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Abstract: To address various types of delays including the neutral-type arising in dynamical
networks, this paper deals with coupled delay differential and continuous-time difference
equations and develops stability and robustness criteria. Subsystems described by differential
equations are not required to be input-to-state stable. No assumptions on network topology
are made. To tackle networks in such a general formulation, this paper explicitly constructs
Lyapunov-type functionals establishing stability and robustness of the overall networks. The
construction requires only simple characterizations of subsystems in terms of inequalities with
Lyapunov functions and instantaneous norms.
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1. INTRODUCTION

In many applications, we encounter models of neutral func-
tional differential equations, i.e., differential equations in-
volving delay in the derivative of state variables (Hale and
Lunel [1993]). A typical example is the lossless transmis-
sion line (Brayton [1967]). Overviews of other examples are
given in Hale and Lunel [1993], Niculescu [2001], Rasvan
[2006]. To verify stability and robustness of such systems of
large size, this paper considers networks of coupled delay
differential and continuous-time difference equations. The
class of networks includes neutral systems in Hale’s form as
a special case. In addition, the class this paper considers
allows subsystems and their interaction to have delays.
Thus, time delay can appear in both state variables and
the derivative of state variables of the networks.

Neutral systems are often formulated into equations in
Hale’s form, and stability has been addressed for such
equations (e.g. Hale and Lunel [1993], Kolmanovskii and
Myshkis [1999], Niculescu [2001]). For robustness with
respect to disturbance, input-to-state stability (ISS) is
studied in Pepe [2007] in the case of linear difference
operators, and in Pepe et al. [2008] in the case of nonlinear
difference operators. The results in Pepe [2007], Pepe et al.
[2008] are definition of ISS Lyapunov-Krasovskii function-
als that ensure ISS of the system described by coupled de-
lay differential and difference equations, and they provide
a framework which is parallel to ISS Lyapunov functions
introduced originally to delay-free systems in Sontag and
Wang [1995]. Then two questions arise: 1) How can we
find such an ISS Lyapunov-Krasovskii functional? 2) Is
it possible to extend the idea to integral input-to-state

stability (iISS)? This paper answers these two questions
for networks.

The notion of iISS describes how robust a system is
with respect to disturbance similarly to ISS (Angeli et al.
[2000]). In contrast to ISS, the iISS property does not
require bounded magnitude of the state even for an input
of bounded magnitude. Such unboundedness is often in-
evitable due to saturation and limitations in applications.
For interconnections of delay free-systems, iISS have been
studied extensively (e.g. Arcak et al. [2002], Chaillet and
Angeli [2008], Panteley and Loŕıa [2001], Ito [2006, 2010]
to name a few). Input-to-output stability of coupled de-
lay differential and difference equations has been studied
in Karafyllis et al. [2009], Karafyllis and Jiang [2011]
without constructing Lyapunov-Krasovskii-type function-
als. Although the result is based on a trajectory-based
small-gain theorem in the spirit of the ISS argument in
Jiang et al. [1994], it allows a transient period during which
the solutions do not satisfy input-to-output inequalities.

To address robustness of networks consisting of coupled
equations which are not necessarily ISS, this paper pursues
explicit construction of iISS Lyapunov functions directly
from only information of dissipation inequalities. We im-
pose less stable properties on subsystems than the existing
literature. The development includes ISS as a special case.

Throughout this paper, the symbol | · | denotes the Eu-
clidean norm of a real vector in R

n of a compatible di-
mension n. Let R+ = [0,+∞). For a measurable and
essentially bounded function u : S ⊂ R → R

n, we use
‖u‖∞ = ess supt∈S |u(t)|. The space of continuous func-
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tions mapping S into R
n is denoted by CnS. By uS it is

meant that uS(t) = u(t) for all t ∈ S and = 0 elsewhere.
Given a compact set S ⊂ R, a function u : S → R

n is
said to be piece-wise continuous if it is bounded, right-
continuous, continuous except, possibly, at a finite number
of points in S. The space of piece-wise continuous func-
tions mapping S into R

n is denoted by PCnS. A function
u : R+ → R

n is said to be piece-wise continuous if it is
piece-wise continuous in [0, T ] for any T ∈ (0,∞). For a
function ω : R+ → R+, we write ω ∈ P if it is continuous
and satisfies ω(0) = 0, ω(s) > 0 for all s > 0. For a
function ω ∈ P, we write ω ∈ J if it is non-decreasing.
A function ω ∈ J is said to be of class K if it is strictly
increasing. A function ω ∈ K is said to be of class K∞ if
it is unbounded. A function β : R2

+ → R+ is of class KL if
for each fixed t the function s 7→ β(s, t) is of class K and
for each fixed s the function t 7→ β(s, t) is non-increasing
and goes to zero as t → +∞. Composition of functions
γ1, γ2 : R+ → R+ is written as γ1 ◦ γ2. For brevity, we
adopt a nonstandard symbol for repeated composition as
⊙n

i=1 γi = γ1 ◦ γ2 ◦ · · · ◦ γn. If γ is a class K∞ function,
its inverse γ−1 is of class K∞. For γ ∈ K \K∞, its inverse
γ−1 is defined on the finite interval [0, limτ→∞ γ(τ)). For
γ ∈ K, an operator γ⊖: R+ := [0,∞] → R+ is defined as
γ⊖(s) = sup{v ∈ R+ : s ≥ γ(v)}. We have γ⊖(s) = ∞
for s ≥ limτ→∞ γ(τ), and γ⊖(s) = γ−1(s) elsewhere.
For ω, γ ∈ K, we have ω ◦ γ⊖(s) = limτ→∞ ω(τ) for
s ≥ limτ→∞ γ(τ). The identity γ⊖ = γ−1 ∈ K holds if
and only if γ ∈ K∞. It is stressed that, in the case of
γ ∈ K\K∞, we have only γ◦γ⊖(s) ≤ s for s ∈ R+ although
γ⊖ ◦ γ(s) = s for s ∈ R+. For functions fi ∈ K ∪ {0},
i = 1, 2, ...,m, let #{f1, f2, ..., fm} denote the number of
non-zero functions in {f1, f2, ..., fm}.

2. NETWORK OF COUPLED DIFFERENTIAL AND
CONTINUOUS-TIME DIFFERENCE EQUATIONS

Consider

Σi :
i=1, 2, ..., n,

ẋi(t) = fi(x(t), zi(t), zi(t−∆i), ri(t)) (1)

zi(t) = gi(x(t), zi(t−∆i), ri(t)) (2)

φzi(0) = gi(φx(0), φzi(−∆i), ri(0)), (3)

where xi ∈ R
Ni , x(t) = [x1(t)

T , . . . , xn(t)
T ]T ∈ R

N ,
φxi ∈ CNi

[−∆, 0], φx = [φTx1, . . . , φ
T
xn]

T ∈ CN [−∆, 0],
zi ∈ R

Mi and φzi ∈ CMi
[−∆, 0] with ∆i ≥ 0 and

∆ := maxi ∆i ≥ 0. The functions (φxi, φzi) ∈ CNi
[−∆, 0]×

CMi
[−∆, 0], i = 1, 2, ..., n are initial conditions 1 fulfilling

(3). The piecewise continuous functions ri : R+ → R
Qi

describe disturbances. Assume that the functions fi : R
Ni×

R
Mi×R

Mi×R
Qi → R

Ni and gi : R
Ni×R

Mi×R
Qi → R

Mi

are locally Lipschitz functions. The vector zi is an auxiliary
variable added to the xi-part of subsystem i, and it allows
the pair of (1)-(2) to represent a neutral system (Hale and
Lunel [1993], Kolmanovskii and Myshkis [1999], Niculescu
[2001], Pepe et al. [2008], Karafyllis et al. [2009]). For
instance, the neutral system ẋi(t) = fi(x(t), ẋi(t − ∆i))
with locally Lipschitz function fi can be rewritten as (1)-
(2) by setting zi(t) = ẋi(t) and gi = fi. The overall
network Σ is

1 For initial conditions of (1)-(3), (φxi(0), φzi)∈R
Ni ×CMi

[−∆, 0],
i = 1, 2, ..., n, are satisfactory. Taking uniformity of expressions
throughout the paper into account, φxi∈CNi

[−∆, 0] is used for xi.

Σ :
ẋ(t) = f(x(t), z(t), v(t), r(t)) (4)

z(t) = g(x(t), v(t), r(t)) (5)

φz(0) = g(φx(0), ν, r(0)) (6)

v(t) = [z1(t−∆1), z2(t−∆2), . . . , zn(t−∆n)]
T

ν = [φz1(−∆1), φz2(−∆2), . . . , φzn(−∆n)]
T

with suitable maps f : RN×R
M×R

M×R
Q → R

N and g :
R

N×RM×RQ → R
M , where z(t) = [z1(t)

T , . . . , zn(t)
T ]T ∈

R
M and r(t) = [r1(t)

T , . . . , rn(t)
T ]T ∈ R

Q. We do not
assume that explicit formulas for f and g are known.
Instead, we assume the following:

Assumption 1. For i = 1, 2, ..., n, there exist continously
differentiable functions Vi : R

Ni → R+ and αi, αi ∈ K∞,
αi ∈ K, βi, ψi, σi,j , κi ∈ K∪{0} for j = 1, 2, ..., n such that

αi(|ai|) ≤ Vi(ai) ≤ αi(|ai|), (7)

∂Vi

∂ai
(ai)fi(a, bi, ci, di) ≤ −αi(Vi(ai)) + βi(|bi|)

+ ψi(|ci|) + κi(|di|) +

n
∑

j=1

σi,j(Vj(aj)) (8)

for all (ai, bi, ci, di) ∈ R
Ni×R

Mi×R
Mi×R

Qi , i = 1, 2, ..., n,
where a = [aT1 , . . . , a

T
n ]

T ∈ R
N .

Assumption 2. There exist functions f̄i, ḡi,j , κ̄i ∈ K ∪ {0}
for i, j = 1, 2, ..., n such that

|gi(a, ci, di)|≤ f̄i(|ci|) + κ̄i(|di|) +
n
∑

j=1

ḡi,j(Vj(aj)) (9)

for any (ai, ci, di) ∈ R
Ni ×R

Mi ×R
Qi , i = 1, 2, ..., n, where

a = [aT1 , . . . , a
T
n ]

T ∈ R
N .

In the case of σi,i 6= 0, Assumption 1 by itself does not
guarantee each subsystem to be iISS.

3. CONSTRUCTION OF A LYAPUNOV-KRASOVSKII
FUNCTIONAL

This section formulates the stability analysis of the net-
work Σ into the problem of constructing a Lyapunov-
Krasovskii functional in a non-classical sense. For this end,
we define a directed graph G associated with the functions

Gi,j = #{σi,j , βi ◦ ḡi,j , βi ◦ f̄i ◦ ḡi,j , ψi ◦ ḡi,j}, (10)

i, j = 1, 2, ..., n.

The graph is allowed to have loops. A loop is an arc
that connects a vertex to itself. Let the vertex set and
the arc set be denoted by V(G) and A(G). Elements of
V(G) correspond to subsystems Σi, i = 1, 2, ..., n. We write
merely i instead of Σi. Each element of A(G) is an ordered
pair (i, j) which is directed away from vertex j and directed
toward vertex i. The pair (i, j) is an element of A(G)
if and only if Gi,j 6= 0. Without ambiguity, the symbol
V(G) also denotes the set of all singleton graphs contained
in G. Let C(G) and P(G) denote the set of all directed
cycle subgraphs and directed path subgraphs, respectively,
contained in G. Given a directed cycle or a directed path
U of length k, we employ the notation

|U | = k, U = (u(1), u(2), ..., u(k), u(k + 1)),

where u(i)s are all vertices comprising U . The starting
vertex of the directed path U is u(k + 1), and the ending
vertex is u(1). If U is a directed cycle, we have u(1) =
u(k + 1). The cycle subgraph (resp., the path subgraph)
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consisting of the cycle (resp., the path) U is also denoted
by the same symbol U . Let L(G) denote the set of all
directed subgraphs consisting of loops in G, and we write
|U | = 1 and u(1) = u(2) for U ∈ L(G). We write |U | = 0
for U ∈ V(G). In the rest of this paper, the term “directed”
is omitted in referring to graphs and subgraphs.

For each i=1, 2, ..., n, letHi=#{f̄i, ḡi,1,...,ḡi,n, κ̄i}. Define

ψ̂i(s) = βi(Hif̄i(s)) + ψi(s) (11)

D = {i ∈ {1, 2, ..., n} : ψ̂i 6= 0}. (12)

Consider JU , di, di,j ∈ R+ satisfying

1 = di



D(i) +
∑

U∈{W∈C(G)∪P(G)∪L(G)∪V(G):V(W )∋i}

JU





∀i ∈ V(G) (13)

D(i) =

{

1, if i ∈ D
0, otherwise

(14)

1 = di,j
∑

U∈{W∈C(G)∪P(G)∪L(G):A(W )∋(i,j)}

JU , ∀(i, j) ∈ A(G).
(15)

The set of non-zero JU ’s fulfilling (13) and (15) defines
a covering of the graph G by cycles, loops, paths and
isolated vertices. A subgraph U is adopted to cover a
part of G if and only if JU 6= 0. Multiple subgraphs U
defining coverings can overlap each other. Although the
set of subgraphs U covering G is not unique, there always
exists such a set of subgraphs. There is also flexibility in
choosing the set of real numbers JU > 0. For an arbitrary
set of real numbers JU > 0 chosen for each covering, we
can always compute di, di,j > 0 from (13), (14) and (15).

The next theorem recasts the problem of verifying the
stability of Σ as the construction of a functional V in
a specific form. The construction is possible if a set of
inequalities given in terms of functions ζ̄i and ξ̄i,j is solved
for a set of functions λi, i = 1, 2, ..., n.

Theorem 3. Consider the network Σ satisfying Assump-
tions 1 and 2. Assume that, for each i ∈ D, there exist
real numbers µi > 0 and pi > 1 such that

ψ̂i(Hif̄i(s)) ≤
pi − 1

pieµi∆i
ψ̂i(s), ∀s∈R+ (16)

1 ≤ di,jpie
µi∆i , ∀j = 1, 2, ..., n (17)

hold. Suppose that there exist continuous functions λi :
R+ → R+, i = 1, 2, ..., n, such that

λi(s) > 0, ∀s ∈ (0,∞), i = 1, 2, ..., n (18)

λi is non-decreasing, i = 1, 2, ..., n (19)

{ lim
s→∞

αi(s) = ∞ or lim sup
s→∞

λi(s) <∞} ,

i = 1, 2, ..., n (20)
∑

U∈C(G)∪P(G)∪L(G)

JU

|U |
∑

i=1

{−ζ̄u(i)(su(i))

+ ξ̄u(i),u(i+1)(su(i+1))} ≤ 0, ∀s1, ..., sn∈R+ (21)

hold, where, for i, j = 1, 2, ..., n,

α̂i(s) = diαi(s), σ̂i,j(s) = di,j σ̃i,j(s) (22)

1 < τi < ci (23)

ζ̄i =
τi

ci

(

1−
1

τi

)

λi(s)α̂i(s) (24)

ξ̄i,j(s) = λi(α̂
⊖
i (τiσ̂i,j(s))) σ̂i,j(s) (25)

σ̃i,j(s) = σi,j(s) + βi(Hiḡi,j(s)) + pie
µi∆i ψ̂i(Hiḡi,j(s)).

(26)

Then the functional V : RN×PCM [−∆, 0]→R+ given by

V (φx(0), φz) =

n
∑

i=1

∫ Vi(φxi(0))

0

λi(s)ds+
∑

i∈D

Xi(φzi),
(27)

satisfies

D+V (t) ≤ −

n
∑

i=1

{

δiζ̄i(Vi(xi(t)))

+ piµi

∫ 0

−∆i

Ei(τ)ξi(|φzi(τ)|)dτ

}

+

n
∑

i=1

ei(|ri(t)|) (28)

along the trajectories of (1)-(3) with some δi > 0, ζ̄i ∈ K
and ei ∈ K ∪ {0}, where Xi : PCMi

[−∆, 0] → R+ is

Xi(φzi)= pi

∫ 0

−∆i

Ei(τ)ξi(|φzi(τ)|)dτ, Ei(τ)=e
µi(τ+∆i) (29)

ξi(s)=λi(α̂
⊖
i (τiψ̂i(s))) ψ̂i(s). (30)

If αi ∈ K∞ holds for i = 1, 2, ..., n additionally, we have
ζ̄i ∈ K∞ for i=1, 2, ..., n.

Here, D+V (t) denotes the upper right-hand derivative of
V . Property (20) guarantees that ξ̄i,j and ξi are of class
J functions (or zero) defined on the whole s ∈ R+. In
other words, if (20) is violated, components (1) which are
not ISS need to be excluded for ξ̄i,j and ξi being well-
defined. Recall that the functions α̂i are not guaranteed
to be invertible on the whole R+.

Remark 4. If we restrict ψi, βi, f̄i and λi to three linear
functions and a constant, respectively, we can use Hi = 1
in (11), (16) and (26). It is worth mentioning that the
use of constant λis does not cause any conservativeness
if ci,jαj ≥ σ̃i,j holds for some constants ci,j ≥ 0. This
fact can be verified in the same way as the delay free case
(Dashkovskiy et al. [2011]). If λi is a constant for an integer
i ∈ {1, 2, ..., n}, D(i) = 0 can be used in (13).

Assumption (16) requires f̄i to be at most linear. Since f̄i
creates a self-loop, such a linear requirement is inevitable
in seeking stability criteria independent of ∆i, (Mazenc
et al. [2013]). The following replaces the pair of (16) and
(17) by a simpler single condition.

Lemma 5. Assume that, for each i ∈ D, there exists a real
number Ki > 1 such that

Kiψ̂i(Hif̄i(s)) ≤ ψ̂i(s), ∀s∈R+ (31)

holds. Then, for i ∈ D, there exist real numbers µi > 0
and pi > 1 satisfying

pie
µi∆i

pi − 1
≤ Ki,

1

di,jeµi∆i
≤ pi, ∀j = 1, 2, ..., n (32)

which imply (16) and (17).

The distinctive difference from the delay-free case which
does not need coupling equations (Ito et al. [2013a]) boils
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down to (31), (30) and (26). The integer Gi,j defined in
(10) represents the graph topology associated with (26).

Remark 6. The functional V constructed explicitly above
satisfies properties posed in Pepe et al. [2008] for ISS that
employs the difference equation (2) without ri.

Remark 7. As done in Mazenc et al. [2013], we can replace
|bi| and |ci| in (8) and (9) with Wi(bi) and Wi(ci),
respectively as far as each continuous functionWi : R

Mi →
R+ admits the existence of αM , αM ∈ K∞ such that

αMi(|bi|) ≤Wi(bi) ≤ αMi(|bi|), ∀bi ∈ R
Mi . (33)

Here, bi denotes bi = gi(a, ci, di) in (9). Theorem 3
and Lemma 5 remain unchanged except for Wi(φzi(τ))
replacing |φzi(τ)| in (29).

4. A SMALL-GAIN CRITERION

This section shows a formula for λis achieving the require-
ments in Theorem 3. A condition under which such λis
exist will be given as a criterion of small-gain form. To
obtain the desirable functions λi, the construction of Fi,j

in the following lemma plays the key role.

Lemma 8. (Ito et al. [2013a]) Consider α̂i ∈ K, σ̂i,j ∈ K∪
{0}, i, j = 1, 2, ..., n, satisfying
{

lim
s→∞

α̂j(s)=∞ or lim
s→∞

n
∑

i=1

σ̂i,j(s)<∞

}

,
j=1, 2,
..., n.

(34)

Let CP(i, j) denotes the set of all paths and cycles from
vertex j to vertex i of G. Suppose that τi > 0 for
i = 1, 2, ..., n. Define for i, j = 1, 2, ..., n,

Fi,j(s) = max
U∈CP(i,j)

σ̂u(1),u(2) ◦

|U |
⊙

i=2

α̂⊖
u(i)◦ τu(i)σ̂u(i),u(i+1)(s)

i 6= j (35)

Fi,i(s) = σ̂i,i. (36)

Then, we have Fi,j ∈ J for i, j = 1, 2, ..., n.

Assumption (34) guarantees that the functions Fi,j(s) do
not attain ∞ for finite s ∈ R+. Note that for an arbitrary
pair (i, j), the number of elements in CP(i, j) is finite. The
following theorem gives a formula of the desired λi.

Theorem 9. Consider α̂i ∈ K, σ̂i,j ∈ K ∪ {0}, i, j =
1, 2, ..., n, satisfying (34). Assume that there exist ci > 1,
i = 1, 2, ..., n such that

|U |
⊙

i=1

α̂⊖
u(i)◦ cu(i)σ̂u(i),u(i+1)(s) ≤ s, ∀s∈R+ (37)

holds for all cycle subgraphs and loop subgraphs U ∈
C(G) ∪ L(G). Let τi and ϕ ≥ 0 be such that (23) and

(

τi

ci

)ϕ

≤ τi − 1, i = 1, 2, ..., n (38)

are satisfied. Define λi ∈ J , i = 1, 2, ..., n, by

λi(s) =

[

1

τi
α̂i(s)

]ϕ
∏

j∈V(G)−{i}

[Fj,i(s)]
ϕ+1

,

(39)

and let νi : (0,∞) → R+, i = 1, 2, ..., n, be continuous
functions fulfilling

0 < νi(s) <∞, s ∈ (0,∞), i = 1, 2, ..., n (40)

lim
s→∞

αi(s) = ∞ or lim
s→∞

νi(s) <∞ (41)

λ̄i(s)νi(s) : non-decreasing continuous for s∈(0,∞) (42)

and

νu(j) ◦ α̂
⊖
u(j) ◦ τu(j)σ̂u(j),u(j+1)(s) ≤
(

cu(j+1)

τu(j+1)

)ϕ

(τu(j+1) − 1)νu(j+1)(s),

∀s ∈ (0,∞), j = 1, 2, ..., |U | (43)

for all cycle subgraphs U ∈ C(G). Then non-decreasing
continuous functionsλi : R+→R+, i=1, 2, ..., n, defined by

λi(s) =

{

λi(s)νi(s) , s ∈ (0,∞)

lim
s→0+

λi(s)νi(s) , s = 0
(44)

achieve (18)-(21).

Note that in the case of U ∈ L(G), condition (37) indicates

α̂⊖
u(1)◦ cu(1)σ̂u(1),u(1)(s)≤s, ∀s∈R+. (45)

If we use only functions in Assumptions 1 and 2 without
any intermediate variables, property (34) is identical with

{

lim
s→∞

αj(s)=∞ or

lim
s→∞

n
∑

i=1

σi,j(s) + βi(ḡi,j(s)) + βi(f̄i(ḡi,j(s)))+

ψi(ḡi,j(s))<∞

}

, j=1, 2, ..., n. (46)

Notice that α̂1, ..., α̂n ∈ K∞ or equivalently α1, ..., αn ∈
K∞ fulfills (34), or equivalently, (46). Theorem 9 is proved
by applying the technique in Ito et al. [2013a] to (21)
defined with (24) and (25). It is stressed that the left
hand side of (37) involving α̂⊖

i is well-defined for all
s ∈ R+ due to (34). Notice that there always exist τi and
ϕ ≥ 0 fulfilling (23) and (38). The continuous functions
νi satisfying (40)-(43) also always exist (See Remark 11).
Thus, Theorems 3 and 9 lead to the following main result:

Theorem 10. Consider Σ satisfying Assumptions 1 and 2
and (46). Assume that, for each i ∈ D, there exists a
real number Ki > 1 satisfying (31). Pick JU , di, di,j ∈ R+

so that (13) and (15) hold. If there exist ci > 1, i, j =
1, 2, ..., n such that (37) holds for all U ∈ C(G) ∪ L(G),
then the network Σ admits a unique solution (x(t), z(t))
for all t ≥ 0 with respect to each initial condition
(φx, φz) ∈ CN [−∆, 0]×CM [−∆, 0], and, furthermore, there
exist βx, βz ∈ KL and γx, γz, χx, χz ∈ K such that

|x(t)| ≤ βx(|φx(0)|+ ‖φz‖∞, t)

+ χx

(∫ t

0

γx(|r(τ)|)dτ

)

, ∀t ∈ R+ (47)

|z(t)| ≤ βz(|φx(0)|+ ‖φz‖∞, t)

+ γz(‖r[0,t)‖∞) + χz

(∫ t

0

γx(|r(τ)|)dτ

)

, ∀t ∈ R+ (48)

are satisfied for any piecewise continuous input r. If αi ∈
K∞ holds for i=1, 2, ..., n additionally, there exist β ∈ KL
and γ ∈ K such that
∣

∣

∣

∣

[

x(t)
z(t)

]∣

∣

∣

∣

≤β(|φx(0)|+ ‖φz‖∞, t) + γ(‖r[0,t)‖∞), ∀t∈R+.

(49)

The functional establishing the above stability properties
is obtained as V in (27). In Pepe et al. [2008], property
(49) is called ISS for the system described by the coupled
differential and difference equations (1)-(3). Due to Re-
mark 6, Theorem 10 states that the function V in (27) is
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guaranteed to be an ISS Lyapunov-Krasovskii functional
in the sense of Pepe et al. [2008] if αi ∈ K∞ holds for
i = 1, 2, ..., n. In the case where αi 6∈ K∞ holds for some
i, the x-system satisfies the iISS-type property (47)-(48)
which is weaker than (49).

Remark 11. One of simple choices of continuous functions
νi : (0,∞) → R+, i = 1, 2, ..., n fulfilling (40)-(43) is
ν1(s) = ν2(s) = ... = νn(s) = constant > 0. The non-
constant choices presented for the delay-free case in Ito
et al. [2013a] are also eligible. The flexibility of νi is useful
for recursive construction of the functional V when we
expand the network afterwards.

Remark 12. This paper is a generalization of the result
in Ito and Mazenc [2012] developed for a class of neutral
systems. In fact, Theorem 9 reduces into the one in Ito and
Mazenc [2012] precisely when the network satisfies zi = ẋi
and βi = 0 for i = 1, 2, ..., n. Recall that, according to (1)
and (2), ψi and f̄i in Assumptions 1 and 2 are functions
of |zi(t−∆i)|. The coupled equations (1) and (2) include
the class of networks considered in Ito and Mazenc [2012]
as a special case. In dealing with neutral-type delays, the
choice zi 6= ẋi can be used to make some components of
the vector ẋi to be free from constraints (16) and (31).
Thus, the pair (1) and (2) is allowed to have neutral-delay
terms whose magnitude is not necessarily bounded from
above by any linear functions.

5. INTERNAL AND COMMUNICATION DELAYS

In order to deal with state delays of subsystems and
communication delays between subsystems, consider

Σi :
i = 1,
2, ..., n,

ẋi(t) = fi(x(t), v(t), zi(t), zi(t−∆i), ri(t)) (50)

v(t) = [x1(t−∆C,i,1), x2(t−∆C,i,2),

. . . , xn(t−∆C,i,n)]
T (51)

zi(t) = gi(x(t), v(t), zi(t−∆i), ri(t)) (52)

φzi(0) = gi(φx(0), ν, φzi(−∆i), ri(0)) (53)

ν = [φx1(−∆C,i,1), φx2(−∆C,i,2)

. . . , φxn(−∆C,i,n)]
T (54)

The delays ∆C,i,j ≥ 0 are in communication channels,
and the delays ∆C,i,i ≥ 0 reside in subsystems. Let
∆ := maxi{∆i,maxj ∆C,i,j}. We replace Assumptions 1
and 2 by the following.

Assumption 13. For i = 1, 2, ..., n, there exist continously
differentiable functions Vi : R

Ni → R+ and αi, αi ∈ K∞,
αi ∈ K, βi, ψi, σi,j , κi ∈ K∪{0} for j = 1, 2, ..., n such that
(7) and

∂Vi

∂ai
(ai)fi(a, h, bi, ci, di) ≤ −αi(Vi(ai)) + βi(|bi|)

+ ψi(|ci|) + κi(|di|) +

n
∑

j=1

σi,j(Vj(hj)) (55)

for all (ai, hi, bi, ci, di) ∈ R
Ni × R

Ni × R
Mi × R

Mi ×
R

Qi , i = 1, 2, ..., n, where a = [aT1 , . . . , a
T
n ]

T ∈ R
N and

h = [hT1 , . . . , h
T
n ]

T ∈ R
N .

Assumption 14. There exist functions ḡi ∈ K and f̄i, ḡi,j , κ̄i
∈ K ∪ {0} for i, j = 1, 2, ..., n such that

|gi(a, h, ci, di)|≤ f̄i(|ci|) + κ̄i(|di|)

+ ḡi(Vi(ai)) +

n
∑

j=1

ḡi,j(Vj(hj)) (56)

for any (ai, hi, ci, di)∈R
Ni×R

Ni×R
Mi×R

Qi , i=1, 2, ..., n,
where a=[aT1 , . . . , a

T
n ]

T ∈ R
N and h=[hT1 , ..., h

T
n ]

T ∈ R
N .

For each i = 1, 2, ..., n, let Hi = #{f̄i, ḡi, ḡi,1, ... , ḡi,n,
κ̄i}. For i, j = 1, 2, ..., n, introduce the following:

ǧi,j(s) =

{

ḡi(s), j = i
0, otherwise

. (57)

Define a directed graph G by replacing (10) with

Gi,j = #{σi,j , βi ◦ (ḡi,j + ǧi,j), βi ◦ f̄i ◦ (ḡi,j + ǧi,j)

ψi ◦ (ḡi,j + ǧi,j)}, i, j = 1, 2, ..., n. (58)

Replace (13) by

1 = di



D(i)+B(i) +
∑

U∈{W∈C(G)∪P(G)∪L(G)∪V(G):V(W )∋i}

JU





∀i ∈ V(G) (59)

B(i) =

{

1, if i ∈ βi(ḡi) 6= 0
0, otherwise

(60)

Theorem 15. Consider the network (50)-(54) satisfying
Assumptions 13 and 14. Assume that, for each i ∈ D, there
exist real numbers µi > 0 and pi > 1 such that (16) and
(17) hold. Suppose that there exist continuous functions
λi : R+ → R+ and constants µC,i,j > 0, i = 1, 2, ..., n, such
that (18)-(21) hold, where, for i, j = 1, 2, ..., n, (22)-(25)

σ̃i,j(s) = eµC,i,j∆C,i,j [σi,j(s) + βi(Hiḡi,j(s))

+ pie
µi∆i ψ̂i(Hiḡi,j(s))]

+ βi(Hiǧi,j(s)) + pie
µi∆i ψ̂i(Hiǧi,j(s)). (61)

Then the functional V : CN [−∆, 0] × PCM [−∆, 0] → R+

given by

V (φx, φz) =

n
∑

i=1

∫ Vi(φxi(0))

0

λi(s)ds+
∑

i∈D

Xi(φzi)

+

n
∑

i=1

n
∑

j=1

Yi,j(φxj) (62)

satisfies

D+V (t) ≤ −

n
∑

i=1

δiζ̄i(Vi(xi(t)))

−

n
∑

i=1

n
∑

j=1

µC,i,j

∫ 0

−∆C,i,j

EC,i,j(τ)θi,j(Vj(x(t+ τ)))dτ

−
n
∑

i=1

piµi

∫ 0

−∆i

Ei(τ)ξi(|zi(t+ τ)|)dτ +
n
∑

i=1

ei(|ri(t)|)

(63)

for the trajectories of (50)-(54) with some δi > 0, ζ̄i ∈ K
and ei ∈ K ∪ {0}, where Xi, ξi, Ei, Yi,j , θi,j , EC,i,j are
given by (29)-(30) and

Yi,j(φxj) =

∫ 0

−∆C,i,j

EC,i,j(τ)θi,j(Vj(φxj(τ)))dτ (64)

θi,j(s) = λi(α̂
⊖
i (τidi,j(σi,j(s) + βi(Hiḡi,j(s)))))

· (σi,j(s) + β(Hiḡi,j(s)))

+ pie
µi∆iλi(α̂

⊖
i (τiψ̂i(Hiḡi,j(s))))

· ψ̂i(Hiḡi,j(s)), (65)

EC,i,j(τ) = eµC,i,j(τ+∆C,i,j). (66)

If αi ∈ K∞ holds for i = 1, 2, ..., n additionally, we have
ζ̄i ∈ K∞ for i=1, 2, ..., n.
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Theorem 16. Consider the network (50)-(54) satisfying
Assumptions 13 and 14 and (34). Assume that, for each i ∈
D, there exists Ki > 1 satisfying (31). Pick JU , di, di,j ∈
R+ so that (59) and (15) hold. If there exist ci> 1, i, j=
1, 2, ..., n such that (37) holds for all U ∈C(G)∪L(G), then
the network (50)-(54) admits a unique solution (x(t), z(t))
for all t ≥ 0 with respect to each initial condition
(φx, φz) ∈ CN [−∆, 0]×CM [−∆, 0], and, furthermore, there
exist βx, βz ∈ KL and γx, γz, χx, χz ∈ K such that

|x(t)| ≤ βz(‖φx‖∞ + ‖φz‖∞, t)

+ χx

(∫ t

0

γx(|r(τ)|)dτ

)

, ∀t ∈ R+ (67)

|z(t)| ≤ βz(‖φx‖∞ + ‖φz‖∞, t)

+ γz(‖r[0,t)‖∞) + χz

(∫ t

0

γx(|r(τ)|)dτ

)

, ∀t ∈ R+ (68)

are satisfied for any piecewise continuous input r. If αi ∈
K∞ holds for i=1, 2, ..., n additionally, there exist β ∈ KL
and γ ∈ K such that
∣

∣

∣

∣

[

x(t)
z(t)

]∣

∣

∣

∣

≤β(‖φx‖∞ + ‖φz‖∞, t) + γ(‖r[0,t)‖∞), ∀t∈R+.

(69)

In addition to (31), the coupled equations introduce new
terms into (61) and (58) which do not appear in the
Lyapunov construction developed in Ito et al. [2013b] for
delay networks without difference equations.

Remark 17. If λi is restricted to a constant for an integer
i ∈ {1, 2, ..., n}, D(i) = B(i) = 0 can be used in (59).

6. CONCLUDING REMARKS

This paper has demonstrated how to construct a Lyapunov-
Krasovskii functional for networks of coupled delay differ-
ential and continuous-time difference equations. The result
reported in Mazenc et al. [2013] for neutral-type delays
has been extended to large-scale systems in arbitrary
network graph topology. This paper has also focused on
state delays (delays of retarded type) and communication
delays which are not covered in Mazenc et al. [2013]. To
cope with difference equations, this paper has tailored the
iISS framework (Ito et al. [2013a]) for delay-free networks
described by differential equations. Important technical
differences between this paper and the previous results on
delay systems have also been highlighted. The differential
equation parts of subsystems are not assumed to enjoy
an ISS type property, so that this paper covers a broader
class of systems than the previous ISS result in Pepe et al.
[2008]. In the case where differential equation parts of all
subsystems satisfy an ISS-like property, the result of this
paper provides us with a way to explicitly compute an
ISS Lyapunov-Krasovskii functional defined in Pepe et al.
[2008]. Due to space limitation, a result for distributed
delays is omitted and will be presented elsewhere.
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