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Abstract: We propose in this paper an inexact dual gradient algorithm based on augmented
Lagrangian theory and inexact information for the values of dual function and its gradient.
We study the computational complexity certification of the proposed method and we provide
estimates on primal and dual suboptimality and also on primal infeasibility. We also discuss
implementation aspects of the proposed algorithm on constrained model predictive control
problems for embedded linear systems and provide numerical tests to certify the efficiency
of the method.

1. INTRODUCTION

Embedded control systems have been widely used in
many applications and their usage in industrial plants
has increased concurrently. The concept behind embed-
ded control is to design a control scheme that can be
implemented on autonomous electronic hardware [6], e.g
a programmable logic controller, a microcontroller circuit
board or field-programmable gate arrays. One of the most
successful advanced control schemes implemented in indus-
try is model predictive control (MPC) and this is due to
its ability to handle complex systems with hard input and
state constraints. In the recent decades there has been a
growing focus on developing faster MPC schemes, improv-
ing the computational efficiency [13] and providing worst
case computational complexity certificates for the applied
solution methods [7, 14], making these schemes feasible for
implementation on hardware with limited computational
power. Even if second order methods (e.g. interior point
methods) can offer fast rates of convergence in practice, the
worst case complexity bounds are high [2]. Further, these
methods have complex iterations, involving inversion of
matrices. Therefore, first order methods are more suitable
in these situations.

When the projection on the primal feasible set is hard to
compute, e.g. for constrained MPC problems, an alterna-
tive to primal gradient methods is to use the Lagrangian
relaxation to handle the complicated constraints and then
to apply dual gradient schemes. The computational com-
plexity certification of gradient-based methods for solv-
ing the (augmented) Lagrangian dual of a primal convex
problem is studied e.g. in [4, 7, 8, 12, 14, 15]. In [4] the
authors present a general framework for gradient methods
with inexact oracle, i.e. only approximate information is
available for the values of the function and of its gradient,
and give convergence rate analysis. The authors also apply
their approach to gradient augmented Lagrangian meth-
ods and provided estimates only for dual suboptimality.
In [12] a dual fast gradient method is proposed for solving

quadratic programs with linear inequality constraints and
estimates on primal suboptimality and infeasibility of the
primal solution are provided. In [7] the authors analyze
the iteration complexity of an inexact dual gradient aug-
mented Lagrangian method. The authors provides upper
bounds on the total number of iterations which have to
be performed by the algorithm for obtaining a primal
suboptimal solution. In [8] a dual method based on fast
gradient schemes and smoothing techniques of the ordi-
nary Lagrangian is presented. Using an averaging scheme
the authors are able to recover a suboptimal solution.

Despite widespread use of the dual gradient methods for
solving Lagrangian dual problems, there are some aspects
of these methods that have not been fully studied. First,
the focus is mainly on the convergence analysis of the
dual variables. Second, there is no full convergence rate
analysis (i.e. no estimates in terms of dual and primal
suboptimality and primal feasibility violation) for fast dual
gradient methods while using inexact dual information.
Therefore, in this paper we focus on solving convex op-
timization problems (possibly nonsmooth) approximately
by using an augmented Lagrangian approach and inexact
dual fast gradient methods. We show how approximate
primal solutions can be generated based on averaging for
general convex problems and we give a full convergence
rate analysis for the proposed method.

Contribution: We propose and analyze an inexact dual fast
gradient algorithm producing approximate primal feasi-
ble and optimal solutions. For solving the outer (dual)
problem we propose an inexact dual fast gradient algo-
rithm with complexity O(

√

1/εout) iterations, provided
that the inner problems are solved with accuracy εin of
order O(εout

√
εout). For the proposed algorithm we pro-

vide estimates on primal suboptimality and infeasibility.

Paper outline: The paper is organized as follows. In Sec-
tion 1, motivated by embedded MPC, we introduce the
augmented Lagrangian framework for solving constrained
convex problems and discuss the complexity of solving the
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inner problems. In Section 2 we propose an inexact dual
fast gradient algorithm for solving the outer problem and
we provide estimates on the dual and primal suboptimal-
ity and also on the primal infeasibility. In Section 3 we
discuss different implementation aspects of the proposed
algorithm in the context of constrained linear MPC. We
also provide numerical tests to prove the efficiency of the
proposed algorithm.

Notation and terminology We work in the space R
n com-

posed by column vectors. For x, y ∈ R
n, 〈x, y〉 := xT y =

∑n
i=1 xiyi and ‖x‖ := (

∑n
i=1 x

2
i )

1/2 denote the standard
Euclidean inner product and norm, respectively. We also
denote by Rp := maxz,y∈Z ‖z − y‖ the diameter of a
convex, compact set Z. For a real number x, ⌊x⌋ denotes
the largest integer number which is less than or equal to x.

1.1 Motivation: Constrained linear MPC

We consider a discrete time linear system given by:

xk+1 = Axxk +Buuk,

where xk ∈ R
nx represents the state and uk ∈ R

nu the
input of the system. We also assume hard state and input
constraints:

xk ∈ X ⊆ R
nx , uk ∈ U ⊆ R

nu ∀k ≥ 0.

We can define the linear MPC problem over the prediction
horizon of length N , for an initial state x, as follows [16]:

f∗(x) :=



















min
xi,ui

N−1
∑

i=0

ℓ(xi, ui) + ℓf(xN )

s.t. xi+1 = Axxi +Buui, x0 = x,
xi ∈ X, ui ∈ U ∀i, xN ∈ Xf ,

(1)

where both the stage cost ℓ and the terminal cost ℓf
are convex functions (possibly nonsmooth). Note that in
our formulation we do not require strongly convex costs.
Further, the terminal set Xf is chosen so that stability of
the closed-loop system is guaranteed. We assume the sets
X,U and Xf to be compact, convex and simple (by simple
we understand that the projection on these sets can be
done easily, e.g. boxes).

Furthermore, we introduce the following notations: z :=
[

xT
1 · · ·xT

N uT
0 · · ·uT

N−1

]T
, Z :=

∏N−1
i=1 X × Xf ×

∏N
i=1 U

and f(z) :=
∑N−1

i=0 ℓ(xi, ui) + ℓf(xN ). We can also write
compactly the linear dynamics xi+1 = Axxi + Buui for
all i = 0, · · · , N − 1 and x0 = x as Az = b(x) (see [16]
for details). Note that b(x) ∈ R

Nnx depends linearly on

x, i.e. b(x) :=
[

(Axx)
T 0T · · · 0T

]T
. In these settings, for

linear MPC we need to solve, for a given initial state x,
the primal convex optimization problem:

min
z

{f(z) | Az = b(x), z ∈ Z} , (P(x))

where f is a convex function (possibly nonsmooth) and A
is a matrix of appropriate dimension. Moreover, the set Z
is simple as long as X, Xf and U are simple sets. In the
following sections we discuss how we can efficiently solve
optimization problem (P(x)) approximately with a dual
fast gradient method based on inexact information.

1.2 Augmented Lagrangian framework

Motivated by MPC problems, we are interested in solving
convex optimization problems of the form:

f∗ :=

{

min
z∈Rn

f(z)

s.t. Az = b, z ∈ Z,
(P)

where f is convex function (possibly nonsmooth), A ∈
R

m×n is a full row-rank matrix and Z is a simple set
(i.e. the projection on this set is computationally cheap),
compact and convex. We will denote problem (P) as the
primal problem and f as the primal objective function.

As we have already mentioned, in contrast with second
order methods, for first order methods the number of
iterations predicted by the worst case complexity analy-
sis is close to the actual number of iterations performed
by the method [10], which is crucial in the context of
fast embedded systems. First order methods applied di-
rectly to problem (P) imply projection on the feasible
set {z | z ∈ Z, Az = b} which is very hard to compute
due to the complicating constraints Az = b. An efficient
alternative is to move the complicating constraints into
the cost via Lagrange multipliers and solve the dual prob-
lem approximately by using first order methods and then
recover a primal suboptimal solution for (P). This is the
approach that we follow in this paper.

First let us define the dual function:

d(λ) := min
z∈Z

L(z, λ), (2)

where L(z, λ) := f(z) + 〈λ,Az − b〉 represents the partial
Lagrangian with respect to the constraints Az = b and
λ the associated Lagrange multipliers. Now, we can write
the corresponding dual problem as follows:

max
λ∈Rm

d(λ). (D)

We assume that Slater’s constraint qualification holds, so
that problems (P) and (D) have the same optimal value.
We denote by z∗ an optimal solution of (P) and by λ∗ the
corresponding multiplier (i.e. an optimal solution of (D)).

In general, the dual function d is not differentiable [1] and
therefore any subgradient method for solving (D) has a
slow convergence rate. We will see in the sequel how we
can avoid this drawback by means of the augmented La-
grangian framework. We define the augmented Lagrangian
function [15]:

Lρ(z, λ) := f(z) + 〈λ,Az − b〉+ ρ

2
‖Az − b‖2, (3)

where ρ > 0 represents a penalty parameter. The aug-
mented dual problem, called also the outer problem, is:

max
λ∈Rm

dρ(λ), (Dρ)

where dρ(λ) := min
z∈Z

Lρ(z, λ) and we denote by z∗(λ) an

optimal solution of the inner problem minz∈Z Lρ(z, λ) for
a given λ. It is well-known [1, 7] that the optimal value
and the set of optimal solutions of the dual problems (D)
and (Dρ) coincide. Furthermore, the function dρ is concave
and differentiable and its gradient is given by [11]:

∇dρ(λ) := Az∗(λ)− b.

Moreover, the gradient mapping ∇dρ(·) is Lipschitz con-
tinuous with a Lipschitz constant [1] Ld := ρ−1.

In conclusion, we want to solve within an accuracy εout
the equivalent smooth outer problem (Dρ) by using first
order methods with inexact gradients (e.g. fast gradient
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algorithms) and then recover an approximate primal solu-
tion. In other words, the goal of this paper is to generate

a primal-dual pair (ẑ, λ̂), with ẑ ∈ Z, for which we can
ensure bounds on dual suboptimality, primal infeasibility
and primal suboptimality of order εout, i.e.:

f∗ − dρ(λ̂) ≤ O (εout) , ‖Aẑ − b‖ ≤ O (εout) and

|f(ẑ)− f∗| ≤ O (εout) . (4)

We will discuss in the following sections how we can ensure
conditions (4).

1.3 Complexity estimates of solving the inner problems

As we have seen in the previous section, in order to
compute the gradient ∇dρ we have to find, for a given
λ, an optimal solution of the inner convex problem:

z∗(λ) ∈ argmin
z∈Z

Lρ(z, λ). (5)

Since an exact minimizer of the inner problem (5) is
usually hard to compute, we are interested in finding an
approximate solution of this problem instead of its optimal
one. Therefore, we have to consider an inner accuracy εin
which measures the suboptimality of such an approximate
solution for (5):

z̄(λ) ≈ argmin
z∈Z

{

f(z) + 〈λ,Az − b〉+ ρ

2
‖Az − b‖2

}

.

Since there exist several ways to characterize an εin-
optimal solution [4, 7, 9], we will further discuss different
stopping criteria which can be used in order to find such a
solution. A well-known stopping criterion, which measures
the distance to optimal value of (5), is given by:

z̄(λ) ∈ Z, Lρ (z̄(λ), λ)− Lρ (z
∗(λ), λ) ≤ ε2in. (6)

As a direct consequence of the optimality condition for
problem (5), one can use the following stopping criterion:

z̄(λ)∈ Z, 〈∇Lρ(z̄(λ), λ), z−z̄(λ)〉≥ −O(εin) ∀z∈ Z. (7)

Note that if ∇Lρ is Lipschitz continous with constant Lp

then (6) implies (7) with O(εin) =
(

1 +
√

LpRp

)

εin. A de-
tailed discussion regarding the relation between criterions
(6) and (7) can be found in [4, 9].

The next theorem provides estimates on the number of
iterations that are required by fast gradient schemes to
obtain an εin approximate solution for inner problem (5).

Theorem 1.1. [10] Assume that the function Lρ(·, λ) has
Lipschitz continuous gradient w.r.t. variable z, with a
Lipschitz constant Lp and a fast gradient scheme [10] is
applied for finding an εin approximate solution z̄(λ) of (5)
such that stopping criterion (6) holds, i.e. Lρ (z̄(λ), λ) −
Lρ (z

∗(λ), λ) ≤ ε2in. Then, the complexity of finding z̄(λ) is

O
(

√

Lp/ε2in

)

iterations. If, in addition Lρ(·, ·) is strongly
convex with a convexity parameter σp > 0, then z̄(λ)

can be computed in at most O
(

√

Lp/σp ln
(

σp/ε
2
in

)

)

iterations by using a fast gradient scheme.

2. COMPLEXITY ESTIMATES OF SOLVING THE
OUTER PROBLEM USING APPROXIMATE DUAL

GRADIENTS

In this section we solve the augmented Lagrangian dual
problem (Dρ) approximately by using a dual fast gradient

method and derive computational complexity certificates
for this methods. Since we solve the inner problem inex-
actly, we have to use inexact gradients and approximate
values of the augmented dual function dρ defined in terms
of z̄(λ), i.e. we introduce the following pair:

d̄ρ(λ) := Lρ (z̄(λ), λ) and ∇d̄ρ(λ) := Az̄(λ)− b.

The next theorem, whose proof can be found in [4, 9],
provides bounds on the dual function when the inner
problem (5) is solved approximately.

Theorem 2.1. [4, 9] If z̄(λ) is computed such that the
stopping criterion (7) is satisfied, i.e. z̄(λ) ∈ Z and
minz∈Z 〈∇Lρ(z̄(λ), λ), z − z̄(λ)〉 ≥ −

(

1 +
√

LpRp

)

εin,
then the following inequalities hold:

d̄ρ(λ) +
〈

∇d̄ρ(λ), µ−λ
〉

− Ld

2
‖µ−λ‖2 −

(

1 +
√

LpRp

)

εin

≤ dρ(µ) ≤ d̄ρ(λ) +
〈

∇d̄ρ(λ), µ−λ
〉

∀λ, µ ∈ R
m. (8)

Note that the previous theorem helps us to construct a
model which bounds the function dρ, when the exact values
of the dual function and its gradients are unknown.

2.1 Inexact dual fast gradient method

In this subsection we discuss a fast gradient scheme for
solving the augmented Lagrangian dual problem (Dρ).
Fast gradient schemes were first proposed by Nesterov
[11] and have also been discussed in the context of dual
decomposition in [8]. A modification of these schemes for
the case of inexact information can be also found in [4].
We shortly present such a scheme as follows. Given a
positive sequence {θk}k≥0 ⊂ (0,+∞) with θ0 = 1, we

define Sk :=
∑k

j=0 θj . Let us assume that the sequence

{θk}k≥0 satisfies θ2k+1 = Sk+1 for all k ≥ 0. This condition
leads to:

θk+1 :=
1

2
(1 +

√

4θ2k + 1) ∀k ≥ 0 and θ0 := 1. (9)

Note that the sequence {θk}k≥0 generated by (9) satisfies:

0.5(k + 1) ≤ θk ≤ k + 1 ∀k ≥ 0. (10)

We can also obtain 0.25(k + 1)(k + 2) < Sk < 0.5(k +

1)(k+2) and
∑k

j=0 Sj < (k+1)(k+2)(k+3)/6. Given an
initial point λ0 ∈ R

m, we define two sequences of the dual
variables {λk}k≥0 and {µk}k≥0 as:

(IDFGM) :



















µk := λk + L−1
d ∇d̄ρ(λk)

λk+1 := (1− ak+1)µk

+ak+1

[

λ0 + L−1
d

k
∑

i=0

θi∇d̄ρ(λi)
]

,

where the sequence ak+1 := S−1
k+1θk+1.

The following lemma, which represents an extension of the
results in [8, 11] to the inexact case (see also [4]), will be
useful for the analysis of our proposed method.

Lemma 2.2. [4, 8] Under the assumptions of Theorem 2.1,
the two sequences {(λk, µk)}k≥0 generated by the dual fast

gradient scheme (IDFGM) satisfy:
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Skdρ(µk)≥ max
λ∈Rm

k
∑

j=0

θj
[

d̄ρ(λj)+
〈

∇d̄ρ(λj), λ−λj

〉 ]

(11)

− Ld

2
‖λ−λ0‖2−

(

1+
√

LpRp

)

εin

k
∑

j=0

Sj ∀k ≥ 0.

The next theorem gives an estimate on dual suboptimality.

Theorem 2.3. Under the assumptions of Theorem 2.1, let
{(λk, µk)}k≥0 be the two sequences generated by the

scheme (IDFGM) and Rd := ‖λ0−λ∗‖. Then, an estimate
on dual suboptimality is given by the following expression:

f∗−dρ(µk) ≤
2LdR

2
d

(k + 1)(k + 2)
+

2(k + 3)

3

(

1+
√

LpRp

)

εin.

Proof For simplicity, we introduce the notation CZ := 1+
√

LpRp. Using inequality (8) in (11) we obtain:

Skdρ(µk) ≥ Skdρ(λ
∗)− Ld

2
‖λ∗ − λ0‖2 − CZεin

k
∑

j=0

Sj .

Now, using the fact that Sk > 0.25(k + 1)(k + 2) and
∑k

j=0 Sj < (k + 1)(k + 2)(k + 3)/6 and the definition of
CZ , we obtain our result. ✷

We further define the following primal average sequence:

ẑk := S−1
k

k
∑

j=0

θj z̄i, (12)

where z̄i := z̄(λi). The next theorem gives an estimate on
infeasibility of ẑk for the original problem (P).

Theorem 2.4. Under the conditions of Theorem 2.3, the
point ẑk defined by (12) satisfies the following estimate on
primal feasibility violation:

‖Aẑk − b‖ ≤ v(k, εin), (13)

where v(k, εin) :=
8LdRd

(k+1)(k+2) + 4

√

Ld(k+3)(1+
√

LpRp)εin
3(k+1)(k+2) .

Proof By the definition of d̄ρ, ∇d̄ρ and ẑk we have:

k
∑

j=0

θj
[

d̄ρ(λj)+
〈

∇d̄ρ(λj), λ−λj

〉]

=

k
∑

j=0

θjf(z̄j) + Sk 〈λ,Aẑk−b〉+
k
∑

j=0

θj
ρ

2
‖Az̄j − b‖2

≥ Skf(ẑk) + Sk 〈λ,Aẑk − b)〉+ Sk

2Ld
‖Aẑk − b‖2,

where recall that Sk =
∑

j θj and thus the last relation

follows from Jensen’s inequality applied to f and ‖ · ‖2.
Substituting the previous inequality into (11) we obtain:

dρ(µk) ≥ f(ẑk)+ max
λ∈Rm

{

〈λ,Aẑk − b〉 − Ld

2Sk
‖λ−λ0‖2

}

+
ρ

2
‖Aẑk − b‖2 − CZεinS

−1
k

k
∑

j=0

Sj . (14)

On the one hand, we can write:

dρ(µk)− f(ẑk)−
ρ

2
‖Aẑk − b‖2

≤ dρ(λ
∗)− f(ẑk)−

ρ

2
‖Aẑk − b‖2 (15)

= min
z∈Z

Lρ(z, λ
∗)−f(ẑk)−

ρ

2
‖Aẑk−b‖2≤ 〈λ∗, Aẑk−b〉 .

On the other hand, we have:

max
λ∈Rm

{

− Ld

2Sk
‖λ− λ0‖2 + 〈λ,Aẑk − b〉

}

=
Sk

2Ld
‖Aẑk − b‖2 + 〈λ0, Aẑk − b〉 . (16)

Substituting (15) and (16) into (14) we obtain:

Sk

2Ld
‖Aẑk − b‖2 + 〈λ0 − λ∗, Aẑk − b〉 ≤ CZεinS

−1
k

k
∑

j=0

Sj .

If we define ξ := ‖Aẑk − b‖, then the last inequality

implies (k+1)(k+2)
8Ld

ξ2 − Rdξ ≤ 4(k+3)
3 CZεin. Therefore,

using
√
ζ1 + ζ2 ≤

√
ζ1+

√
ζ2 we obtain ξ ≤ ν(k, εin), where

ν(·, ·) is defined in (13). ✷

Finally, we characterize the primal suboptimality for opti-
mization problem (P).

Theorem 2.5. Under the conditions of Theorem 2.4, the
following estimates hold on primal suboptimality:

−
[

‖λ∗‖+ ρ

2
ν(k, εin)

]

ν(k, εin) ≤ f(ẑk)−f∗

≤ 2Ld‖λ0‖2
(k+1)(k+2)

+
2(k+3)

3

(

1+
√

LpRp

)

εin.

Proof The left-hand side inequality can be easily proved us-
ing the definition of Lρ(ẑk, λ

∗), Theorem 2.4, the Cauchy-
Schwartz inequality and taking into account that f∗ =
dρ(λ

∗) ≤ Lρ(ẑk, λ
∗).

For the right-hand side we use first (14) and (16):

dρ(µk) ≥ f(ẑk) +
Sk

2Ld
‖Aẑk − b‖2 + 〈λ0, Aẑk − b〉

+
ρ

2
‖Aẑk − b‖2 − CZεinS

−1
k

k
∑

j=0

Sj

≥ f(ẑk)−
2Ld

(k + 1)(k + 2)
‖λ0‖2 −

2(k + 3)

3
CZεin.

Therefore, we get:

f(ẑk)− dρ(µk) ≤
2Ld

(k + 1)(k + 2)
‖λ0‖2 +

2(k + 3)

3
CZεin.

Since dρ(µk) ≤ f∗, we obtain the result. ✷

We assume now that we fix the outer accuracy εout to a
desired value and the goal is to find kout and a relation
between εout and εin such that after kout outer iterations
of the scheme (IDFGM) relations (4) holds. We can take
e.g.:

kout=

⌊

2Rd

√

Ld

εout

⌋

and εin=
3

4
(

1+
√

LpRp

)

(kout+3)
εout.

Using now Theorems 2.3, 2.4 and 2.5 we can conclude
that the following bounds for dual suboptimality, primal
infeasibility and primal suboptimality hold:
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f∗−dρ(λ̂kout
)≤εout, ẑkout

∈Z, ‖Aẑkout
−b‖ ≤ 3

Rd
εout and

−
(

3‖λ∗‖
Rd

+
9ρ

2R2
d

εout

)

εout≤f(ẑkout
)−f∗≤

(‖λ0‖2+R2
d

2R2
d

)

εout.

3. COMPLEXITY CERTIFICATION FOR LINEAR
MPC PROBLEMS

In this section we discuss different implementation aspects
and total complexity estimates for the application of the
newly developed algorithm in the context of state-input
constrained MPC for fast linear embedded systems. We
denote by XN a subset of the region of attraction [16]
for the MPC scheme discussed in Section 1.1. A detailed
discussion on the stability of suboptimal MPC schemes can
be found e.g. in [16]. For a given x ∈ XN , we denote with
z∗(x) an optimal solution for (P(x)) and with λ∗(x) an
associated optimal multiplier. Usually, in MPC problems
the stage and final costs are quadratic functions:

ℓ(xi, ui) := xT
i Qxi + uT

i Rui and ℓf(xN ) := xT
NPxN ,

where matrices Q and P are positive semidefinite and R is
positive definite. Thus, f becomes quadratic with Hessian
H. Further, we characterize the convexity properties of the
augmented Lagrangian function.

Lemma 3.1. [9] If the optimization problem (P(x)) comes
from a linear MPC problem with quadratic stage and
final costs, then the augmented Lagrangian Lρ(z, λ, x) is
a strongly convex quadratic function w.r.t. variable z.

The previous lemma shows that in the linear MPC case
with quadratic costs the objective function of the inner
subproblems Lρ are quadratic strongly convex in the first
variable z. Moreover, Lρ has also Lipschitz continuous
gradient. Note that the convexity parameter σp of this
function can be computed easily: σp := λmin(H + ρATA).
Also, the Lipschitz constant Lp of the gradient of Lρ is
given by: Lp := λmax(H + ρATA).

Note that since Lρ(z, λ, x) is strongly convex and with
Lipschitz continuous gradient in the variable z, by solv-
ing the inner problem (5) with a fast gradient scheme
we can ensure stopping criterion (6) in a linear num-
ber of inner iterations (see Theorem 1.1). Note that the
estimate for the number of inner iterations is also de-
pendent on the diameter Rp of the set Z. We can see
immediately that this diameter can be computed easily
for cases when the set Z has a specific structure. Note
that the set Z is a Cartesian product and thus we have:
Rp :=

√

(N − 1)D2
x +D2

xf
+ND2

u, whereDx,Dxf
andDu

denotes the diameters of X, Xf and U , respectively. These
diameters can be computed explicitly for constraints sets
defined e.g. by boxes or Euclidean balls, which typically
appear in the context of MPC problems.

Since the estimate for the number of outer iterations
depends on the norm of the dual optimal solution ‖λ∗‖
we make use of the result from [3]:

Lemma 3.2. [3] For the MPC problems (P(x))x∈XN
we

assume that there exists r > 0 such that B(0, r) ⊆
{Az − b(x) | z ∈ Z, x ∈ XN}, where B(0, r) denotes the
Euclidean ball in R

N(nx+nu) with center 0 and radius r.
Then, the following upper bound on the norm of the dual
optimal solutions of MPC problems (P(x)) holds:

‖λ∗(x)‖ ≤ maxz∈Z 〈Hz∗(x), z − z∗(x)〉
r̄

∀x ∈ XN ,

where r̄ := max
{

r | B(0, r) ⊆ {AZ − b(x) | x ∈ XN}
}

.

Based on the previous lemma, in [14] upper bounds are
derived on ‖λ∗(x)‖ for all x ∈ XN for linear MPC problems
with X, Xf , U and XN polyhedral sets:

Rd ≥ max
x∈XN

‖λ∗(x)‖. (17)

We assume now that we fix the outer accuracy εout
to a desired value and we want to estimate the total
number of iterations and also the number of flops per
inner and outer iterations which have to be performed by
Algorithm (IDFGM) in order to solve the MPC problem
(P(x)). For simplicity of the exposition we assume that
the initialization λ0 = 0 and the inner problems are solved
using the stopping criterion (6). According to Section 2.1,
for the outer iterations we have:

kFG
out :=

⌊

2Rd

√

Ld

εout

⌋

. (18)

Since we have proved that in the MPC case Lρ(·, λ, x)
is strongly convex with convexity parameter σp and has
also Lipschitz continuous gradient with constant Lp, in
order to find a point z̄kFG

in
(λ) such that stoping criterion

(6) Lρ(z̄kFG

in
(λ), λ, x)− Lρ(z

∗(λ), λ, x) ≤ ε2in we can apply

a fast gradient scheme. Using Theorem 2.2.3 in [10] and
taking the inner accuracy as in Section 2.1, the number of
inner iterations will be given by:

kFG
in =

⌊

2

√

Lp

σp
ln

(

5
√
LdRd

√

LpRp

(

1+
√

LpRp

)

εout
√
εout

)⌋

.

For solving the inner problem we use a simple fast gradient
scheme for smooth strongly convex objective functions, see
e.g. [10]. For this scheme, an inner iteration will require

nflops
in = N

(

3n2
x + 2nxnu + 2n2

u + 10nx + 8nu

)

flops. Re-
garding the number of flops required by an outer itera-

tion, the following value can be established: nflops,FG
out =

N
(

2n2
x + 2nxnu + 10nx

)

+ kFG
in nflops

in .

4. NUMERICAL EXPERIMENTS

In this section we apply Algorithm (IDFGM) to an MPC
problem for the ball on plate system described in [14]. We
consider box constraints for states X and Xf, inputs U
and for the region of attraction XN as in [14], while for
the stage costs we take the matrices Q = q1q

T
1 , where

q1 = [2 1]T , R = 1 and we compute the terminal matrix P
as the solution of the LQR problem.

For different prediction horizons ranging from N = 5
to N = 20, we first analyze the behavior of Algorithm
(IDFGM) in terms of the number of outer iterations. For
each prediction horizon length, we consider two different
estimates for the number of outer iterations depending on
the way we compute the upper bound on the optimal La-
grange multipliers λ∗(x): kFG

out is the theoretical number of
iterations obtained using relation (18) with Rd computed
according to [14] (see (17)), while kFG

out,samp is the average
number of iterations obtained using relation (18) with Rd

computed exactly using Gurobi 5.0.1 solver, iterations
which correspond to 50 random initial states x ∈ XN .
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We also compute the average number of outer iterations
kFG
out,real observed in practice. In all simulations we take

ρ = 1. The results are reported in Figure 1 (left). We can
notice that kFG

out,samp obtained from our derived bound in
Section 2 offer a good approximation for the real number
of iterations performed by the algorithm.

Since the number of outer iterations is also dependent on
the way the inner accuracy εin is chosen we also solve
the optimization problem (P(x)) with a prediction horizon
N = 20, a fixed outer accuracy εout = 10−3 and varying
εin. In Figure 1 (right) we plot the average number of
outer iterations performed by the algorithms by taking
10 random samples for the initial state x ∈ XN . We
observe that we can increase the inner accuracy εin up to
a certain value and the algorithm still performs a number
of iterations less than the theoretical bounds derived in
Section 2.
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Fig. 1. Variation of kFG
out , k

FG
out,samp and kFG

out,real w.r.t the

prediction horizon N (left). The number of outer
iterations performed by Algorithm (IDFGM) with
fixed εout = 10−3 and varying εin (right).

In Figure 2 we also plot the evolution of the states and
inputs for a prediction horizon N = 5 and an outer
accuracy εout = 10−3. We observe that the system is driven
to the equilibrium point.
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Fig. 2. The trajectories of the states and inputs for a
prediction horizon N = 5 obtained using Algorithm
(IDFGM) with accuracy εout = 10−3.

5. CONCLUSION

Based on the augmented Lagrangian framework, we have
proposed an inexact dual fast gradient method for solving
convex optimization problems with complicating linear
constraints. We have solved the dual problem using a fast
gradient method with inexact information. We have solved
the inner subproblems only up to a certain accuracy and
derived tight estimates on primal and dual suboptimal-
ity and also on primal infeasibility. We have discussed
some implementation aspects of the new algorithm for
embedded linear MPC problems and tested it on a ball on
plate system. Also, an interesting issue which we intend

to approach in our future work is a comparison some
intelligent control strategies (see e.g. [5]).
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