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Abstract: Perturbed inverse problems are under consideration for dynamical systems linear
relative controls. It is assumed that sampling history and sampling error estimate are known.
Auxiliary optimal control problems are introduced to minimize a regularized integral discrepancy
functional. The trajectories of the system are constructed with the help of Optimal Synthesis in
the domain of admissible motions. It is proven that realizations of Optimal Synthesis generating
trajectories of the system and minimizing the discrepancy functional in the domain are solutions
of the perturbed inverse problem of dynamics.

1. INTRODUCTION

Perturbed inverse problems for controlled dynamical sys-
tems are under consideration. A sampling history of the
real trajectory is known. This trajectory is generated by
the control, which isn’t known. Moreover, the deviation of
the samples from the real trajectory satisfies the known
estimate of sampling error. The inverse problem with per-
turbed (inaccurate) sampling of trajectory is to rebuild
such controls that would be close to the control generated
the real trajectory and that would have the least norm in
L2.

A solution of the problem was considered, for example,
in the works Osipov et al. [1999, 2011]. The approach,
suggested in the papers, is based on a feedback constructed
in forward time using a dynamical guide. The approach has
roots in works by N.N. Krasovskii’s school on the optimal
feedbacks theory. This method can be considered as a
variation of the regularization method by A.N. Tikhonov
(Tikhonov, Arsenin [1977]).

In the presented work another approach is suggested. It
is as well based on the optimal feedbacks theory to prob-
lems with regularized integral discrepancy functionals. The
approach uses backward procedures of dynamic program-
ming, the characteristics method and optimal synthesis,
too (see Subbotina, Tokmantsev [2011]).

2. INVERSE PROBLEMS

We consider the following controlled system

dx(t)

dt
= f(t, x) +G(t, x)u, t ∈ [0, T ], (1)

where x ∈ Rn is the state vector, controls u ∈ Rn are
restricted, namely

u ∈ U = {ui ∈ [a−i , a
+
i ], a−i < a+

i , i = 1, 2, . . . , n}. (2)

We denote the set of admissible controls by the symbol U :

U = {u(t) ∈ U, t ∈ [0, T ] : u(·) is measurable}.

2.1 Assumptions

We use the symbols f(t, x) = (f1(t, x), . . . , fn(t, x)) for an
n-dimensional vector, and

G(t, x) = (gi,j(t, x)) , i, j ∈ 1, n

for an n× n - matrix.

We denote by the symbol ΠT the strip ΠT = [0, T ]× Rn.

We assume that the conditions are satisfied.

A. Functions fi(t, x), gi,j(t, x), i, j ∈ 1, n are continuously
differentiable in (0, T )×Rn and have the sublinear growth
property

‖fi(t, x)‖ ≤ K1(1 + ‖x‖)
‖gi,j(t, x)‖ ≤ K1(1 + ‖x‖),

where K1 > 0, (t, x) ∈ cl ΠT , while symbol ‖x‖ means the
Euclidean norm of the finite dimensional vector x.

We consider the compact set Ψr ⊂ ΠT , r > 0, of the form

Ψr = {(t, x(t)) : t ∈ [t0, T ], t0 ∈ [0, T ],

x(t) = x(t; t0, x0, u(·)), u(·) ∈ U}.

As the domain Ψr is compact there are the following
restrictions in the domain Ψr (7):

max
i,j,k∈1,n

max
(t,x)∈Φ(δ)

{|fi(t, x)|, |gi,j(t, x)|} ≤ K2, (3)

max
i,j,k∈1,n

max
(t,x)∈Φ(δ)

{∣∣∣∣∂fi(t, x)

∂t

∣∣∣∣ , ∣∣∣∣∂fi(t, x)

∂xk

∣∣∣∣ , (4)∣∣∣∣∂gij(t, x)

∂t

∣∣∣∣ , ∣∣∣∣∂gij(t, x)

∂xk

∣∣∣∣
}
≤ K3,

where K2 > 0, K3 > 0.

2.2 Unperturbed inverse problems

Let x∗(·) : [0, T ]→ Rn be the real trajectory of the system
(1). The inverse problem of dynamics consists in finding
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the control u(·) ∈ U , generating such trajectory x(t) of the
system (1) x(t) = x(t; 0, x∗(0), u(·)) that

x(t) = x∗(t) for all t ∈ [0, T ].

One can easy prove the assertions using Analysis (Kol-
mogorov, Fomin [1999]) and the strong convexity of the
square of the norm ‖u(·)‖L2

in L2.

Lemma 1. The set U is closed in L2.

Lemma 2. The set U is nonempty, convex and bounded in
L2. Moreover, there exists the only element u∗(·) ∈ U with
the minimal norm in L2.

This element is called the normal solution of the inverse
problem.

2.3 Perturbed inverse problems

Usually we don’t know the real trajectory x∗(·) of the
system (1) in a perturbed inverse problem. Instead of it
we know continuous function y(·) : [0, T ] → Rn, which is
the sampling history of the state variable x∗(t). It is known
also that the real trajectory of the system (1) belongs to
the domain Ωδ of admissible errors of the samples

(t, x∗(t)) ∈ Ωδ = {(t, x) : t ∈ [0, T ], ‖x− y(t)‖ ≤ δ}, (5)

where δ > 0 is the parameter of sampling error.

The goal of the perturbed inverse problem is to reconstruct
the real trajectory of the system x∗(·) as accurate as
possible, using the sampling history y(·).
In other words, we need to build the control uδ(·) : [0, T ]→
U , the compact domain Φ(δ) ⊂ Ψr and such a trajectory
xδ(·) : [0, T ] → Rn of the system (1), that the relations
hold

Ωδ ⊂ Φ(δ) ⊂ Ψr (6)

Φ0(δ) = {x0 : ‖x0 − y(0)‖ ≤ δ}, (7)

(t, xδ(t)) ∈ Φ(δ), ∀t ∈ [0, T ], (8)

that in case δ → 0

(t, xδ(t)) ∈ Φ(δ), ∀t ∈ [0, T ], (9)

dH(Φ(δ), grx∗(·))→ 0, δ → 0, (10)

‖xδ(·)− x∗(·)‖C = max
t∈[0,T ]

‖xδ(t)− x∗(t)‖ → 0, (11)

‖uδ(·)− u∗(·)‖2L2
=

T∫
0

‖uδ(t)− u∗(t)‖2dt→ 0, (12)

where dH(·) is the Hausdorff distance, symbol grx∗(·)
means the graph of the function x∗(·), ‖ · ‖C is the norm
in the space of continuous functions, ‖ · ‖L2 is the norm in
the space L2.

3. A CONSTRUCTION OF SOLUTIONS OF THE
PERTURBED INVERSE PROBLEM

3.1 Regularized optimal control problems

We introduce the auxiliary optimal control problems of the
system (1), (2) in domain (7) to minimize the discrepancy
functionals

It0,x0
(u(·)) =

T∫
t0

[
‖x(t)− y(t)‖2

2
+
α

2
‖u(t)‖2

]
dt, (13)

where α > 0 is a regularizing parameter, (t0, x0) ∈ Φ(δ),
x(t) = x(t; t0, x0, u(·)) is the trajectory of the system (1),
starting at the point x(t0) = x0 and generating by an
admissible control u(·) : [t0, T ]→ U .

The Hamiltonian Hα(t, x, s) for this problem (1), (2), (13)
has the form

Hα(t, x, s) = min
u∈U

[
〈s, f(t, x)〉+ 〈s,G(t, x)u〉+ (14)

+
α

2
‖u‖2 +

‖x− y(t)‖2

2

]
,

where the symbol 〈·, ·〉 means the inner product of two
finite dimension vectors. It’s not difficult to see that the
following relations are true:

Hα(t, x, s) = 〈s, f(t, x)〉+
‖x− y(t)‖2

2
+ (15)

+ 〈s,G(t, x)uα〉+
α

2
‖uα‖2.

Here uα = (uα1 , . . . , u
α
n) :

uαi =

 a−i , if rαi (t, x, s) ≤ a−i ,
rαi (t, x, s), if rαi (t, x, s) ∈ [a−i , a

+
i ],

a+
i , if rαi (t, x, s) ≥ a+

i ,
(16)

where

rαi (t, x, s) = − 1

α

n∑
j=1

sjGj,i(t, x), i ∈ 1, n.

Introduction of the regularizing parameter α in (13) im-
plies that the argument uα(t, x, s) for the minimization
operation in the expression for the hamiltonian Hα(t, x, s)
is the singleton for any vector s ∈ Rn. Also it provides
continuity for the extremal control uα(t, x, s) on cl ΠT ×
Rn.

3.2 The characteristic system

We consider the characteristic system for the problem (1),
(2), (13)

dxi
dt

=
∂Hα(t, x, s)

∂si
, i ∈ 1, n, t ∈ [0, T ], (17)

dsi
dt

= −∂H
α(t, x, s)

∂xi
, i ∈ 1, n, t ∈ [0, T ], (18)

with boundary conditions

xi(T ) = ξi, si(T ) = 0, i ∈ 1, n, ξ = (ξ1, . . . , ξn) ∈ Rn.
(19)

Here

∂Hα(t, x, s)

∂si
= fi(t, x) +

n∑
j=1

Gi,j(t, x)uαj (t, x, s), (20)

∂Hα(t, x, s)

∂xi
= [xi − yi(t)] + 〈s,Dxif(t, x)〉+ (21)

+〈s,DxiG(t, x)uα(t, x, s)〉+Ri(t, x, s),

where

Ri(t, x, s) =
〈(
G>(t, x)s+ αuα(t, x, s)

)
, Dxiu

α(t, x, s)
〉
,

(22)

Dxif(t, x) =

(
∂f1(t, x)

∂xi
, . . . ,

∂fn(t, x)

∂xi
,

)
DxiG(t, x) =

{(
∂Gk,j(t, x)

∂xi

)}
, k, j ∈ 1, n,
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Dxiu
α(t, x, s) =

(
∂uα1 (t, x, s)

∂xi
, . . . ,

∂uαn(t, x, s)

∂xi
,

)
notation > means the operation of transposition.

The following relations imply from (16) for any j ∈ 1, n:

• If the relations

uαj (t, x, s) = rαj (t, x, s) ∈ [a−j , a
+
j ]

are true on the time interval [t1, t2] ⊂ [0, T ], then the
j-th element of the summa in the expression of scalar
multiplication for Ri(t, x, s) i = 1, . . . , n (22) is equal to
zero, since

G>j (t, x)s+ αuαj (t, x, s) = 0, (23)

where the symbol G>j (t, x) means the j-th row of the

matrix G>(t, x).

• In the case of either the relations

rαj (t, x(t), s(t)) ≤ a−j , uαj (t, x(t), s(t)) ≡ a−j ,
or the relations

rαj (t, x, s) ≥ a+
j , uαj (t, x(t), s(t)) ≡ a+

j

hold on the interval (t1, t2) ⊂ [0, T ], then

Dxiu
α
j (t, x(t), s(t)) = 0. (24)

Thus, from (22), (23), (24), it follows that

Ri(t, x, s) = 0, ∀ i ∈ 1, n. (25)

One can summarize the foregoing in the following state-
ment:

Lemma 3. The characteristic system (17), (18) for the
problem (1), (2), (13) has the form

dx

dt
= f(t, x) +G(t, x)uα(t, x, s), (26)

ds

dt
= −

[
(x− y(t)) + s>Dxf(t, x)

+s>DxG(t, x)uα(t, x, s)
]
, (27)

where

s>DxG(t, x)uα(t, x, s) =

=
(
s>Dx1

G(t, x)uα(t, x, s), . . . , s>DxnG(t, x)uα(t, x, s)
)
.

3.3 Properties of solutions of the characteristic system

We consider state components x(t, ξ) of the solutions of the
characteristic system (17) (hereinafter — state characteris-
tics). We denote the set of the state characteristics, graphs
of which {(t, x(t, ξ))}, t ∈ [0, T ], belong to the domain
Φ(δ) (7), by the symbol X(α, δ).

The following statements are true:

Lemma 4. Let the conditions A be true in problem (1),
(2), (13), then the constant K4 = K4(δ, α) > 0 exists such
that the following relations for all characteristics (26), (27)
satisfying inclusions (t, x(t, ξ)) ∈ Φ(δ), t ∈ [0, T ] are true:

|xi(t, ξ)| ≤ K4,

∣∣∣∣dxi(t, ξ)dt

∣∣∣∣ ≤ K4, t ∈ [0, T ], i ∈ 1, n;

(28)

|si(t, ξ)| ≤ K4,

∣∣∣∣dsi(t, ξ)dt

∣∣∣∣ ≤ K4, t ∈ [0, T ] i ∈ 1, n. (29)

It is easy to prove the following statements.

Lemma 5. Let the conditions A be true in problem (1),
(2), (13), then the extremal control uα(t, x, s) (16) has the
following properties:

• The functions (t, x, s)→ uαi (t, x, s), i ∈ 1, n are continu-
ous in Φ(δ)× Sδ, where

Sδ = {s ∈ Rn : |si| ≤ K2, i ∈ 1, n}. (30)

• for any i ∈ 1, n, (t′, x′), (t′′, x′′) ∈ Φ(δ), s′, s′′ ∈ Sδ the
following estimates are true

|uαi (t′, x′, s′)− uαi (t′′, x′′, s′′)| ≤ (31)

≤ 1

α
ϕ(|t′ − t′′|, ‖x′ − x′′‖, ‖s′ − s′′‖),

where
ϕ(|t′ − t′′|, ‖x′ − x′′‖, ‖s′ − s′′‖)→ 0 (32)

in case |t′ − t′′| → 0, ‖x′ − x′′‖ → 0, ‖s′ − s′′‖ → 0.

3.4 A solution of the optimal feedback problem

We construct the optimal feedback (the optimal synthesis)
(t, x)→ u0(t, x) : Φ(δ)→ U for the problem (1), (2), (13).
We introduce the set X0(α, δ) of optimal trajectories x0(·)
for the problem (1), (2), (13), generated by this synthesis
and satisfied the condition

(t, x0(t)) ∈ Φ(δ).

It follows from the condition A that the set X0(α, δ) is
nonempty and compact in Cn[0, T ].

It follows from the definition of Φ(δ) and the paper Sub-
botina [2006], this set X0(α, δ) is the subset of X(α, δ) of
all such state characteristics x(·, ξ) (17) that

(t, x(t, ξ)) ∈ Φ(δ).

We should finally pick such characteristics xδ(·) = x(·, ξ) ∈
X0(α, δ) ⊂ X(α, δ) and the realizations of extremal
feedbacks uαδ [t] = uα(t, xδ(t), sδ(t)), generating them,
which satisfy the relations:

I0,xδ(0)(u
α
δ (·)) = min

x(·,ξ)∈X(α,δ)
I0,x(0)(u

α[·]) = V (α, δ),

(33)
uα[·] = uα(t, x(t, ξ), s(t, ξ)).

We prove that these characteristics xδ(·, ξ) and the re-
alizations of extremal feedbacks uαδ [t] = uδ(t, xδ(t), sδ(t)),
generating them, give the solution of the perturbed inverse
problem of dynamics.

4. JUSTIFICATION FOR THE SOLUTION OF THE
PERTURBED INVERSE PROBLEMS

4.1 The numerical method

We consider the procedure of numerical solution of charac-
teristic system (17), (18). We denote the step of numerical
integration of the characteristic system by h,

Γ = {ti = ih}, i ∈ 0, N(h), (N(h) + 1)h = T.

Let xh(·), sh(·) be the numerical approximations of the
solutions x(t) = x(t, ξ), s(t) = s(t, ξ) of the characteristic
system (17), (18) with boundary conditions

xh(T ) = ξ, ξ ∈ ΦT (δ), sh(T ) = 0

and with the restriction

(t, x(t)) ∈ Φ(δ), t ∈ [0, T ].

The numerical solutions of the characteristic system (17),
(18) are called the Euler polygonal paths.
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Results of the works Subbotina, Tokmantsev [2011], Sub-
botina [2006] implies the following statement:

Lemma 6. Let xh(t), sh(t) be such numerical approxima-
tions of the accurate solutions of the characteristic sys-
tem (17), (18), which approximate the accurate solutions
x(t), s(t) such that (t, x(t)) ∈ Φ(δ). Then such constants
M1, M2, where M1 = M1(Φ(2δ)), M2 = M2(Φ(2δ)), exist
that for any t ∈ [0, T ] the following estimates are true:

(t, xh(t)) ∈ Φ(2δ),

‖xh(t)− x(t)‖ ≤M1h,

‖sh(t)− s(t))‖ ≤M2h,

Mi(Φ(2δ)) ≤Mi(Φ(2δ0)) ∀δ ∈ (0, δ0), i = 1, 2.

4.2 The main result

We will consider the characteristics xδ(·) and the real-
izations of extremal feedbacks uαδ [t] = uδ(t, xδ(t), sδ(t)),
generating them, which satisfy the condition (33). And
let xδh(·), uδh(·) be the numerical approximations of the
inverse problem of the dynamics (1) – (5), approximating
the accurate solution xδ(·), uαδ (·).
We prove the following result.

Theorem 7. Let the conditions A be true in the perturbed
inverse problems of dynamics (1) – (5), while the param-
eters of the problem h = h(δ) > 0, α = α(δ) > 0, δ > 0
satisfy the conditions

lim
δ→0

2

α

(
φ(δ, h) + ρ(δ, h) +

Tδ2

2

)
= 0, (34)

lim
δ→0

h(δ) = 0, lim
δ→0

α(δ) = 0,

then the following relations are true

lim
δ→0
‖xδh(δ) − x∗‖C = 0, lim

δ→0
‖uδh(δ) − u∗‖L2

= 0 (35)

for the functions xδh(·), uδh(·).

Proof:

As the trajectory xδ(·) belongs to the domain Φ(δ) of ad-
missible motions and lemma 6 is true, we can estimate the
deviation of the numerical approximation of the solution
xδh(δ)(·) from the real trajectory x∗(·).

‖xδh(t)− x∗(t)‖ ≤ ‖xδh(t)− xδ(t)‖+ ‖xδ(t)− x∗(t)‖ ≤
≤M1h+ dH(Φ(δ), grx∗(·)).

If h→ 0, δ → 0, then

‖xδh(δ)(·)− x∗(·)‖C = max
t∈[0,T ]

‖xδh(δ)(t)− x∗(t)‖ ≤

≤M1h+ dH(Φ(δ), grx∗(·))→ 0. (36)

We estimate the numerical approximation Ṽ 3(α, δ, h) of
the value V (α, δ) (33)

Ṽ (α, δ, h) =

T∫
0

‖xδh(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt ≤

≤ 1

2

T∫
0

‖xδh(t)− xδ(t)‖2+

+2‖xδh(t)− xδ(t)‖‖xδ(t)− y(t)‖dt+

+

T∫
0

‖xδ(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt.

Using inclusion (t, x(t)) ∈ Φ(δ) and lemma 6, we get

1

2

T∫
0

‖xδh(t)− xδ(t)‖2 + 2‖xδh(t)− x(t)‖‖xδ(t)− y(t)‖dt

≤ T (Mδ
1h)2

2
+ T (δ + dH(Φ(δ), grx∗(·)))M1h.

We introduce the symbol

φ(δ, h) = TM1h

(
M1h

2
+ δ + dH(Φ(δ), grx∗(·))

)

and provide the relations

Ṽ (α, δ, h) =

T∫
0

‖xδh(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt ≤

≤ φ(δ, h) +

T∫
0

‖xδ(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt.

Using estimates for ∆I1, ∆I2, we obtain

α

2

T∫
0

‖uδh(t)‖2 ≤ α

2

T∫
0

‖uαδ [t]‖2dt+

+
α

2

T∫
0

‖uδh(t)− uαδ [t]‖2dt,

where
uδh(t) = uα(ti, x

δ
h(ti), s

δ
h(ti)), u

α
δ [t] = uα(t, xδh(t), sδh(t)),
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α

2

T∫
0

‖uδh(t)− uαδ [t]‖2dt

≤ α

2

N(h)∑
i=0

(i+1)h∫
ih

∥∥∥uα(ti, x
δ
h(ti), s

δ
h(ti))

−uα(t, xδh(t), sδh(t))
∥∥∥2

dt

+
α

2

T∫
0

∥∥uα(t, xδh(t), sδh(t))− uα(t, xδ(t), sδ(t))
∥∥2
dt

≤ α

2

N(h)∑
i=0

(i+1)h∫
ih

∥∥∥uα(ti, x
δ
h(ti), s

δ
h(ti))

−uα(t, xδh(t), sδh(t))
∥∥∥2

dt

+
1

2
ϕ(0, ‖xδh(·)− xδ(·)‖C , ‖sδh(·)− sδ(·)‖C)

≤ 1

2
Tϕ(h,K4h,K4h) +

1

2
ϕ(0,M1h,M2h) = ρ(h, δ).

Finally, we have

T∫
0

‖xδh(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt ≤

≤ φ(δ, h) + ρ(δ, h) +

T∫
0

‖xδ(t)− y(t)‖2

2
+
α‖uαδ (t)‖2

2
dt.

The integral in the last expression coincides with the
functional I0,xδ(0)(u

α
δ (·)) (33). Since the trajectory xδ(·)

and the control uαδ [·] are the solution of the optimal control
problem (1), (2), (13) and satisfy the condition (33), so the
functional I0,xδ(0)(u

α
δ (·)) isn’t greater then I0,x∗(0)(u∗(·)).

So, the following inequalities are true

T∫
0

‖xδ(t)− y(t)‖2

2
+
α‖uαδ [t]‖2

2
dt

≤
T∫

0

‖x∗(t)− y(t)‖2

2
+

+
α

2
‖u∗(t)‖2dt ≤

Tδ2

2
+
α

2
‖u∗‖2L2

.

We gather the estimations and obtain

Ṽ (α, δ, h) =

T∫
0

‖xδh(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt ≤

≤ φ(δ, h) + ρ(δ, h) +
Tδ2

2
+
α

2
‖u∗‖2L2

.

We minorize the integral Ṽ (α, δ, h)

Ṽ (α, δ, h) =

T∫
0

‖xδh(t)− y(t)‖2

2
+
α‖uδh(t)‖2

2
dt ≥

≥
T∫

0

α‖uδh(t)‖2

2
dt =

α

2
‖uδh‖2L2

.

As a result, we get

‖uδh‖2L2
≤ 2

α

(
φ(δ, h) + ρ(δ, h) +

Tδ2

2

)
+ ‖u∗‖2L2

. (37)

The collection of functions uδh(·) ∈ U , h > 0, δ > 0 is
bounded in L2, so there exists such sequence δk → 0, hk =
h(δk) → 0, k → ∞ that uk(·) = uδkhk(·) weakly converges

to an element v∗(·) in L2. We will show that v∗(·) ∈ U.

Let’s prove that v∗(·) ∈ U = {u ∈ U : x(t, u) = x∗(t)}.
xk(ti+1) = xk(ti)− hk[G(ti, xk(ti))uk(ti) + f(ti, xk(ti))],

xk(ti+1) = xk(T )− hk
N∑
j=i

[G(tj , xk(tj))uk(tj)+

+f(tj , xk(tj))].

We pass to the limit as k → ∞. Since ‖xk(·) − x∗‖C → 0
and uk(·) weakly converges to v∗(·) in L2, , it follows from
the lemma 1 and the equalities that v∗(·) ∈ U and

x∗(t) = x∗(T )−
T∫
t

[G(τ, x∗(τ))v∗(τ) + f(τ, x∗(τ))]dτ,

(38)

t ∈ [0, T ].

The equality (38) means that v∗(·) ∈ U.

According to weakly lower semicontinuity of the square of
the norm in L2, we obtain

‖v∗(·)‖2L2
≤ lim inf

k→∞
‖uk(·)‖2L2

. (39)

From inequalities (37), (39) and from lemma (2), we get
the following estimates

‖u∗(·)‖2L2
≤ ‖v∗(·)‖2L2

≤ lim inf
k→∞

‖uk(·)‖2L2
≤

≤ lim sup
k→∞

‖uk(·)‖2L2
≤ ‖u∗(·)‖2L2

.

Therefore,

lim
k→∞

‖uk(·)‖2L2
= ‖u∗(·)‖2L2

= ‖v∗(·)‖2L2
.

As the normal solution u∗(·) is unique in U (see lemma 2),
then

u∗(·) = v∗(·).

So, the collection of functions uδh(·), h > 0 has the only
weak limit point u∗(·), moreover

lim
h→0
‖uδh(·)‖L2

= ‖u∗(·)‖L2
.

Then, using the equality and the weak convergency of uk(·)
to u∗(·) in L2, we finally get

‖uδh(·)− u∗(·)‖2L2
≤

≤ ‖uδh(·)‖2L2
− 2〈uδh(·), u∗(·)〉+ ‖u∗(·)‖2L2

→ 0,

as h→ 0.

�
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5. EXAMPLE 1

Consider the system

ẋ1 = x2 + u1, ẋ2 = u2,

u1 ∈ [0, 1], u2 ∈ [−9,−10], t ∈ [0, 10]. Let the sampling
history be the following one (free fall)

y1(t) = −9.8t2

2
+ 480, y2(t) = −9.8t, t ∈ [0, 10].

We put δ = 0.01, h = 0.001, α = 0.01.

The picture Fig.1 shows the real trajectory x∗1(t) = y1(t)
(red color) and the reconstructed trajectory xδ1h(t) (blue
color).

Fig 1.

The picture Fig.2 shows the reconstructed control uδ2h(t).

Fig 2.

We note that the reconstructed controls u = (u1(t), u2(t))
should be constant and u1(t) = 0, u2(t) = −9.8 because
the given real trajectory (y1(t), y2(t)) is the trajectory of
free fall.

6. EXAMPLE 2

Consider the system

ẋ1 = x2 + u1, ẋ2 = −sin(x1) + u2,

u1 ∈ [0, 1], u2 ∈ [−0.5, 20], t ∈ [0, 10]. Let the sampling
history be the following one (free fall)

ẏ1 = y2, ẏ2 = −sin(y1) + 9.8.

We put δ = 0.01, h = 0.0001, α = 0.001. The picture Fig.3
shows the real trajectory x∗2(t) = y2(t).

Fig 3.

The picture Fig.4 shows the difference between the recon-
structed trajectory xδ2h(t) and x∗2(t) = y2(t).

Fig 4.

The picture Fig.5 shows the reconstructed control uδ2h(t).

Fig 5.

7. CONCLUSION

In the paper the new method for solving inverse problems
is suggested and justified. It can be useful in problems
of modeling and identification of parameters of models
in mechanics, engineering, economics, biology and so on,
when statistic data is given.

The method will be developed to problems with more
complete dynamics, to problems in higher dimension state
space and to problems with uncomplete statistic data.
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