonstrate the 
response of generator speed and generator power under the 
control of H∞ fault tolerant controller designed according to 
Theorem1 based on the stochastic PWA actuator fault model 
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of wind turbine, Fig. 6(d),(e) show that the performance with 
fault tolerant design significantly is better than the normal 
controller. 

 
Fig. 5. Actuator faults of wind turbine without fault tolerant 
control  

 

Fig. 6.  𝐻𝐻∞ fault tolerant control for actuator faults of wind 
turbine  

6. CONCLUSIONS 

This paper proposed a stochastic PWA modeling method to 
solve wind turbine modeling problem under normal and fault 
conditions; It provides the  𝐻𝐻∞ fault tolerant controller design 
method for wind turbine under the conditions of actuator 
faults as theorems form by using the stability theory and  𝐻𝐻∞ 
fault tolerant control method of nonlinear dissipative systems. 
The simulation results show that stochastic PWA modeling 
and  𝐻𝐻∞ fault tolerant control method presented in this paper 
can well solve wind turbine modeling and fault tolerant 
control problems under stochastic wind loads.  
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