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Abstract: Moving target tracking using time difference of arrival measurements has received significant 
attention in recent years. When the target trajectory satisfies quadratic equality constraints, second-order 
nonlinear equations can be incorporated in the tracking algorithm to improve the accuracy. Existing 
methods dealing with constraints may suffer from a lack of convergence or large computation, and are 
often affected by the initial value of the iteration. The proposed algorithm first utilizes standard Kalman 
filter to update state estimation and then refines it with a maximum likelihood estimator. When solving the 
constrained maximum likelihood problem, a kind of generalized trust region sub-problem is incorporated 
to obtain the global optimal solution. Computer simulation results show that the proposed algorithm 
outperforms the existing methods in tracking accuracy and do not diverge when the initial state is unknown. 



1. INTRODUCTION 

Moving target tracking has received significant attention in 
the signal processing literature including teleconferencing, 
wireless communications, surveillance, and wireless sensor 
networks. The target trajectory is estimated by measuring the 
signal parameters and the integration. One common 
technique is based on measuring the time difference of arrival 
(TDOA) measurements between sensor receivers. This paper 
studies the target tracking algorithm using the Kalman 
filtering (KF), which is recursive and suitable for computer 
implementation. It contains two parts of prediction and 
updating. The prediction part firstly utilizes the process 
equation to obtain the predicted values of the current time. 
The updating part utilizes the measurement equation to fix 
the predicted estimation. When dealing with linear problems, 
KF can give the minimum mean square error (MMSE) 
estimation. 

In practical tracking problems, we can usually get some priori 
information about the target motion. For example, when the 
vehicle is traveling in a known way, the travel trajectory will 
be constrained by the road shape. In addition, when tracking 
a moving target in the Earth surface by satellites, we can 
approximate that the target is at the sphere with the 
geocentric as the center and a known radius. How to use 
priori constraints in the KF to improve tracking accuracy is 
concerned in this paper. 

For linear equality constraints, the common methods are 
model reduction, perfect measurements, probability density 
function truncation, and projection method. The projection 
methods include estimator projection, gain projection and 
system projection. Estimator projection projects the 

unconstrained KF estimates to the constrained surface. Gain 
projection projects the Kalman gain in order to satisfy the 
constraints. System projection constrains the processing noise 
and then modifies the KF equations. It has been proved that 
for linear dynamic systems with linear equality constraints, 
estimator projection can give the MMSE estimation. 

For nonlinear equality constraints, first-order Taylor series 
can be used to approximate the nonlinear constraints as linear 
constraints, which is similar to the idea of extended Kalman 
filter (EKF). This method has the disadvantage that the 
estimation accuracy reduces greatly when the constraints 
include strong nonlinearity. To reduce the impact of 
linearization, smoothly constraint Kalman filter (SCKF) 
treats the nonlinear equality constraints as measurement 
equations, and applies iterated Kalman filter (IKF) to 
improve the performance. Moving horizon estimation (MHE) 
realizes state estimation by solving nonlinear constrained 
optimization problems with large amount of calculation and 
the global convergence is not guaranteed. Teixeira combined 
nonlinear equality constraints and unscented Kalman filter 
(UKF) and proposed three algorithms, as projected UKF 
(PUKF), equality-constrained UKF (ECUKF), measurement-
augmentation UKF (MAUKF), which can be applied in the 
nonlinear state estimation with constraints. 

In different forms of nonlinear constraints, the quadratic 
constraint is the most common one. Yang and Blasch 
proposed a quadratic equality constrained KF algorithm, 
which uses the basic idea that projects unconstrained KF 
results onto the quadratic constrained surface by solving a 
maximum likelihood estimator (MLE) with a quadratic 
equality constraint. This algorithm calculates the Lagrange 
multiplier to obtain a MLE based on iteration. However, if 
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the initial state is selected away from the true, the algorithm 
is not easy to converge to the global optimal and the accuracy 
will be reduced. 

This paper presents a quadratic constrained KF algorithm that 
can be applied in target tracking. It is also based on the idea 
of projection, and updates the state estimation by solving a 
MLE problem with quadratic equation constraints. To ensure 
the global convergence, this paper proposes to formulate it as 
a generalized trust region sub-problem (GTRS) and applies 
bisection search to solve it. The proposed algorithm has an 
advantage of global convergence. Simulations show that the 
proposed algorithm performs better than Yang’s algorithm 
and PUKF, ECUKF, MAUKF in target tracking accuracy. 

The paper is organized as follows. Section 2 presents the 
tracking scenario using TDOA and a brief summary on 
nonlinear equality constrained KF algorithm, including 
Yang’s method and PUKF, ECUKF, MAUKF. Section 3 
presents a new quadratic constrained KF algorithm. In 
section 4, computer simulation results are presented to 
illustrate the algorithm. Finally, Section 5 provides 
conclusions and extensions for future work. 

2. PRELIMINARIES 

2.1  Tracking Scenario 

Consider the system model 

1( )k k k θ F θ v                                  (1) 

( )k k k z H θ w                                  (2) 

where the subscript k is the time index, kθ is the state, kz is 
the measurement, kv and kw are the zero-mean process noise 
and measurement noise with covariance vQ and wQ  
respectively, ( )F and ( )H are the transition and measurement 
matrices. 

A scenario of M sensors is considered in a two-dimensional 
(2-D) space to track the target using TDOA measurements 
and priori information. The sensor positions  = x T

i i iys  are 
assumed known. Let kir be the true distance between the 
target and sensor i at time k: 

  2|| || , 1, 2, ,ki k ir i M     θ s                        (3) 

where 2|| || represents the 2-norm, and 

1 1, 2,3, ,ki ki kr r r i M                             (4) 

Let c be the signal propagation speed. Then 1kicd is the true 
range difference so that the true TDOAs and measurements 
are 

1 1
1= , 2,3, ,ki ki k

ki
r r rd i M
c c


      

0= , [ ] , [ ]T
k wk E E      d d 0 d dz d Q            (5) 

where  0
21 31 1= , , , T

k k k kMd d d  d , 0{} is noise-free quantity of 
{} and {}  is its random component. 

As the measurement equations are nonlinear, UKF can be 
used to estimate the state. Below we will give common state 
estimation algorithm when the state vectors satisfy nonlinear 
equality constraints. 

2.2  Existing Algorithm 

The basic idea of PUKF firstly obtains the current state ˆ
kθ by 

unconstrained UKF algorithm, and then uses the equality 
constraints ( )k g θ b as measurement equation of the state 
vector kθ . UKF filtering algorithm is used again to get the 
filter output. 

The difference between ECUKF and PUKF is: ECUKF 
calculate the covariance matrix of ˆ b

kθ by the following 
formula after PUKF outputs the estimation. 

( )b b bb b T
k k k k k P P K P K                              (6) 

Then it chooses ˆ b
kθ and b

kP as the input at the next time, 
hoping to improve filtering convergence speed. 

MAUKF uses the equality constraints ( )k g θ b to enhance 
the measurement equation (1-b): 

( )k k k z H θ w                                  (7) 

where k
k

 
  
 

z
z

b
 , 

( )
( )

( )
k

k




 
  
 

k

H
H θ

g
 , k

k
 

  
 

w
w

0
 , and the 

covariance matrix of kw is w m s
w

s m s s



 

 
  
 

Q 0
Q

0 0
 . Replace the 

standard UKF with (7) will get measurement-augmentation 
unscented Kalman filter algorithm. 

Yang’s method assumes that quadratic equality constraint 
( )k g θ b is a function 0T T T

k k k k b   θ Mθ m θ θ m of kθ . 

It solves the following constrained MLE problem by 
projecting the unconstrained KF state estimate onto the 
constrained surface and outputs 

ˆ ˆarg min( ) ( )

. . 0
k

b T
k k k k k k

T T T
k k k ks t b

  

   
θ

θ θ θ Ω θ θ

θ Mθ m θ θ m
                    (8) 

where 1=k k
Ω P , M and m are known symmetric matrix and 

column vector. 

Using the Cholesky decomposition and Ω will be represented 
as TΩ B B , where B is a reversible upper triangular matrix. 
Then the constrained solution is the output of the following 
Lagrange function 

( , ) ( ) ( )T T T T b          J θ ζ Bθ ζ Bθ θ Mθ m θ θ m     (9) 
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An iterative method may be used to solve the non-convex 
problem. So iterations may not converge or converge to a 
local solution, which means the iterative results are not the 
global optimal solution of (9). To avoid the above problems, 
initial iterative value requires being chosen close to the 
optimal values. However, a good initial choice is often 
difficult to be obtained in practical applications. 

3. NEW ALGORITHM 

3.1  Tracking Part 

A new algorithm with quadratic equality constraints for MLE 
problems is proposed in this section. The main idea of the 
new algorithm is that (8) can be treated as a kind of 
generalized trust region sub-problem (GTRS) in order to 
guarantee obtaining the global optimal solution. 

Using the Cholesky decomposition and setting ˆζ Bθ , we 
can get a MLE problem with quadratic constraints completely 
equivalent with (9). Then we can get 

2min{|| || : 0}
n

T T T

R
b


    

θ
ζ Bθ θ Mθ m θ θ m            (10) 

The optimization problem above can be treated as a GTRS 
problem, the optimal solution needs to meet the following 
three necessary and sufficient conditions 

( )T T   B B M θ B ζ m                       (11-1) 

0T T T b   θ Mθ m θ θ m                      (11-2) 

T B B M 0                               (11-3) 

Where A 0 means that matrix A must be positive semi-
definite. Notice that (11-1), (11-2) are necessary conditions 
of the Karush-Kuhn-Tacker (KKT) Conditions, and (11-3) is 
a necessary and sufficient condition of GTRS problems. In 
order to get the output from (11), we firstly solve the 
Lagrange multiplier  , which is the solution of the following 
equation 

( ) ( ) ( ) ( ) ( ) 0,T T T b I           θ Mθ m θ θ m    (12) 

The interval I consists of all  for which T B B M is 
positive semi-definite, which immediately implies that 

 11/ ( , ),TI   M B B                         (13) 

where 1/ 2 1/ 2
1 1( , ) ( )   X Y Y XY represents the biggest 

eigenvalue of  1/ 2 1/ 2 Y XY . 

It has been proved that ( )  is strictly decreasing over I and 
therefore a simple kind of bisection algorithm can be used to 
find the optimal   over the interval I. Putting the root of (12) 
into (11-1) will lead to the global optimal solution of MLE 
with quadratic equality constraints. 

We summarize the steps of solving (10) based on bisection 
algorithm as follows: 

Step 1. Calculate 1( , )T M B B and set 11/ ( , )Ta   M B B , 

11 / ( , )Tb  M B B . 

Step 2. Calculate upper and lower bound of the interval I. 

Step 3. Use bisection algorithm to solve (12) between the 
interval I. 

Step 4. Bring  into 1( ) ( ) ( )T T    θ B B M B ζ m and output 
a new optimal solution of estimator. 

It must be noted that the solving process based on bisection 
method is iterative. But the fundamental difference between 
the proposed algorithm and Yang’s method is that the new 
algorithm for solving the Lagrange multiplier is globally 
optimal and unrelated to initial choice. This is because the 
introduction of necessary and sufficient condition (13-3) 
makes the solution unique. 

3.2  Initialization Part 

As we know, the initial values of the state and covariance 
matrix are important for Kalman filtering. In Yang’s paper, 
the initial state is selected to be the same as the true state, 
which cannot be guaranteed in practical applications. So a 
new algorithm with quadratic constraints for initialization of 
tracking is proposed in this section. 

This is an over-determined situation in which the number of 
equations is larger than the number of unknowns.  In this case, 
introducing Lagrange multipliers 1 and 2 , the augmented 
cost function is 

2 2
1 1 1 1 1 1 1

2

( ) ( ) (2 )

( )T T T

T T Tr r r r
b

 



      

 



 



θ M
h Gθ g W h Gθ g s θ s

θ θ m
s

θ m
(14) 

where 
2

2,1 2 2 1 1
2

3,1 3 3 1 1

T T

T T

r
r
  

  
   

s s s s
h

s s s s
, 2 1

3 1

2
T T

T T

 
    

s s
G

s s
, 2,1

3,1

2
r
r
 

   
 

g  

Newton’s method is effective for finding the root of 2 . But 
this method is too complicated to calculate. If we make 

=chol )TC C W( and then we can get 

2
1|| ( )mi || :n{

}0

n

T
R

T T

r

b


  

   
u

CGθ C g h

θ Mθ m θ θ m
               (15) 

The optimization can also be seen as a GTRS problem, which 
means it can also be solved by the algorithm proposed in 
section 3.1 as we set 2 1 1( )r   C g h and 2 1B CG . 

It should be noted that this method requires an initial value of 
1r , the accuracy of the initialization will be greatly affected 

by the accuracy of 1r . 

4. SIMULATION 

This section describes the effectiveness of the new algorithm 
under different simulations. The simulation scene is set 
similar with Yang’s paper. The target is moving with uniform 
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circular motion in two-dimensional x-y plane. Trajectory 
center is at the origin and radius is 100 meters. The target 
maintains a constant turn rate of 5.7 deg/s with an equivalent 
linear speed of 10 m/s. Set state vector 

, ,

T

k k x k k y kx v y v   θ , where kx and ,x kv respectively 
denote the coordinate and velocity in x-axis of the current 
time, ky and ,y kv respectively denote the coordinate and 
velocity in y-axis. The number of sensors is 3 and the sensors 
location are 1 [50,0]Ts , 2 [ 50, 50]T  s , 3 [0,50]Ts . The 
vehicle is tracked by sensors with a sampling interval of T=1s. 
The discrete-time second-order kinematic model is 

2

1 1
2

1 01 0 0 2
0 1 0 0 0
0 0 1 10

20 0 0 1
0

k k k

TT
T

T T

T

 

 
  
  
      
  
  
  

θ θ v          (16) 

where 2 2diag([ ])v x y Q   uses the particular values of 
2 2 20.32 /x y m s    . And 2 2

w dc Q R , whose elements are 
2 2

dc  in the diagonal and 2 20.5 dc  otherwise, where 2
d is the 

TDOA variance. 

Under scenario 1, we set the real value of the target initial 
state vector  0 100 ,0 / ,0 ,10 / Tm m s m m sθ . Set the initial 

estimation error covariance to be 2 2 2 2
0 diag( 5 1 5 1 )   P . 

We compare the proposed projection method between 
MAUKF, PUKF, ECUKF in the target tracking accuracy. 
The Monte Carlo simulation times are 1000. In figure 1, we 
plot the mean square error (MSE) of target position 
estimation in different methods.  

As the initial estimation is selected as the true value, the MSE 
at the beginning tracking are nearly zero. From the results, 
we can see ECUKF and MAUKF outperform PUKF. That is 
because the use of equality constraints accelerates the 
convergence speed. Compared with PUKF, MAUKF and 
ECUKF, the proposed new algorithm can obtain the highest 
positioning accuracy and get a better tracking stability. 

Under scenario 2, we use the initial algorithm proposed in 3.2 
to get the initial state vector and set the velocity to be zero. 
Set the initial estimation error covariance to be 

2 2 2 2
0 diag( 15 7 15 7 )   P . 

We compare the proposed projection method with MAUKF, 
PUKF, ECUKF in target tracking accuracy. The Monte Carlo 
simulation times are 1000. In Figure 2, we plot the mean 
square error (MSE) of target position estimation in the four 
methods. 

From figure 2 we can see that the proposed new algorithm 
can achieve the highest positioning accuracy with nonlinear 
measurement equations and do not diverge when the initial 
state is unknown. 
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Fig. 1. Performance comparison of different constrained  
UKFs under scenario 1 
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Fig. 2. Performance comparison of different constrained  
UKFs under scenario 2 
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