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Abstract: This paper focuses on the modeling and H,, fault tolerant control of wind turbine system with
actuator faults. Stochastic piecewise affine (PWA) modeling tool is adopted to establish the multiple
operating points models of wind turbine system with actuator faults under different wind speeds. Based
on stochastic PWA model of wind turbine system with actuator faults, the theorem of H,, fault tolerant
control strategy is presented to solve the PWA state feedback control law of wind turbine system. The
performance and the efficiency of the proposed approach are validated via simulations.

1. INTRODUCTION

Wind turbine system is a mechanical electronic hydraulic
integrated system which consists of rotor, drive train, gear
box, generator and other mechanical equipment. Wind
turbine driven by stochastic wind power signal indicates
properties of nonlinear switching systems. Control systems
perform a vital role in meeting power captured and load
alleviation targets in wind turbines. The performance of the
designed controller can be easily interrupted by possible
faults and failures in different parts of the system. Thus,
searching for fault-tolerant controller designs with early fault
detection, isolation and successful controller reconfiguration
would be very conducive to wind turbine operations.

Fault-tolerant control designs for wind turbine systems are
insufficient. In (C. Sloth et al., 2010), the authors presented
active and passive fault tolerant control designs for wind
turbines. Linear parameter varying control design method
was applied which leads to LMI based optimization in the
event that active fault tolerant and BLMI in case of passive
fault-tolerant problems. The authors in (K. Rothenhagen et al.,
2009), presented model-based fault detection and control
loop reconfiguration for doubly fed induction generators. In
(M. A. Parker et al., 2013), generator-converter fault-tolerant
control was investigated for direct drive wind turbines. In (M.
Ruba et al., 2009), a fault-tolerant switched reluctance motor
was designed for blade pitch control system.

The above mentioned methods are all restricted to the
nonlinear characteristics of wind turbines. To overcome this
drawback, H, fault tolerant strategy for wind turbine is
proposed in this paper based on stochastic PWA model
framework.

A number of results have been obtained on analysis and
controller design of such piecewise continuous time linear
systems during the last few years (M. Johansson et al., 1998;
A. Rantzer et al., 2000; A Hassibi, et al., 1998; S Pettersson,
et al., 1997) . In the case of discrete time, the authors in (O.
Slupphaug, et al, 1999) presented an approach to
stabilization of piecewise linear systems based on a global
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quadratic Lyapunov function. (F. A. Cuzzola et al.,2001; D.
Mignone et al., 2000) presented a number of results on
stability analysis, controller design, H, analysis, and
H,, controller design for the piecewise linear systems based
on a piecewise Lyapunov function. In (F. A. Cuzzola et al,,
2001), the affine term was treated as a disturbance for H,,
control synthesis. In a recent paper (F. Gang, 2002), a new
method was presented to synthesize a H,, controller for the
piecewise discrete time linear systems. Best to the author’s
knowledge, there are no work to solve the fault tolerant
control problem of the wind turbine within the stochastic
PWA framework. In this paper, the stochastic PWA normal
and actuator fault models for wind turbine including multiple
work regions are established. A reliable piecewise linear
quadratic regulator state feedback is designed such that it can
make the actuator faults tolerant. A sufficient condition for
the existence of the passive fault tolerant controller is derived
based on some LMIs.

The paper is organized as follows. In section 2, dynamic
model of wind turbine and the control strategy are briefly
described. The PWA modeling method of wind turbine is
briefly described in section 3. H, Fault-tolerant control is
discussed in sections 4. In section 5, simulation results and
relevant analysis are given. Finally, conclusions are discussed
in section 6.

2. DYNAMIC MODEL OF WIND TURBINE AND THE
CONTROL STRATEGY

The inputs of wind turbine (Fig. 1) are wind speed v(t),
pitch angle reference p,.r(t) and generator torque
reference Ty,.¢ (t) . The outputs of the system are generator
power F, (t) and high-speed shaft speed w, (t).
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Fig. 1. The structure of wind turbine
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2.1 Wind Model

Wind is yielded by superposing two components (I.
Munteanu, et al. 2008), as shown in (1).

v(t) = v (t) + vy, (1) (D
where v, (t) is the low-frequency component (describing
long term, low-frequency variations), i.e. average wind speed
and v, (t) is the turbulence component (corresponding to fast,
high-frequency variations).

2.2 Aerodynamic Model

The available power from the wind P,, can be expressed as:

1
P, =3pAv? )

where A is the rotor swept area. v is the rotor effective wind
speed. p is the air density, which is assumed to be constant.

From B,,, the power captured by the rotor P, is:

G, (4.B) A3)
where C,, (4, B) is the power coefficient, which depends on
the tip-speed ratio A and the pitch angle .

The tip-speed ratio is defined as the ratio between the tip
speed of the blades and the rotor effective wind speed:

Rwy

A= )

v

where w, is the low-speed shaft speed, and R is the blade
length.

2.3 Drive Train Model

The drive train model includes a low-speed shaft, a high-
speed shaft, a gear box and flexible device. The drive train
dynamics function is given:

o, =& _@rDs @gDs _ 3Ks

"0 Jr o JeNg oy
o, = 2rDs _ ©gDs | K Ty ®
9 JgNg  JgNg® " Jg g

where J, and ], are the moments of inertia of the low-speed

shaft and the high-speed shaft, K is the torsion stiffness of

the drive train, Dy is the torsion damping coefficient of the

drive train, N, is the gear ratio. § is the twist of the flexible
@g

drive train with § = W, — ==
Ng’

2.4 Pitch System Model

The pitch system can be modeled by a second order transfer
function (T. Esbensen et al., 2009). The state equation is:

=8
{ﬁ = _wr%ﬁ - Zf(‘)nﬁ. + wr%ﬁref (6)

2.5 Generator and Converter Model

The generator and converter dynamics can be modeled by a
first order transfer function.

Ty =——T,+— Tref ™)

Tg

where T, 1s the time constant.
The real-time power is described by
By =ngw,Ty (®)

Finally, the dynamics of wind turbine can be achieved:

_E_ers wgDs _'Sﬁ_
W Jr Jr JrNg Jr 0 0
l[wr-l wDs _ wgDs  8Ks Ty l[o ]
» _t9vs s 9
| F [ [JaMs JgNg_2 Jg g +| 0| ﬁ,ef]
| ﬁ | ﬁ |w,% gref
Z| | —ems-zeas | o J
g _‘L'_T g
g

2.6 Control Strategy

The basic control strategy is described as Fig. 2. The control
requirements for the power are different in different wind
regions. If v < v, _in, system stops. If v € [Voye —in » Vrated I
the system needs to maximize the wind harvested power.
Ifv > v,44q , the system needs to limit power to the rated

and maintain the stability of the system.

n I <Lz
v Blade&Pitch | { Drive Train Generator&
System o> Ws Converter
4 Y

Br P vm Wr,m Teomgm Pg Ter

[ Controller

Pr

Fig. 2. The control strategy for wind turbine

3. MODELLING WIND TURBINE WITHIN
STOCHASTIC PWA MODEL FRAMEWORK

In summary, wind turbine is mainly based on four regions for
modeling and control. According to the different wind speeds,
models and control strategies need to switch. This section
introduces the basic principles of PWA modeling method,
and gives modeling ideas of wind turbine.

3.1 Stochastic PWA Model Form
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A linear stochastic discrete-time PWA system is defined by
the state-space equation

xk+1 = Aixk + Biuk + B;A/Wk + a;

xk _
z, = Cix + Dy, + DlWWk [uk] € XXk € Xj (10)

where x;, € R" is the state, u, € R™ is the control input
and z;, € R™ is a performance output. The set X € R**" of
vector [x] ul]" is R**™ or a polyhedron containing the
origin, {¥;};_; is a polyhedral partition of X and a; € R" are
constant vectors. Each y; is a cell. For simplicity, assume that
cells are polyhedral defined by matrices F/*, F* , f;* and
fi* as follows:

xi = [xT uT]" suchthat F*x > f* and F}*u > f*

Xi; = xsuchthat F*x > f*

S; = i such that 3x,u with x € ¥;, [x" ufl" € x;
where §; is the set of all indices i such that y; is a cell
containing a vector [xT T]7 with x € X; is satisfied.
Denote I = {1, ..., s}, which is the set of indices of the cells
x:; Denote J = {1, ..., t}, which is the set of indices of the
cells ;. It is important to see that: U]t-zl S5 =1L

3.2 Stochastic PWA Model for Wind Turbine

The linearized drive train dynamics function can be follows:

10T, Bdt 1 0T, (t)

5 = 9% _BatBy | 19T 1 0%
wr 3/, aﬁﬁ +( Jr +/,am) + v, v(t) (11)
P 1 Nar Bar Bg) Bar
=——7T — (QaeZd 4 2
Wy Ig 9 (/gNﬁ +/y @g + Nglg Or
8T, T, 3T, () L .
where —*. —=* and —— are the linearized parameters in
B " dwr v,
different working points; B, is the viscous friction of the
high speed shaft.

Then a linearized overall state space model describing the
dynamics of the wind turbine can be given:

Ay, 0 0 0
{Tg]l |[0 0 I 0 01|[Tg] 107 [Bu 07
[P] |0 As Assoollb_’IIOI IO ol (1.,
1817 an 00 ay 2o |[B]¥] 0 frO+]0 8o [ﬁ [12)
NgJ 0 ref
lwgJ 7 g lng l J l J
W, lO ags N:]t, aan w, €g1 0 0
1 2 1
where 4;; = ==, A5y = —wy, Ass = —28wy,a71 = —
9 9
a _ Nae Bat & _i% o _iaTa(t) B _l
" TNE 7)) T3 TRy ey, T T )
By +B, 10T, o,
Ggg = — s 1By = wy.

The effective wind (1) can be thought of as a superposition of
the mean wind speed v,, and a stochastic component vg.
1982; S. Thomsen, 2006),

stochastic component v, can be approximated by a linear

Following (J. Hgjstrup,

second order transfer function driven by a white noise

process.

(,(.)1 = W,
(,(.)2 = —a;q + a, W, + ase

(13)

where w; =v,, e € N(0,1) and a4, a,,a; are parameters
depending on the mean wind speed.

Then, model (12) can be translated into the following form:

A4 0 0 0 0
00 1 0 0

0 0
T{] 0o 0 T, By, 0 0 0
I 0 Asy A5 0 o 0 olig Fal 0 0
’ 5 .
B ap 0 0 ay 4 0 o ||B 0 By
Bl Nelg oltlo o ‘”f o]0 o+ 0 (14)
N B 7 0 0 Bfef s e
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Fig. 3 Wind speed and the corresponding working point

According to Fig. 3, choose 3 working points, the values

T, T, 3T, ()
of E ,m and ?
obtained according to different wind speeds by an effective
wind estimator (K. Ostergaard, et al. 2007), where the
realization method is described in (R. M. Burkart et al., 2011).
The parameters we needed are shown in Tables 1 and 2.

in different working points can be

Table 1. Model parameters

7, 90000 (kg - m?] - 225 (kW]
Jg 10 [kg - m?] Wr nom 429 [rad/s]
K, | 8-10° [Nm/rad] Wgnom | 105.534 | [rad/s]
D, | 8-10* | [kg-m?/(rad-s)] | Wrmn 3.5 [rad/s]
N, 24.6 [] Wy min 86.1 [rad/s]
R 14.5 [m] O min 0 [deg]
Tg 0.15 [s] O nax 25 [deg]
T 0.1 [s] 6l . 10 [deg/s]

Table 2. Parameters of linearized model in different

working points

Wind Parameter

(m/s) asq ass €31 aj ar as
V=15 0.409 0.50 1.90 0.3125 2.92 0.9375
V=10 0.479 | 0.53 2.31 0.33 3.65 2.3
V=16 0.833 0.53 2.50 0.625 5 5

3.3 Wind Turbine Actuator Fault Model

In this work, we consider actuator faults. Let u; denote the
j’th actuator and qu denote the failed j’th actuator. We
model a loss of gain in an actuator as:
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= (1-a)y,0<q <ay

(15)

where @; is the percentage of failure in the j 'th actuator, ay;
is the maximum loss in the j'th actuator. & = 0 represents
the case without faults in the j'th actuator, 0 <¢; <1
corresponds to the partial loss of it, and @; = 1 corresponds
to complete loss of it. We define a as

a = diag{a,, ay, ...,a,, }. Thenuf = I'u, where I’ = (I — a).

Consider [, is the gain factor of actuator fault, which is a
diagonal matrix of two elements.

The model of the system with the loss of gain [}, in actuators
can be describe by

Xp41 = Aixy + Bilup + B wy + a;

X _
€ xixx €x; (16
Zr = Cixk + Diuk + DLWWk uk] Koo X X] ( )

4. H, FAULT TOLERANT CONTROL FOR ACTUATOR
FAULTS

Consider the PWA actuator fault system (16), define wy, as
follows:

~ _ [k

Wk = [ai]

Thus, system (16) can be rewritten as:

(17)

X4 = Aixy + BiL,uy, + BY W,

Xk -
i Exi,x, €Ex; (18
z, = Cix, + Dyuy, + DY W, [uk] Xoxe €% (18)

where

B =[BY I, D¥=[D I

L L

(19)

The H,, framework considered here, is based on a finite
horizon definition of the [, gain and, consequently, the
proposed extension of the disturbance input is sensible.

Clearly, it is possible to apply the control approach proposed
in (F. A. Cuzzola et al., 2001) directly to the extended system
(18). This can be conservative because a; is not an unknown
disturbance but a known term. Unfortunately, in general, a; is
known only when the control signal u;, has already been
calculated. Notwithstanding this, under the standard
assumption

@ =a,Vie§,VjeJ

. (20)

an alternative control strategy can be proposed. More
precisely, the control is assumed to have the following
structure:

Xk —
w = [K' K] [a]] Xi € Xj 21
In this way the controller can also take into account the
displacement term a; = DW,, where D = [0 [].

By applying the control law (21) to the PWA system (18), we
obtain the closed loop PWA actuator fault system:

X1 = Ay Xy +§5'ka [xk] _
z, = Cyix + DY W | € XX € X 22)
k ij*k ij "k

where
Ay = A+ BILK!, BY =B +BK'D
Cj =C;+DK!, DY =D!+DK!D

From the above, we can have the following main results:

(23)

Lemma 1. Consider system (22) with zero initial condition
x,=0 , if there exists a function V(x,u)=x"Px
for [x" u']" ey, with P, =PI >0,
dissipativity inequality

satisfying  the
Yw € R",Vk =0, V(xyq1, Upsr) — VO, up) < W(zp, wy)
with supply rate
W, (z,w) = (2wl = llzII*),y >0,
ie. VK V(i) = Vow) < GAIwell> = 1z 7)) (24)
then, the H_, performance condition (25) is satisfied.
Zioollze lI? < y? Zi_ollw II?

Furthermore, if the following matrix inequalities (26) are
satisfied, then condition (24) is fulfilled.

(25)

vj €9,Vi € 8§, Viwith (I,i) € §,M,;; <O.

where

(26)

_ A;P,AU _Pj +C;Cf/
Lij — wl wTl'
" | DG+ Bl R4,

iy + 4 7B;
B"PB’ + D)D) -7’1
In this last case, system (22) is PWQ stable.

The proof can be found in (F. A. Cuzzola et al., 2001).

Theorem 1. For PWA system (16), there exists a state
feedback control law of type (21), which can guarantee PWQ
Lyapunov stability and fulfill the dissipativity constraint
vw € R",Vk = 0,V (X1, Upr1) — Ve, w) < W(z,, wy)

with supply rate

W (2, wi) = (V|| [wi, ;;'F]T 112 =11z M1?) = G2 (Alwiell* +
lasl?) = Iz 12,y > 0,[,] € x 27)
If there exist matrices Q; =Qf >0 with i€ and
matrices G;, Y, sz with j € J, such that Vj € J,Vi € §;,Vl
with (l, l) € Sall

Q=G -G (AG+BLY)" (GG +DY) 0
AiG + B LY —Q 0 BY + B;I, KD <0 (28)
C.G + DY, 0 -1 DY + D;K?*D

0 (B” + B,IK?D)" (DY + D,K?D)" —y2

holds, then the feedback gains Kj1 with j € J are given by:
1 _yp-1
K =x6 @)
Proof: Using Schurz’s lemma, (25) can be rewrite as follows:

=P, (A + BLKN"  (Ci+ DiK)T 0
A+ BILK! —Q 0 BY + BiILKD
C; + D;K! 0 -1 DY + D,K*D
0 (BY +B,I,K*D)" (D + D,K?*D)" —y?l

<0 (30)

where 4, = 4, + BT ,K},C, =C, + DK}
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Now, letting Q; = P! and Y = Kle] , we can obtain
inequality (28) by multiplying (30) from the left by
diag(G" I 1 ) and the right by diag(G; I I I). Obviously,
being Q; >0, Vi €I, the control matrix Kj1 can be
reconstructed as in (29).

5. SIMULATIONS AND THE RESULT ANALYSIS

According to the modeling method described in part 3, we
can obtain the following PWA models of wind turbine:

If0 < E;x;, <8, then

i T,

&l -0 0 0 00 0 o ][°¢] o o 0 0
Pldlo o 0 0 0 0 o [Pl o o 0 0
Blfo -4 -3 0 o 0o o |[F] 034 0 0

i . gref .
og|={-01 0 0 -132 3252 0 0 flog|+/0 0 L} :|+ 0 [x75+|0 e
G| |0 049 0 006 05 0 0 g [0 O CANT 19

ol |0 0 o 0 0 0 Lllgl |00 0 0

) 0 0 00 0 03125 29 00 0 09325
)] ]
If8 < E;x;, < 12, then

To| [-10 0 o 0 0 o olT] o o 0 0

Y 0 0 1 00 0 0 B]]o 0 0 0

Bl 10 —134-1332 0 0 0 0 (|f]]0 1234 0 0

Taref
Gg|=[-01 0 0 -132352 0 0 [lag|+0 0 P 0 |x104[0 |e
G| |0 0419 0 0036 053 0 0 || |0 0 e 11931 231
Wl |00 0 00 0 1g[]0 0 0 0
Lin| L0 0 0 0 0 033 365) | [0 0 0 23
If12 < Eyx;, < 18, then
Tyl [-10 0 o 0o o o o]Telfio o 0 0
Vi 0 0 1 0 0 0 0|8 0 0 0 0
B 0 -1234 <1332 0 0 0 0| |0 1234 0 0
Tgref

g =01 0 0 -1323352 0 0 ag|+0 0 o | 0 |x16+[0 |e
G| |0 0833 0 0036 053 0 0|y | [0 0 o | |25 25
i 00 0 00 0 dfg|]0 0 0 0
| Lo 0 0 0 0 =065 5|l | [0 0 0 5

where E; =[0000010].

According to Theorem 1, we can successfully obtain the
piecewise linear state feedback matrixes of WECS system in
normal case and actuator failure with the pitch system
actuator gain fault S, and the generator gain fault 7, (let
0.6
0
calculated in these two cases are shown as follows:

. 0 .
gain loss factor T, :{ 0 6}) case. The feedback matrixes

The normal wind turbine:

X :[-0.0859 -0.0149 -0.0009 0.0018 0.2721 0.0000 0.0000
'] -0.0334 -0.1671 -0.0121 0.0080 2.4130 0.0000 0.0000
7.6202  -0.7650  -0.0482 0.0031 0.1483 0.0000 0.0000

:{81.4923 -24.3547 -1.6292 1.4002 396.2525 0.0000 0.0000

103367 -0.0142 -0.0009 -0.0024 0.2854 0.0000 0.0000

7{3.9585 -0.1744 -0.0186 -0.0379 3.7296 0.0000 0.0000

-0.0066 -0.0247
-0.0130 0.0000

-0.4561  -0.8690
-17.8043 -0‘0099}
-0.0055 -0.0142
-0.0441 0.0000}

3

Actuator within fault tolerant:

{-0.1431 -0.0248 -0.0015 0.0030 0.4536 0.0000 0.0000

-0.0110 -0.0411
'7[0.0556 -02784 -0.0201 0.0134 4.0216 0.0000 0.0000

-0.0217 0.0000

| 127003 -1.2750 -0.0804 0.0052 24.4886 0.0000 0.0000 -0.7601 -1.4483
711358205 -40.5912 27154 23337 660.4208 0.0000 0.0000 -29.6738 -0.0166

0.1833 -0.0077 -0.0005 -0.0013 0.1554 0.0000 0.0000 -0.0030 -0.0078
2.1305 -0.0967 -0.0102 -0.0202 2.0492 0.0000 0.0000 0.0222 0.0000

3=

5.1 Validation of H,, Control for the Normal Wind Turbine

1
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<

50 100 150 200 250 300
Time /s
d

dratio wind speed /(m/s
m ) E
generator speed /(rads)
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5|

generator torque /Nm

generator power /KW

H
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Time /s Time /s " Time /s
(© (€) @

optimal v, setpoi

Fig. 4. H, reliable control for normal wind turbine based on
stochastic PWA model

Fig. 4 demonstrates the simulation results of wind turbine
fault free dynamic response which is regulated by the robust
H_ controller. Fig. 4(a) is the test wind speed signal which
is consisted of mean wind speed v, and wind speed turbulent
v.(v=v,+v,). v, =75,10, 16 (m/s), which is switched at
time of 100s, 200s, 300s, respectively; The tip speed ratio and
the optimal generator power set point calculated by Max
Power Point Tracking (MPPT) algorithm are given by Fig.
4(b),(c), respectively, which are under the control of reliable
H  controller designed based on the stochastic PWA model
of wind turbine. The generator speed and generator power
responses are shown in Fig. 4(d),(e), from which we can
conclude the real generator power tracks the optimal set
point quite well and the generator speed is controlled with
good performance. Fig. 4(f),(g) give the H  controller output

of pitch angle f and generator torque 7, . Fig. 4 shows that

the H_ controller of wind turbine designed based on

stochastic PWA model, combining with MPPT works quite
well.

5.2 Validation of H, Control for Wind Turbine with

Actuators Fault

Fig. 5(a)-(c) show that the MPPT module works quite well.
Comparing with Fig. 4(a)-(c), there are little changes. While,
comparing with Fig. 4(d),(e), the performance of generator
power P, and generator speed o, have deteriorated, and
begin to show the trend of losing stability. The control
variables display wide range oscillations in Fig. 5(f),(g).It is
seen that the normal H_ controller for wind turbine cannot

deal with the actuator faults with gain factor loss IT", .

Comparing with Fig. 5(d),(e), Fig. 6(d),(e) demonstrate the
response of generator speed and generator power under the
control of H_ fault tolerant controller designed according to

Theorem1 based on the stochastic PWA actuator fault model
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of wind turbine, Fig. 6(d),(e) show that the performance with
fault tolerant design significantly is better than the normal
controller.
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"The generator torque Nm
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Time /s

(e) (e) (@)

Fig. 5. Actuator faults of wind turbine without fault tolerant
control
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Fig. 6. H,, fault tolerant control for actuator faults of wind
turbine

6. CONCLUSIONS

This paper proposed a stochastic PWA modeling method to
solve wind turbine modeling problem under normal and fault
conditions; It provides the H,, fault tolerant controller design
method for wind turbine under the conditions of actuator
faults as theorems form by using the stability theory and H,,
fault tolerant control method of nonlinear dissipative systems.
The simulation results show that stochastic PWA modeling
and H,, fault tolerant control method presented in this paper
can well solve wind turbine modeling and fault tolerant
control problems under stochastic wind loads.
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