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Abstract: This paper proposes a solution to the problem of velocity and position estimation
for a class of oscillating systems whose position, velocity and acceleration are zero mean signals.
The proposed scheme considers that the dynamic model of the system is unknown and only
noisy acceleration measurements are available.

1. INTRODUCTION

The estimation of position/velocity through the integra-
tion of measurements from inertial sensors inherently
causes errors to grow with time, commonly known as
integration drift. In fact, the process of zero-mean noise
integration leads to an output that increases with integra-
tion time, even in the case that the accelerometer is at
rest Thong et al. (2004). For this reason, velocity/position
estimation based on inertial sensors requires some addi-
tional source of information providing for the correspond-
ing correct signal value at some time instants. In general
this information is updated with intervals significantly
larger than the acceleration measurement rate. For in-
stance, in inertial navigation systems (INS) aiding sensors
are applied. An INS consists of a triad of orthogonal ac-
celerometers and rate gyroscopes that are used to calculate
the both the translational and rotational movements of
an aircraft over time Rogers (2003), a process know as
dead reckoning. MEMS technology has made low-cost INS
available. However, sensor biases coupled with the time
integration relationships needed for dead reckoning cause
that the solution quickly diverges. That is why externally
referenced sensors, such as the global positioning system,
are required to regulate the error growth Grewal et al.
(2007); Kalman filters are commonly used in order to fuse
the two sources of information.
An alternative to the use of aiding sensors is the use
of prior-knowledge of motion. In Liu et al. (2009), for
instance, the drift accumulation from gyroscope based
orientation estimation, in human walking experiments, is
compensated by detecting different gait phases with the
aid of accelerometers and the knowledge of the human
walking motion. In Schepers et al. (2010), foot placement
for several strides is estimated. The drift is reduced ap-
plying the knowledge of the cyclic walking movement that
leads to information on initial and final conditions.

1 This work was supported in part by the Government of Russian
Federation (Grant 074-U01) and the Ministry of Education and
Science of Russian Federation (Project 14.Z50.31.0031).

In the present work we address the problem of veloc-
ity/position estimation based only in inertial information
with no aiding sensor nor an explicit dynamical model.
We propose a method that allows to adjust the estimated
position for the case in which the acceleration measure-
ments, which can be contaminated by zero mean noise, are
unbiased and correspond to an oscillating motion with zero
mean velocity and position. This proposal compensates the
drift using the oscillating motion period. Then, a period
estimation algorithm is fundamental considering that the
oscillation period is in general not available. In Spence
and Clarke (2000), a method for estimating the period
and amplitude profile of a signal with multiple periodic-
ities is proposed based on the results reported in Feder
(1993) which can be seen as an implementation of the
so called expectation-maximization algorithm Dempster
et al. (1977). In Spence and Clarke (2000), a likelihood
computation is put in terms of a least mean square (LMS)
residual power expression which is evaluated for differ-
ent test periods. The estimated period is chosen as the
one minimising the LMS residual power. In the field of
music and speech analysis the pitch period (fundamental
frequency) estimation is very important. For short-time
estimation of pitch period, the algorithms that find the
average fundamental frequency using autocorrelation or
linear prediction techniques are the most commonly used
Guangyu and Shize (2009), Peeters (2006), Bernardin
(2006), Min et al. (2005).
We propose a period estimation algorithm that takes
advantage on the zero mean nature of the signals. This
scheme is not restricted to sinusoidal dominant frequency
and is computationally simple. Relying on the aforemen-
tioned oscillation period estimation, a solution for finite
time tracking of position and velocity is proposed.
The rest of the paper is organized as follows, in the next
section the problem statement is presented. In section III
the possibility of an asymptotic velociy/position estima-
tion is discussed and the idea of using the oscillation period
is introduced. Section IV is devoted to the period esti-
mation proposal. In Section V the scheme for finite-time
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position/velocity estimation is presented. Finally, Section
VI presents simulation results.

2. PROBLEM STATEMENT

Consider a system with the following acceleration dyna-
mics

ẍ = f(x, ẋ) (1)

and measurement model

Ψ(t) = ẍ(t) + η, (2)

where η is a bounded zero-mean noise. The acceleration
measurement is assumed unbiased. f(x, ẋ) is an unknown
nonlinear function. It is assumed that the position x, and
hence ẋ, ẍ, have a periodic or quasi-periodic behaviour,
more precisely it is considered that position is oscillating
between two bounds, (there exist two constants such that
Bm ≤ x(i)(t) ≤ BM , ∀t > 0, i = 0, 1, 2). The objective of
this work is to present an alternative solution for velocity
and position estimation in the case of only acceleration
measurement for a class of periodical signals, i.e. x(i)(t) =
x(i)(t+ Tf) for some finite Tf .

3. VELOCITY ESTIMATION

3.1 Velocity estimation through averaging

In the following the super index < i > is used to indicate the
i−th time integral of a function y : R → R:

y<i>(t) =

∫ t

0

. . .

∫ τ2

0

y(τ1) dτ1 . . . dτi. (3)

Consider (2), in order to obtain velocity estimation we
proceed to integrate directly Ψ(t), then

Ψ<1>(t) = ẋ(t)− ẋ(0) + η<1>, (4)

Ψ<2>(t) = x(t)− x(0)− ẋ(0) · t+ η<2>, (5)

dividing (5) by t we obtain

Ψ<2>(t)

t
= −ẋ(0) +

x(t) − x(0) + η<2>

t
. (6)

Then, define the velocity estimation, ˆ̇x, as follows:

ˆ̇x =Ψ<1>(t)−
Ψ<2>(t)

t

=ẋ(t) + η<1> −
x(t)− x(0) + η<2>

t
. (7)

Let us recall that the position is bounded and that the
noise is zero-mean and bounded. Then, the next limit can
be obtained

lim
t→∞

{

x(t)− x(0) + η<2>

t

}

= 0. (8)

Therefore, for t “sufficiently” large

ˆ̇x ≃ ẋ(t) + η<1>. (9)

The amount of time, which is necessary to obtain a reliable
estimation, will depend on the magnitude of the bounds
of position and noise. Next, a similar averaging approach
can be applied for position estimation. Such estimation
would be asymptotic without a possibility to regulate
the speed of convergence. In addition, integration on an
infinite time interval can be technically difficult without
a significant accumulation of computation error leading to

large estimation error. Thus a finite time solution has to be
found. In fact a possibility to find a solution in finite time
is related with knowledge of the period. In next section,
this statement about the necessity of period knowledge is
further discussed.

3.2 Finite time velocity estimation

Assume that ẍ, ẋ and x are unbiased periodic functions
with period Tf . In fact, if ẋ or ẍ have a bias, then x would
not be periodical and bounded. Moreover, a constant
bias in position cannot be identified from acceleration or
velocity measurements because none of them will reflect
such a bias. Now, consider the equations (4) and (5)
evaluated at Tf

Ψ<1>(Tf ) =ẋ(Tf )− ẋ(0) + η<1>, (10)

Ψ<2>(Tf ) =x(Tf )− x(0)− ẋ(0) · Tf + η<2>, (11)

where x(Tf ) = x(0) and ẋ(Tf) = ẋ(0). Hence, an estima-

tion ˆ̇x(0) of ẋ(0) can be obtained at t = Tf :

ˆ̇x(0) = −
Ψ<2>(Tf )

Tf

(12)

= ẋ(0)−
η<2>

Tf

. (13)

Then, if period is known, an estimation of velocity can be
derived using equations (10) and (13):

ˆ̇x(t) = Ψ<1>(t)− ˆ̇x(0). (14)

Next, the same approach can be repeated for position
estimation.

3.3 Importance of period knowledge

Note that x(t) = x(0) may hold for different time instants,
but the correct estimation of velocity can only be ensured
for t = κTf with κ ∈ IN. It implies that estimation of the
initial condition, ẋ(0), without knowledge of the period
may lead to big errors. To illustrate this idea, consider the
next expression for acceleration

ẍ = sin(1.5t) + sin(4.2t), (15)

which is plotted with its corresponding velocity and posi-
tion signals in Fig. 1. Suppose that measurements start at
t = A. Note that there is a subperiod, between times A
and B, for both acceleration and velocity. Given that only
the acceleration is available, this zero mean subperiod can
be wrongly considered as the real period causing the error

term
x(B) − x(A)

B −A
to be present in the estimation ˆ̇x(0),

see Eq. (13). In next section, a solution to the problem of
period estimation is presented.

4. PERIOD IDENTIFICATION

The algorithm for period estimation proposed in this paper
is based on the features of the phase portrait (ẋ, ẍ). To
introduce the idea, consider the phase portrait (ẋ, ẍ) of
(15) depicted in Fig. 2. It is clear that after one period
the trajectories pass through each point at least once.
Nevertheless, there are a number of points and furthermore
trajectory segments, where the trajectory passes more
than once over a cycle. If we can select a point which is
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Fig. 1. Acceleration, Velocity and Position versus time
(sec).
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reached only once over a whole period, then an estimation
of the period can be obtained by detecting the time elapsed
between two consecutive passings over such point. The
question is how to properly select this point.
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Fig. 2. Phase portrait (ẋ, ẍ) for (15).
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Recall that the real phase portrait is not available because
there is no velocity measurement. From Equation (4) it
can be seen that the velocity estimation, ẋ, is shifted
by its initial condition. It is possible to obtain a period
estimation under the assumptions:

S1. ẋ and ẍ are zero-mean periodical signals with un-
known period Tf .

S2. On the period Tf , ẋ has a unique global extremum,
either a maximum or a minimum, represented by ẋM .

S3. On the period Tf , the time integrals η<i>, i = 1, 2,
are bounded by constants δη<i> , i.e., |η<i>(t)| <
δη<i> ∀t ∈ [0, Tf ].

Remark 1. The Assumption S2 restricts the function ẋ
to have only a single occurrence of the respective global
extremum over one period. Moreover, it implies that the
magnitude of this global extremum is different from the
magnitude of any other local extremum.

4.1 Period Identification Algorithm

Recall that ẋM denotes the global extremum in velocity.
Acceleration is in general a noisy measurement and the
accuracy of integration is additionally limited by the sam-
pling time. The algorithm for period estimation should
perform the following tasks

(1) To ensure the detection of every occurrence, once each
period, of the extremum ẋM . Due to the integration
error, δη<1> , detected extremum cannot be separated
from the real ẋM by a distance larger than δη<1> . The
algorithm should ensure that the above mentioned
δη<1> -vicinity is achieved at each new ẋM passage.

(2) To ensure that no local extremum is wrongly esti-
mated as ẋM . In addition to possible extrema outside
of the δη<1> -vicinity, there may be local extrema
inside such a vicinity. These local extrema should be
disregarded. The above implies that it is necessary
to wait until being outside of the δη<1>-vicinity in
order to decide that a new detected extremum will
be considered as a new occurrence of ẋM .

(3) In order to avoid accumulation of drift, the integral of
acceleration, on which the detection of ẋM is based,
should be restarted once each period. This restart can
be performed after a new ẋM occurrence has been
confirmed.

If the above conditions are fulfilled then an estimation
of the period can be made as the difference between two
consecutive detected occurrences of ẋM . Some definitions
are introduced prior to present the algorithm. α is a
parameter to be selected as 1 or −1 in order to detect a
global maximum, or a global minimum respectively. ẋM−

is the extremum, different from ẋM , whose amplitude is
the closest to ẋM . The notation Ψ<1>(ta, tb) indicates the
integral of Ψ from t = ta to t = tb. Next we present the
proposed period detection algorithm:
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Algorithm A1.
Initialization of variables

α = ±1, t0 = 0, t1 = 0, f l = 0,

δ > δη<1>

Ψ<1>
m = 0,

C0. If αΨ<1>(t0, t) > αΨ<1>
m − δfl then

Ψ<1>
m =Ψ<1>(t0, t),

t1 =t,

f l =0.

(16)

C1. If αΨ<1>(t1, t) < −2δ and fl = 0 then

Ψ<1>
m =0,

T̂f =t1 − t0,

t0 =t1,

f l =1,

(17)

Remark 2. The only parameter to be tuned is δ whose
value will be related to noise amplitude and is further
discussed in the sequel.

We state the claims:

Lemma 1. Each occurrence of ẋM is followed by only one
fulfillment of condition C1 with a value for t1 such that

ẋ(t1) > ẋM − αδη<1> . (18)

Proposition 2. If assumptions S1-S3 are fulfilled then, an
estimation of the real period, Tf , is obtained by means of
the algorithm A1 provided that

1

2
|ẋM − ẋM− | > δ > δη<1> . (19)

Assume that α = 1 is selected. Then, the algorithm A1
proceeds in the following manner:

• The condition C0 at the beginning is αΨ<1>(0, t) >
0, and it is fulfilled for any positive quantity of the
integral αΨ<1>(0, t).

• After the first fulfillment ofC0 the assigment Ψ<1>
m =

Ψ<1>(0, t) is done in order to save the new maximum,
and the time of its occurrence is saved on t1.

• The conditionC1 is checked for the integral Ψ<1>(t1, t),
which is restarted at the instant t1 of the last maxi-
mum detection of Ψ<1>(t0, t). This condition is satis-
fied if Ψ<1>(t1, t) becomes less than −2δ and fl = 0.

• The condition C1 serves for the detection purpose
of a passage of the global maximum ẋM (in order to
distinguish it from ẋM− or other local extremums).
It is shown in the proof of Lemma 1, that after the
first occurrence of ẋM the condition (18) is fulfilled.

• Finally, note that when condition C1 is fulfilled, the
integral Ψ<1>(t0, t) contains the integrated acceler-
ation with the initial time corresponding to the last
maximum. Additionally, the condition C0 takes the
form Ψ<1>(t0, t) > −δ. This change in the form of
condition C0 is needed in order to take into account
a possible drift due to the integration error δη<1> < δ.

Proofs.
Let the unique absolute extremum for ẋ be a global
maximum denoted as ẋM (the proof in the case of a global

minimum follows the same rationale). For this case α = 1
is selected and the conditions C0 and C1 are rewritten as

Ψ<1>(t0, t) > Ψ<1>
m if fl = 0 (20a)

Ψ<1>(t0, t) > −δ if fl = 1 (20b)

and
Ψ<1>(t1, t) < −2δ,

f l = 0,
(21)

respectively. Note that condition C0 can take two forms,
(20a) for fl = 0 and (20b) for fl = 1.

Proof of Lemma 1. This proof is divided into two parts:

• First, let us show that the condition

ẋ(t1) ∈ [ẋM − δη<1> , ẋM ]. (22)

is satisfied independently on the initial conditions
ẍ◦ = ẍ(0), ẋ◦ = ẋ(0) and x◦ = x(0).
Define T 1

M as the time of first appearance of ẋM and
suppose that the initial condition ẋ◦ is such that

ẋ◦ < ẋM − δη<1> , (23)

in the contrary case, (22) will be necessarily satisfied
after the first fulfillment of C1. Then, considering
(23), if (21) is not fulfilled between t = 0 and t = T 1

M

we have

Ψ<1>(t0, T
1
M ) = Ψ<1>(0, T 1

M )

= ẋM − ẋ◦ + η<1>

> ẋM − ẋM + δη<1> − δη<1>

> 0.

Thereby, C0, that is (20a), will be necessarily true
at least for ẋ(t) = ẋM , recall that the errors are
comprised in δη<1> . The above implies that the cor-
respondent time t1 captured due to C0 is such that
(22) is verified.
On the other hand, suppose that C1, see (21), is
true before passing through ẋM . This implies that
Ψ<1>(t0, t) has decreased 2δ in magnitude since its
last largest value. The assignments Ψ<1>

m = 0 and
fl = 1 due to C1 implies that condition C0 takes
the form (20b). Now, note that the latter must be
fulfilled before a new true event of C1. Since t0 is reset
to the time of occurrence of the last largest value of
Ψ<1>(t0, t), one obtains that

Ψ<1>(t0, t) < 2δ

holds, after the assignments in C1 with xM still to
appear. Then, there exist a time t∗ such that

ẋ(t∗) = ẋ◦; with t∗ < Tf ,

and for t = t∗ one obtains

Ψ<1>(t0, t
∗) = ẋ(t∗)− ẋ(t0) + η<1>

≥ −δη<1> > −δ.

Then, (20b) is fulfilled and C0 takes the form (20a)
again. From the above, if ẋ(t∗) = ẋ(t0) < ẋM − δη<1>

then condition (20) will be true at some time satisfy-
ing ẋ(t) ∈ [ẋM − δη<1> , ẋM ].
This concludes the part that ensures that t1 will

be such that (22) holds independently of the initial
conditions.

• Once t1 satisfies (22), condition C1 is fulfilled only
once after each ẋM occurence. Consider that C1 is
true after (22) is satisfied then,

ẋ(t0) ∈ [ẋM − δη<1> , ẋM ], (24)
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and note that C0 must be before C1 can be satisfied
again. Next we show that C0, which is now in the
form (20b), can only be true again in the vicinity
ẋ(t) ∈ [ẋM − δη<1> , ẋM ]. Recall that the local ex-

tremum closest in magnitude to ẋM is ẋ−

M . Then, for

ẋ(t) = ẋ−

M , after (24) holds, we obtain

Ψ<1>(t0, t) = ẋ−

M − ẋ(t0) + η<1>

Ψ<1>(t0, t) ≤ ẋ−

M − ẋM + η<1>.

From (19) we have that ẋ−

M − ẋM < −2δ, hence

Ψ<1>(t0, t) < −2δ + δη<1>

Ψ<1>(t0, t) < −δ

thus, ẋ(t) must be larger than ẋ−

M in order to fulfill
again C0. This can only occur in vicinity of [ẋM −
δη<1> , ẋM ]. On the other hand, C0 will necessarily be
true in the latter vicinity, to show this consider the
case ẋ(t) = ẋM :

Ψ<1>(t0, t) = ẋ(t)− ẋ(t0) + η<1>

Ψ<1>(t0, t) ∈ ẋM − ẋM − [−δη<1> , 0] + η<1>

Ψ<1>(t0, t) > −δη<1> > −δ.

Then, condition C0 is fulfilled and a new time t1 will
be captured such that (22) is satisfied. This concludes
the proof of Lemma 1.

Proof of Proposition 2. Proposition 2 is a straightfor-
ward result of Lemma 1. Note that if (22) is satisfied, then
for each subsequent C1 verification, the variables t0 and
t1 will contain the time of detection of two consecutive
global maxima of Ψ<1>, with an error which depends on
the noise and the sampling, δη<1> . The condition (22)
cannot be ensured before a whole period has elapsed, then
at least two periods are needed in order to ensure that
a correct estimation of Tf is obtained. Moreover, as the
condition C1 is needed to compute the estimation, the
first correct estimation may occur during the third period
after launching the algorithm, when Ψ<1> exits the 2δ
vicinity.
It is worth to stress that the developed algorithm does not
impose a restriction on possible values for the amplitude
and the period of the signals. Let us remark that the
accuracy does not depends on the parameter δ of the
algorithm, the error in the estimation is directly related
to δη<1> which is inherent to the system.

5. VELOCITY AND POSITION ESTIMATION BASED
ON PERIOD ESTIMATION

The period estimation, T̂f , obtained in the previous section
can be used to estimate ẋM and in turn to obtain a real
time velocity estimation. The fact that ẋM is estimated at
each period will be used in order to compensate the drift
due to errors previously mentioned. Define T i

M the time of

i-th occurrence of the extremum ẋM , and denote T̂ i
M its

estimate calculated after fulfillment of condition C1, then
T̂ i
M = t1. Let T̂ i

f be the period estimation corresponding

to the time T i
M , which is obtained on the i-th iteration of

Algorithm A1, then T̂ i
f = T̂ i

M − T̂ i−1
M . Thus, based on (13)

we obtain

ˆ̇x(T i
M ) = −

Ψ<2>(T̂ i−1
M , T̂ i

M )

(T̂ i
f)

. (25)

Analogously, an estimation x̂(T i
M ) can be derived by using

the estimated period T̂ i
f and the third integral of Ψ that

is

Ψ<3>(T i−1
M , T i

M ) =x<1>(T i
M )− x<1>(T i−1

M )

− x(T i−1
M )(T i

M − T i−1
M )

−
1

2
ẋ(T i−1

M )(T i
M − T i−1

M )2

+ η<3>(T i−1
M , T i

M ),

(26)

then, assuming that x<1>(T i
M ) = x<1>(T i−1

M ),

x̂(T̂ i
M ) =−

Ψ<3>(T̂ i−1
M , T̂ i

M )

T̂f

+
1

2
ˆ̇x(T̂ i−1

M )T̂f . (27)

Finally, the estimation of velocity and position is obtained
through the next expressions

ˆ̇x(t) =Ψ<1>(T̂ i
M , t)− ˆ̇x(T̂ i

M ), (28)

x̂(t) =Ψ<2>(T̂ i
M , t)− x̂(T̂ i

M ). (29)
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−10

−8

−6

−4

−2

0

2

4

6

8

Fig. 3. Phase portrait (Ψ<1>,Ψ) for system (30).

Ψ

Ψ<1>

6. EXAMPLE

Expressions (28) and (29) (with the results obtained from
algorithm A1) were applied for velocity and position
estimation with acceleration measurements for a variant
of Van der Pol oscillator

ẍ+ 0.1(x+ 1)(x− 1)(x− 2.2)ẋ+ x = 0 (30)

Ψ(t) = ẍ(t) + η(t) (31)

The parameters in (30) were proposed in Karreman and
Prood (1995) as a mathematical model for an isometric
contraction of the mammalian cardiac muscle. The zero
mean noise has been selected to satisfy |η(t)| < 0.2.
The phase portrait (ẍ, ẋ) of (30), with initial conditions
x0 = 3 and ẋ0 = −2, is displayed in Fig. 3. The estimated
period is depicted in Fig. 4. The results of velocity and
position estimation obtained through the scheme proposed
in Section 5 are shown in Fig. 5.
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Fig. 4. Period estimation for (30).
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7. CONCLUSIONS

For a class of oscillatory motion, a scheme for velocity
and position estimation based on noisy acceleration mea-

surements is presented. An algorithm for estimation of the
aforementioned period of oscillation is proposed. No model
of the motion or a priori information on the period of the
signals are required. As a result, the proposed scheme is
suitable as a standalone solution for estimation of posi-
tion and velocity using only inertial information without
any aiding measurements. Further research is directed to
consider biased measurements and the application of the
proposed solution with real measurement data.
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