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Abstract: The paper proposes an implicit type of dual control for a class of nonlinear stochastic systems
subject to functional uncertainty. The unknown functions of the system are modelled by multi-layered
perceptron neural networks where the unknown parameters are found in real-time. The control design
is based on the Bellman optimisation recursion where the length of the recursion is shortened to two
stages to reduce computational burdens and to ensure dual features between estimation and control
aims. The inherent obstacle of determining the expectation is tackled by employing a technique based
on the stochastic integration rule. The design is then accomplished using an iterative procedure, which is
summarised by algorithms. Numerical simulations and a Monte Carlo analysis show that the proposed
approach may compete with existing solutions based solely on the explicit type of dual control and
removes their drawback of tuning additional design parameters.

1. INTRODUCTION

Adaptive control of nonlinear stochastic systems with un-
known functions offers an interesting challenge [Fabri and
Kadirkamanathan, 2001, Herzallah and Lowe, 2002, Saranga-
pani, 2006]. It can be understood as a natural effort of extension
of adaptive control from the class of linear systems and nonlin-
ear systems with unknown parameters to the complex systems
with functional uncertainty. Sometimes this attractive direction
of adaptive control is also called a functional adaptive control
[Fabri and Kadirkamanathan, 2001].

In principle, an optimal solution to the functional adaptive con-
trol is known and leads to the use of dynamic programming
to solve the Bellman optimisation recursion (BOR). Unfortu-
nately, a derivation of analytical solutions is unavailable and a
numerical solution is difficult to achieve because of the curse
of dimensionality. Moreover, an application in adaptive control
is often complicated by the need to address a tedious problem
of nonlinear estimation, i.e. the necessity to solve the Bayesian
recursive relations (BRR) to find a probabilistic description of
the uncertainties in the model. Since it is impossible to find
the optimal solution, much attention has been concentrated on
various approximate approaches [Fabri and Kadirkamanathan,
2001, Filatov and Unbehauen, 2004]. One of the main direc-
tions is based on the stochastic control principles originated
from the work of Fel’dbaum [1965], which pointed out a con-
trast between estimation and control aims. It means that the
controller besides respecting the uncertainty in model knowl-
edge to achieve tracking performance should excite the system
to reduce the uncertainty in the future. Control design which
respects these conflicting features, called caution and probing,
is referred to as dual control [Fel’dbaum, 1965, Bar-Shalom and
Tse, 1976]. An exhaustive classification of sub-optimal dual
controllers can be found in [Filatov and Unbehauen, 2004].
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The main idea of these methods lies in the design of adaptive
systems that are not optimal but at least have the main dual
features of optimal (adaptive) control systems.

Fundamentally, dual control approximations may be separated
into two distinct categories: explicit and implicit ones. The
explicit type dual control methods can be seen as simpler and
straightforward, which allows finding a closed-form solution.
They are typically based on a minimisation of one-step ahead
cost functions accompanied by including a term that induces the
probing signal so that the system maintains the dual properties
[Wieselander and Wittenmark, 1971, Milito et al., 1982, Fila-
tov and Unbehauen, 2004]. The implicit type dual controllers
contain all procedures which employ various approximations of
either the Bellman function or the probability density functions
[Tse et al., 1973, Bayard and Schumitzky, 2010]. The main
characteristic of these controllers is that they provide a good
performance, but are more complicated for practical implemen-
tation and often have higher computational demands.

Most existing methods of dual control are designed mainly
for linear models in both state and input-output representation.
The functional approach has been so far focused especially
on algorithms having a practical on-line implementation. The
original concept was designed in Fabri and Kadirkamanathan
[1998], where the innovations dual control criterion, originally
proposed by Milito et al. [1982], was used as a cost function
together with two types of neural networks as a model for the
unknown nonlinear functions. This was followed by Šimandl
et al. [2005] which utilised Bicriterial cost function [Filatov
and Unbehauen, 2004] instead of the IDC, and a Gaussian Sum
Filter for parameter estimation. In Bugeja et al. [2009], it was
tested in a practical control task of the nonholonomic wheeled
mobile robot, and the functional approach was successfully
extended to a more general MIMO class of nonlinear systems
by Král and Šimandl [2011b] and Fabri and Bugeja [2013].
Further efforts tackle the individual problems such as the design
procedure with predictive control extension [Král and Šimandl,
2011a], an improvement of estimation accuracy [Fabri and
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Bugeja, 2013] or relaxed a minimum phase property [Král and
Šimandl, 2013].

A common feature of all above mentioned solutions to the
functional approach is that they are based on the explicit dual
control methods only. The common drawback of these solutions
can be treated by (i) the algorithms include several tuning pa-
rameters that are selected ad-hoc or by trial-and-error [Filatov
and Unbehauen, 2004], (ii) derivation of the control law de-
pends on a type of estimator of unknown parameters [Fabri and
Bugeja, 2013] and (iii) they are based on rough approximations
of the original optimal problem and so the control performance
remains, therefore, inadequate. So far, the implicit approach is
a neglected group of methods, although it has been shown that
it can bring a significant improvement in control quality. They
are ignored mainly because they are computationally demand-
ing, applicable only to systems with low rate uncertainty [Lee
and Lee, 2009] or require the implementation of an intensive
off-line identification process [Herzallah and Lowe, 2008]. To
the best knowledge of the authors, there is no solution to the
functional approach based on implicit methods of dual control.

Based on the above motivation, the general goal of the paper
is to design an implicit dual control (IMDUC) for stochastic
systems with functional uncertainties. The design shall follow
the previous co-authors paper [Flı́dr and Šimandl, 2013], where
a new IMDUC was proposed for a linear stochastic system in
state space representation. This concept tackles solvability of
the BOR by a reformulation of the problem to the receding
horizon type of the optimisation, and by reduction of the BOR
to two stage where the inherent expectations were determined
by employing the stochastic integration rule. The main novel
contribution of the presented paper is the extension of the IM-
DUC developed by Flı́dr and Šimandl [2013] to a generic class
of nonlinear systems with unknown functions. The proposed
controller apparently represents the first attempt to implement
the implicit type of dual controller for such a complex system.

The rest of the paper will present a description of the problem
formulation in Section 2, followed by a control design based on
the solution to the optimisation recursion and the stochastic in-
tegration rule in Section 3. A numerical example demonstrates
a control quality is contained in Section 4 and finally, Section 5
concludes the paper.

2. PROBLEM FORMULATION

The dynamical system to be controlled is a nonlinear stochastic
discrete time-invariant system given in an input-output repre-
sentation as

S : yk+1 = f (xk) + g(xk)uk + ek+1, (1)
where f ,g : Rny+nu → R are unknown nonlinear functions, xk =
[yk−ny+1, . . . ,yk,uk−nu , . . . ,uk−1]T ∈ Rny+nu is the state vector, uk
and yk are input and output signals at discrete time instants
k ∈ 0,1, . . . ,N-1 and

{
ek

}
is an additive noise and the following

assumptions are considered:

Assumption 1: The nonlinear functions f (xk),g(xk) ∈C∞.
Assumption 2: The structural parameters ny and nu of the

system are known.
Assumption 3: The system has a globally uniformly asymp-

totically stable zero dynamics and the nonlinear function
g(xk) is bounded away from zero for all xk [Chen and Khalil,
1995].

Assumption 4:
{
ek

}
∈ R is a Gaussian sequence with a known

mean µ and variance σ2.

Since the nonlinear functions f (xk), g(xk) are unknown, an ap-
propriate model of the system (1) together with a searching pro-
cess for the optimal parameter values has to be found. Models
based on Multi-Layer Perceptron (MLP) neural networks (NN)
are preferred as a suitable compromise between complexity and
accuracy of the model. Furthermore the using NN is justified
by the validity of universal approximation property [Haykin,
1999]. Then, a generalised parametric model structure of the
system (1) can be used in the following state space form

M : Θk+1 =Θk (2)
yk+1 = h(Θk, xk,uk) + ek+1, (3)

where Θk ∈ R
nΘ is a vector of the unknown parameters of the

NN based model, which are assumed to be t-invariant. Further,
the nonlinear function h : Rny+nu+1→ R is defined as

h(Θk, xk,uk) = f̂ (Θk, xk) + ĝ(Θk, xk)uk, (4)
where f̂ (Θk, xk) and ĝ(Θk, xk) represent a pair of the NN which
approximate the unknown functions of the system. They can be
described as

f̂ (Θk, xk) =

(
c f

k

)T
(φ (

xk,W
f
k

))T

,1

T

, (5)

ĝ(Θk, xk) =
(
cg

k

)T
(φ (

xk,W
g
k

))T
,1

T

, (6)

where φ is a chosen activation function of the NN and W f
k =[

(w f
1,k)T , . . . , (w f

n f ,k)T
]
, Wg

k =

[
(wg

1,k)T , . . . , (wg
ng,k)T

]
are the hid-

den layers weights and c f
k and cg

k are the output layers weights
of the NN f̂ and ĝ, with the vector w j

i,k denoting weights be-
tween inputs and the i-th neuron in a hidden layer of the j-th
neural network.

Let all the unknown parameters of the NN be included into a
single parameter vector Θk in the compact form as

Θk =

[
(c f

k )T , (w f
1,k)T , . . . (w f

n f ,k)T , (cg
k)T , (wg

1,k)T , . . . (wg
ng,k)T

]T

(7)
with its length denoted by nΘ. Moreover, it is considered that
Θk is modelled as a random variable with Gaussian distribution

p
(
Θk |Ik

)
≈ N

{
Θk : Θ̂k, Pk

}
, (8)

with known initial conditions given by the mean Θ̂0 and the
covariance matrix P0. The symbol Ik represents complete in-
formation available up to the time instant k , i.e.

Ik = (uk−1
0 , yk

0), (9)

where uk
0 = [u0, . . . ,uk] and yk

0 = [y0, . . . ,yk].

Equations (2)–(7) describe a nonlinear stochastic state space
model of the system (1). Unfortunately, dependence of yk+1
on the parameters of model Θk is nonlinear. Therefore, it
is advisable to exploit a convenient method to compute the
probability distribution of these variables and its propagation
through time. Although it is possible to use a variety of the
Kalman filtering methods [Haykin, 2001], the extended Kalman
Filter (EKF) is considered as a nonlinear estimator for its
practicality and computationally moderateness.

Since the parameter vector Θk is unknown, the problem be-
comes one of the adaptive control problems. The aim of the
optimal adaptive control problem is to find the control law
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uk = argmin
uk

Jk(Ik) k = 0,1, . . . ,N −1 (10)

with the criterion Jk specified as

Jk = E


N−1∑
i=k

Li(yi+1,ui,Θi)

 , (11)

where Li is a cost functional, the conditional expectation op-
erator E is taken over all underlying random quantities, that
would rate the quality of the control process. The closed-loop
information processing strategy is applied, i.e. besides the past
observations also the future observation program is taken into
account as well.

The cost function Li is defined to be quadratic as

Li = (yi+1− ri+1)2 + qui, (12)
where ri+1 is a known reference signal at time instant i + 1 and
q > 0 is a weighting design parameter.

The formal optimal control is described by the backward recur-
sive equation

uk = argmin
uk

{
E

{
Lk(yk+1,uk,Θk) +V1

} ∣∣∣∣Ik
}
, (13)

where the scalar function

V j = min
ui

{
E

{
Li(yi+1,ui,Θi) + V j+1

} ∣∣∣∣Ii,ui

}
for i = k + j, j = N −1, . . . ,0

(14)
is usually called the Bellman function expressing a minimum
average cost-to-go at time step k given the information state
Ik. The initial condition for the backward recursive equation is
usuallyVN = 0.

The BOR provides a general tool for finding the optimal control
law (13) as a by-product in the process of solving the nested
optimisation problem (14). However, the solution is not prac-
tically feasible because of previously mentioned reasons and a
suboptimal solution has to be sought.

3. CONTROL DESIGN

This section will cover the IMDUC design. First, an approxi-
mation of the optimisation problem (10)– (12) is used to obtain
a suboptimal feasible solution. An approximation based on the
receding horizon technique [Flı́dr and Šimandl, 2013] is used in
this paper because of its simplicity. The length of the receding
horizon is shortened as much as possible to reduce computa-
tional burden, but on the other hand, to ensure the dual control
properties. Then, the problem of evaluation of the necessary
expectations is tackled by employing an approximation based
on the stochastic integration rule. Finally, the implicit dual
control is algorithmically summarised.

3.1 Solution of the optimisation recursion

The first step that makes the BOR more feasible is a reduction
of the complexity of the problem. The l-step lookahead policy
which approximates the true Bellman function by a heuristi-
cally computed one will be employed. The simplest approxima-
tion technique is the receding horizon consisting of approximat-
ing the cost-to-go at time step k + l+1 and beyond by zero. The
number of steps l > 0 of the limited lookahead policy should be
chosen as short as possible. The simplest choice l = 1 leads to

a minimisation of only the current expected cost at time instant
k. However, this would result to the cautious control strategy
only, which could generate a very small control signal when
the variance of unknown parameters becomes large. In order
to ensure both aspects of the dual control, i.e. also the probing
feature, it is necessary to solve at least a two-stage optimisation
problem [Bar-Shalom and Tse, 1976].

Thus, the aim of the modified optimisation problem with re-
ceding horizon reduced to two stages is to find a control law
given by (13), whereV j = 0 for j = N−1, . . . ,2, i.e. the possible
cost incurred by the control actions ui, i > k + 1 is at time k
considered as unimportant.

Initially, the expectation of the cost function Li(yi+1,ui,Θi) for
i = 1,2 will be examined. Given the quadratic cost function
(12), the expectation for system modelled by (2)–(7) can be
expressed as

E
{

(yi+1− ri+1)2 + qui
∣∣∣ui, Ii

}
= E

{
( f̂ (Θi, xi) + ĝ(Θi, xi) + ei+1

−ri+1)2
∣∣∣ui, Ii

}
= M f f

i + (µ− ri+1)2 + 2M f
i (µ− ri+1)

+ 2(M f g
i + 2Mg

i (µ− ri+1))ui + u2
i (Mgg

i + q)2,

(15)

where M f f
i , Mgg

i , M f g
i , M f

i and Mg
i denote following expecta-

tions

M f f
i = E

{
m f f

i

∣∣∣Ii
}

= E
{
f̂ (Θi, xi) f̂ (Θi, xi)

∣∣∣Ii
}
, (16)

Mgg
i = E

{
mgg

i

∣∣∣Ii
}

= E
{
ĝ(Θi, xi)ĝ(Θi, xi)

∣∣∣Ii
}
, (17)

M f g
i = E

{
m f g

i

∣∣∣Ii
}

= E
{
f̂ (Θi, xi)ĝ(Θi, xi)

∣∣∣Ii
}
, (18)

M f
i = E

{
m f

i

∣∣∣Ii
}

= E
{
f̂ (Θi, xi)

∣∣∣Ii
}
, (19)

Mg
i = E

{
mg

i

∣∣∣Ii
}

= E
{
ĝ(Θi, xi)

∣∣∣Ii
}
. (20)

Even with the parameter conditional pdf p(Θi|Ii) being avail-
able, the evaluation of the expectation (16)–(18) is not trivial.
Moreover, for i > k the conditional density can not be easily
obtained due to the interwovenness of the control and esti-
mation problems. The problem of evaluation of the necessary
expectations is the subject of Section 3.2.

In the next step, Equations (15)–(20) can be used for the
evaluation of the cost (13). Under the assumption V2 = 0, the
Bellman functionV1 is defined by the relation

V1 = min
uk+1

{
E

{
Lk+1(yk+2,uk+1,Θk+1)

} ∣∣∣∣uk+1, Ik+1
}

(21)

and its value can be determined according to

V1 = min
uk+1

{
M f f

k+1 + (µ− rk+2)2 + 2M f
k+1(µ− rk+2)

+2(M f g
k+1 + Mg

k+1(µ− rk+2))uk+1 + u2
k+1(Mgg

k+1 + q)2
}
.

(22)

From Equation (15) it holds that

uk+1 = −(M f g
k+1 + Mg

k+1(µ− rk+2))(Mgg
k+1 + q)−1. (23)

Then, Equation (22) using (23) can be further revised as

V1 = M f f
k+1 + (µ− rk+2)2 + 2M f

k+1(µ− rk+2)− (M f f
k+1)2

· (Mgg
k+1 + q)−1−2M f g

k+1Mg
k+1(µ− rk+2)(Mgg

k+1 + q)−1

+ (Mg
k+1)2(µ− rk+2)2(Mgg

k+1 + q)−1.

(24)

Equation (24) does not explicitly depend on the control uk+1
and hence the minimisation operator can be omitted. It is only
implicitly dependent on the control uk through the model output

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5971



yk+1 and xk+1 occurring in the expectations M f f
k+1, Mgg

k+1, M f g
k+1,

M f
k+1 and Mg

k+1. However, its value depends on the control uk
in a nonlinear manner. It means that Equation (13) represents a
nonlinear optimisation problem and it is not possible obtain a
control law in a closed-form. Therefore, it is inevitable to resort
to a numerical solution.

3.2 Stochastic integration rule

This section is focused on evaluating the expectations (16)–
(20) for the time instants i = k,k + 1 which are requisite for
minimising the control which meets the condition (13). It is
necessary to find a suitable approximation that will make the
expectation evaluation possible. The usual way is to combine
parameter estimation and deterministic control, where the un-
known parameters Θi are replaced by their expectations. This
heuristically certainty equivalence (HCE) principle ignores po-
tentially significant parameter uncertainties, leading to severe
problems such as the bursting phenomenon. Another possibility
is to use the Taylor series the first-order approximations for
the evaluation [Král and Šimandl, 2011b] but accuracy of the
obtained expectations may be insufficient. Hence, an alternative
way is to use a numerical approximation of the expectation
value calculation. In the paper, a concept based on the stochastic
integration rule (SIR) [Genz and J.Monahan, 1998] will be
presented. The SIR can be interpreted as a numerical method
for enumeration of the expectation function. It is an approxima-
tion technique based on a cubature rule evaluated at randomly
generated points and thus its result is also random, but with an
important property that the result is asymptotically exact.

To find (16)–(20) using the SIR is advisable to introduce the
following nonlinear functional

ϕ(Θi) = I5×

[
m f f

i ,mgg
i ,m

f g
i ,m f

i ,m
g
i

]T
, (25)

where Ia denotes an (a × a) identity matrix. This definition
has the effect that all of the randomly generated points are
common in evaluation of the individual expectations resulting
in a significant computational savings.

The expectation µ of a general nonlinear vector function ϕ(Θi),
where Θi is a random variable with the normal distribution in
the form

p(Θi) =N(Θ̂i,SiST
i ), (26)

where Si denotes a square root matrix of the covariance Pi such
that SiST

i = Pi, can be defined by the integral

µi = E
{
ϕ(Θi)

}
=

∫
RnΘ

ϕ(Θi)p(Θi)dΘi, (27)

where µi =

[
M f f

i ,Mgg
i ,M f g

i ,M f
i ,M

g
i

]T
.

Using the substitutions (25)–(27), the SIR proposed for the
solution of (16)–(20) is given by the following algorithm:

Algorithm 1: Stochastic Integration Rule Algorithm

Step 1: Choose a maximum number of iterations Nmax.
Step 2: Set the number of iterations NI = 0, initial value of the

integral µ̃i = 0 and compute the vector χ0 = ϕ(Θ̂i).
Step 3: Repeat (until NI < Nmax ) the following loop:

a) Set NI = NI + 1.
b) Generate an uniformly random orthogonal matrix U ∈
RnΘ×nΘ and generate a random number ρ from the
χ distribution, i.e. ρ ∼ χ(nΘ + 2).

c) Compute a set of vectors χ j for j = 1, . . . ,nΘ according to

χ j =−ρSiUe j + Θ̂i, (28)

χnΘ+ j =ρSiUe j + Θ̂i, (29)
where e j is the j-th column of the identity matrix InΘ

, and
the corresponding weights ω j as

ω0 =
nΘ

ρ2 , (30)

ω j = ωnΘ+ j =
nΘ

2ρ2 . (31)

d) Compute the value Q of the integral at current iteration

Q =

2nΘ∑
j=0

ϕ(χ j)ω j (32)

and use it to update the approximate value µ̃
µ̃i = µ̃i + (Q− µ̃i)/NI . (33)

Step 4: The approximate value of the integral µi is given by µ̃i.

3.3 Implicit dual control algorithm

The solution to the optimisation recursion suggested in Section
3.1 accompanied by the SIR method for evaluation on the
expectations (16)–(20) presented in Section 3.2 constitutes a
basis of the IMDUC algorithm proposed in this subsection.

The aim of the algorithm is to describe the technique for
calculation of the dual control law defined by (13). Un-
fortunately, a closed-form formula cannot be derived, that
would define the control minimising the inner expectation{
E

{
Lk(yk+1,uk,Θk) +V1

} ∣∣∣∣uk, Ik

}
. Thus, it is unavoidable to

seek the minimising control uk using a numerical optimisation
method. The following algorithm describes the main steps for
generating action signal uk at time instant k:

Algorithm 2: Implicit Dual Control Algorithm

Step 1: Obtain the measurement of the system output yk.
Step 2: Determine the mean Θ̂k and the covariance matrix Pk

of the unknown model parameters using the EKF as the
estimator.

Step 3: Set the iteration counter ` = 0 and choose an initial
candidate for the suboptimal control u(`)

k .
Step 4: Repeat the following loop until a satisfactory minimis-

ing control uk is found:
a) Determine the prediction of the system output

yk+1 = f̂ (Θk, xk) + ĝ(Θk, xk)u(`)
k . (34)

b) Calculate the approximation of Bellman function V(`)
1

using Equation (24).
c) Evaluate the cost-to-go of the modified optimisation

problem stated in Section 3.1

J(`)
k =

{
E

{
L

(`)
k (yk+1,u

(`)
k ,Θk) +V

(`)
1

} ∣∣∣∣u(`)
k , Ik

}
. (35)

d) Test if the relative change of the cost-to-go J(`)
k is satis-

factory low. If it is not, increment the counter `, choose a
new control candidate u(`)

k and proceed with Step 4a).

The NN parameter estimation in Steps 1 can be determined
by employing any suitable nonlinear filtering technique. The
promising method seems to be a novel filter based on SIR as
well [Dunı́k et al., 2013]. Although computational demands are
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by several orders higher than the EKF, the benefit of this choice
besides a good quality of the estimates would be in the possi-
bility to reuse the points generated by the SIR. Nevertheless,
an analysis of another estimation method utilization remains an
open problem.

The initial candidate for the suboptimal control u(0)
k in Step

3 can be determined using for example the cautious, HCE or
some explicit dual controller. The SIR approximation described
in Section 3.2 is employed in Steps 4b) and 4c) where it is used
to evaluate the expectations (16)–(20) repeatedly. Finally, the
minimisation of the cost-to-go in Step 4 is accomplished using
a suitable numerical optimisation method.

4. NUMERICAL EXAMPLE

Properties of the designed IMDUC are tested and validated in
the following numerical example

yk =
−1.5yk−1yk−2

1 + y2
k−1 + y2

k−2

+0.35sin(yk−1 + yk−2)

+ (2 + cos(yk−1yk−2))uk−1 + ek,

(36)

where ny = 2, nu = 0, the sequence
{
ek

}
is a white noise with zero

mean and variance σ2 = 0.001. System (36) is approximated
by the model described in Equations (2)–(7) structured with
n f = 10 and ng = 5 neurons, resulting in a total of N = 62
parameters for nonlinear estimation. The initial condition x0 is
considered to be N{0, 0.001Iny+nu } and the initial vector Θ̂0 of
the nonlinear model is generated from the normal distribution
N{0, 0.1InΘ

}, the covariance matrix should reflect confidence
in the initial guess and is chosen as P0 = 0.1InΘ

. The reference
signal rk was chosen as a square wave with unit amplitude and
period 25 time instants. Further, the EKF is used as a parameter
estimator and the cautious control was chosen to be convenient
for initialization of u(0)

k .

It must be emphasized, that there is no off-line training of
the NN based model. Thus, the uncertainty in the model is
involved, both due to the external disturbances ek and due to
imprecise knowledge of the controlled system (i.e. the unknown
functions f (xk) a g(xk)).

The proposed implicit adaptive dual control is compared with a
couple of explicit solutions; the innovation dual control (IDC)
and bicriterial dual controller (BDC) which were presented in
Fabri and Kadirkamanathan [1998] and Šimandl et al. [2005],
respectively. Both explicit controllers include several tuning
parameters, which were selected by trial-and-error to obtain a
minimal value from a chosen criteria point of view.

The quality of control will be evaluated by M Monte Carlo
simulations. The function L is chosen as an accumulated cost

L =

N−1∑
k=1

(yk+1− rk+1)2 + 0.01u2
k ,

The value of the cost L for the particular jth Monte Carlo
simulation is denoted by L j. The criterion J is estimated by
its mean Ĵ = 1

M
∑M

j=1L j and median of L represented by J̃.
Variability of Monte Carlo simulations is expressed by

var{L} =
1

M−1

M∑
j=1

(L j− Ĵ)2

and the quality of the criterion estimate Ĵ is represented by
var{Ĵ} which can be computed using the bootstrap technique
[Efron and Tibshirani, 1994].

The criterion value estimates (Ĵ, J̃), the accuracy of the es-
timate (var{Ĵ}), the variability of Monte Carlo simulations
(var{L}), and the average time per step that were computed
using M = 200 Monte Carlo simulations with N = 100 steps per
simulation, are summarised in Table I. Although the behaviour
in each of the three schemes is satisfactory, the best statistical
measures were achieved for the IMDUC. The lowest values of
Ĵ, J̃, var{Ĵ} and var{L} indicate superior control performance
which is illustrated by Figure 1, where a typical realization
of the system controlled by the IMDUC is plotted. Thus, the
proposed solution qualitatively indicates the best compromise
between the conflicting objectives of dual control, i.e. cau-
tion and probing. Additionally, there is no need to tune any
additional design parameters. A notable drawback is a higher
computational burden compared to the explicit ones due to the
use of the numerical approximate methods.

TABLE I. A quality control performance of the BDC, IDC and IMDUC based
on the Monte Carlo simulations.

Controller Ĵ J̃ var{L} var{Ĵ} time[s]

IDC 28.88 26.99 168.17 1.65 0.0056

BDC 23.86 21.94 106.04 0.55 0.0056

IMDUC 17.99 15.98 72.62 0.26 3.5

The results of intensive numerical simulations are depicted in
Figure 2, where the minimum and maximum as the extremes
values of the output at individual time instants are illustrated.
The time developments, which are based on the Monte-Carlo
simulations, represent imaginary envelopes of the worst-case
behaviour for all three controller configurations. It can be
seen that the performance of the IMDUC qualitatively shows
the best transient performance and the most smooth response,
avoiding excessive overshoots. It can be also mentioned that
the difference among the output responses vanishes after time
instant k = 80 as the system uncertainty is reduced.
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Fig. 1. The typical output response (black), input (magenta)
and reference signal (green) of a single trial for the system
controlled by the IMDUC.

5. CONCLUSION

Implicit type of dual control was proposed for a class of non-
linear stochastic systems subject to functional uncertainty. The
underlying idea of the control design is based on several ap-
proximations to avoid the problem with a closed-form solvabil-
ity of the Bellman optimisation recursion. An infinite horizon
constrained optimisation problem was tackled by reformulation
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Fig. 2. The chosen reference signal (green) and the extreme
output values at the individual time instants based on the
Monte-Carlo simulations for the IDC (red), BDC (blue)
and IMDUC (black).

to the receding horizon type of the optimisation problem and
by reduction to a two-stage optimisation. The inherent obstacle
of determining the expectation was eliminated by employing a
powerful technique for approximate evaluation of expectations
based on the stochastic integration rule. Finally, a numerical
algorithm for calculation of the control action was presented.
This successfully generalises the work proposed by Flı́dr and
Šimandl [2013] to a generic class of nonlinear systems.

The performance of the designed controller was evaluated
through extensive numerical simulations followed by a Monte
Carlo analysis. It was shown that the proposed solution is not
only capable superior to the current solutions of functional
adaptive control, but it also eliminates their drawback of tuning
additional design parameters. The proposed concept accounts
for a higher computational burden, but at the same time shows
an excellent control performance, thus provide a promising
alternative to the existing, explicit type based, dual controllers.

Further research could be focused twofold: (i) to reduce the
computational burden, e.g. by a parallel computing, or (ii) to
analyse a utilization of other estimation methods as indicated
in Section 3.3.
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