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Abstract: This paper develops a fractional-order (FO) power rate type reaching law for sliding
mode control (SMC) of nonlinear integer order systems with disturbance and uncertainty. The
proposed FO power rate type reaching law, including an FO derivative function, is proven
to ensure that the state trajectories achieve to the switching surface in a finite time. Most
importantly, the calculation formula of the reaching time under the FO reaching law is provided,
for the first time. The comparisons between the FO and IO reaching laws reveal the potential
advantages of the FO reaching law. Furthermore, the criterion for stability of the sliding
mode dynamics is provided by solving linear matrix inequality (LMI). Finally, simulation and
experimental examples illustrate the effectiveness and advantage of the proposed control method.

1. INTRODUCTION

Growing attention has been focused on fractional calculus
[1, 2, 3] over the past three decades. FO calculus operators
have recently become an exciting research topic in control
area. The FO operators can help to design FO controllers
which have a greater flexility in improving the control per-
formance, such as robustness. This potential advantages
have motivated renewed interest in various of FO control,
such as [4, 5, 6].

On the other hand, SMC is famous to be computationally
robust and efficient with respect to matched uncertainty
and external disturbance [7, 8, 9]. The SMC includes two
parts: equivalent control law and reaching law. However,
due to the absence of appropriate mathematical methods,
most published results about the FO SMC are limited to
the FO equivalent control law, such as [10, 11, 12, 13]. It
should be studied how to obtain useful tool for designing
FO reaching law for the SMC. More importantly, it should
be analyzed why and how to obtain a better control
performance for SMC by using the FO reaching law.

With this motivation, an FO power rate reaching law is
designed for SMC of uncertain nonlinear systems in this
paper. A concept of the FO sign function Dqsgn(s), 0 ≤
q < 1, including an FO differentiator, is applied to
building an FO power rate type reaching law. Similar to
the sign function, Dqsgn(s), 0 ≤ q < 1, the fractional
order derivative of sgn(s), is proven to be able to extract
the sign of s. One may feel this is trivial compared with
the sign function itself; others may doubt that this is
against intuition compared with the derivative of a generic
function. It can guarantee the occurrence of the reaching
phase in finite time. Furthermore, the calculation formula
of the reaching time treach under the FO power rate type
reaching law is obtained, for the first time. The comparison
between the FO and IO power rate type reaching laws
reveals the potential advantages of FO reaching law.
Specially, the comparison is analyzed and visualized.

Next, the stability condition of the sliding mode dynamics
is discussed. The matrices of the controlled system are de-
rived by computing LMIs that are obtained from stability
condition. As a result, a novel stability criteria is derived
via LMIs. Finally, simulation and experimental examples
are given to demonstrate the effectiveness and advantage
of the designed control scheme.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the nonlinear system with disturbance and un-
certainty

ẋ(t) = (A+ δ(t))x(t) + Ff(x, t) +Bu+ Cw(t),

y(t) =Dx(t), (1)

in which x(t) ∈ Rn, u(t) ∈ Rμ, y(t) ∈ Rυ denote the
state vector, the control input and the output. w(t) ∈ Rm

presents the norm-bounded external disturbance, satis-
fying ‖w(t)‖ ≤ b in which b > 0. f(x, t) ∈ Rl is the
nonlinear function. A ∈ Rn×n, F ∈ Rn×l, B ∈ Rn×μ, C ∈
Rn×m, D ∈ Rυ×n are constant known matrices. δ(t) is
time-varying uncertain, which is assumed δ(t) = WG(t)N ,
where W,N are constant known matrices, G(t) satisfies
‖G(t)‖ < 1, ∀t ≥ 0.

We need the following lemmas to derive the main results.

Lemma 1. [15] For constant matrices Π1,Π2,Π3, in which
Π1 = ΠT

1 , and Π2 = ΠT
2 > 0, then Π1 + ΠT

3 Π
−1
2 Π3 < 0 if

and only if[
Π1 ΠT

3
Π3 −Π2

]
< 0, or

[−Π2 Π3

ΠT
3 Π1

]
< 0. (2)

Lemma 2. Consider Dqs(t) = 1
Γ(1−α)

d
dt

∫ t

0
s(τ)

(t−τ)q dτ , 0 ≤
q < 1 and sign function, one can conclude that

Dqsgn(s(t))

{
> 0, if s(t) > 0, t > 0,
< 0, if s(t) < 0, t > 0.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 5369



Proof. See Appendix A.

A concept of Dqsgn(s(t)), involving an FO differentiator,
is introduced to extract the sign of s.

Lemma 3. [14] For any matrix M1 and M2 of compatible
dimensions and any scalar ζ > 0, one has MT

1 M2 +
MT

2 M1 ≤ ζMT
1 M1 + (1/ζ)MT

2 M2.

3. FO POWER RATE TYPE REACHING LAW FOR
SMC

First, the sliding surface is choosing

s = C1x+ C2z, (3)

where ż = Kx − z with s ∈ Rμ, z ∈ Rι, C1 ∈ Rμ×n, C2 ∈
Rμ×ι,K ∈ Rι×n. Furthermore, C1 should guarantee C1B
is not nonsingular. We define |s|l : Rμ → Rμ×μ, sgn(s) :
Rμ → Rμ, Dqsgn(s) : Rμ → Rμ as follows:

|s|l = diag{|s1|l, |s2|l, · · · , |sμ|l},
sgn(s) = [sgn(s1), sgn(s2), · · · , sgn(sμ)]T ,
Dqsgn(s) = [Dqsgn(s1), D

qsgn(s2), · · · , Dqsgn(sμ)]
T ,(4)

where 1 > q ≥ 0 and 1 > l > 0. Then, a new FO power
rate type reaching law is given by:

ureach = −H |s|l(Dqsgn(s)), 0 ≤ q < 1, 0 < l < 1, (5)

where H = diag(h1, h2, · · · , hμ), with hi > 0(i = 1, · · · , μ).
Remark 4. The power rate type reaching law can improve
the convergence rate when the state is away from the
sliding surface. However, it decreases the speed when the
state is close to it. Thus, it should be a low chattering and
fast reaching mode. Furthermore, we will show the better
control performance for the FO reaching law than IO one
does in the following sections.

From (3) and (5), the SMC can be given

u = −(C1B)−1[(C1A+ C2K + C1)x+ C1Ff(x, t) + ū],(6)

in which ū = w1 − s, with w1 = (‖C1W‖ ‖Nx‖ +
b||C1C||)sgn(s) +H |s|lDqsgn(s).

4. REACHABILITY ANALYSIS

4.1 Finite time convergence analysis

Next, the reachability analysis of the sliding surface will
be considered.
Theorem 5. Consider the system (1) and switching surface
(3), the state trajectories via SMC (6) can reach s(t) = 0.

Proof. Consider the Lyapunov function V (t) = sT (t)s(t).
Taking the differentiating with respect to time, we have

V̇ = [C1ẋ+ C2ż]
T s+ sT [C1ẋ+ C2ż]. (7)

Substitution of (1) and (6) into (7) yields

V̇ = [C1δ(t)x + C1Cw − w1]
T s+ sT [C1δ(t)x + C1Cw − w1].

Since ‖G(t)‖ < 1, ||w|| < d, one has from ‖G(t)‖ <
1, ||w|| < d

V̇ ≤Ω + ΩT − (sTH |s|lDqsgn(s) + (H |s|lDqsgn(s))T s)

≤−(sTH |s|lDqsgn(s) + (H |s|lDqsgn(s))T s), (8)

where Ω = sTC1δ(t)x+sTC1Cw−sT ‖C1W‖ ‖Nx‖ sgn(s)−
bsT ‖C1C‖ sgn(s). From Lemma 2, one has V̇ ≤ 0. Thus,
the states of system (1) under the controller (6) can achieve
to the predefined switching surface in finite time.

4.2 Calculation formula of reaching time

First, we consider the sliding surface s(t) ∈ R. Then,

we have 0.5V̇ = sṡ ≤ −h|s|lsDqsgn(s) ≤ 0 in which
0 ≤ q < 1, 0 < l < 1 and h is positive constant.

Let sṡ = −h|s|lsDqsgn(s) ≤ 0. Before deriving treach
under the FO reaching law, treach under the corresponding
IO power rate type reaching law ureach = −h|s|lsgn(s) will
be calculated. For the IO power rate reaching law, one has
sṡ = −h|s|lssgn(s) ≤ 0. There are two cases:

1). When the initial condition s(0) is bigger than 0,

ṡ(t) = −hsl ⇒ ṡs−l = −h, (9)

So one has
(
s1−l

)′
= −(1 − l)h. Thus, the following

equation can be obtained

s1−l(t) = s1−l(0)− (1− l)ht, (10)

Since s(treach) = 0, one has treach = s1−l(0)/(1− l)h.

2). When the initial condition s(0) is smaller than 0,

−ṡ(−s)−l = −h ⇒
(
(−s)1−l

1− l

)′
= −h, (11)

So one has
(
(−s)1−l

)′
= −(1− l)h. The integration of this

equation is given as

(−s(t))1−l = (−s(0))1−l − (1− l)ht, (12)

Since s(treach) = 0, one has treach = (−s(0))1−l/(1− l)h.

According to 1) and 2), one has

treach = |s(0)|1−l/(1− l)h. (13)

Similarly, treach under the FO power rate type reaching
law can be calculated. Consider two cases:

3). When s(0) > 0, one has ṡs−l = −hDqsgn(s). Thus,

s1−l(t) − s1−l(0) = − (1−l)ht1−q

(1−q)Γ(1−q) . Since s(treach) = 0, one

has

treach =

(
(1− q)Γ(1 − q)s1−l(0)

(1 − l)h

) 1
1−q

.

4). When s(0) < 0, one has ṡ(−s)−l = −hDqsgn(s). Thus,
one has

treach =

(
(1− q)Γ(1 − q)(−s(0))1−l

(1− l)h

)1/1−q

.

Therefore, according to 3) and 4), the reaching time under
the FO power rate type reaching law is

treach =

(
(1− q)Γ(1 − q)|s(0)|1−l

(1− l)h

) 1
1−q

. (14)
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Table 1. Calculation formulae of reaching
time under the power rate type reaching laws

Power rate type reaching law Reaching time (treach)

IO power rate version
|s(0)|1−l

(1− l)h

FO power rate version

(
(1− q)Γ(1 − q)|s(0)|1−l

(1 − l)h

) 1
1−q

Next, for s = [s1(t), s2(t), · · · , sμ(t)]T ∈ Rμ, tireach of
si(t), (i = 1, 2, · · · , μ) under the FO power rate reaching
law can be obtained

tireach =

(
(1− q)Γ(1 − q)(−si(0))

1−l

(1− l)hi

) 1
1−q

. (15)

Hence, the reach time treach = max{tireach, i = 1, · · · , μ}.
4.3 The comparison of the FO/IO power rate type reaching
laws

The calculation formulae of treach under the FO and IO
power rate type reaching laws are listed in Table 1. The
FO power rate type reaching law with Dqsgn(s), 0 ≤ q < 1
is the FO/IO reaching law synthesis (IO controller with
sgn(s) and FO controller with Dqsgn(s), 0 < q < 1).

One important aspect of the good reaching control per-
formance is to obtain a shorter reaching time. In order to
show how to obtain a faster convergence performance, the
following remark is presented in detail.
Remark 6. The FO sign function is the reason why treach
under the FO reaching law can be smaller than the IO one
does. Specifically, from the proof of Lemma 2, there exists a
series of q such that |Dqsgn(s)| > 1 during the initial time
interval. (For example, when s(t) > 0, for ∀t ∈ [0, 0.2], the
changes in Dqsgn(s) along with q, t are depicted in Fig. 1.
It shows that Dqsgn(s) > 1 = sgn(s), 0 < q ≤ 0.98 during
the initial time interval.) Thus, the reaching dynamics
determined by the FO power rate type reaching law can
create a stronger push toward the sliding surface. The
simulation and experimental examples can illustrate the
advantage of the proposed controller.

Fig. 1. Relationship between Dqsgn(s) and q, for s(t) >
0, 0 ≤ q ≤ 0.98.

5. STABILITY ANALYSIS

In the section, the stability analysis of sliding mode
dynamics will be investigated. For simplicity, define the
matrix: Ñ = [NT

1 NT
2 NT

3 NT
4 ]T .

Theorem 7. The sliding mode dynamics is asymptotically
stable if there exist P̄ > 0, any matrices Ni, (i = 1, 2, 3, 4)
with appropriate dimensions and ε1, ε2 > 0, satisfying the
following LMI:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Ψ31 Ψ32 Ψ33 ∗ ∗ ∗ ∗ ∗ ∗
Ψ41 Ψ42 Ψ43 Ψ44 ∗ ∗ ∗ ∗ ∗
N 0 0 0 Ψ55 ∗ ∗ ∗ ∗
Ψ61 0 0 0 0 Ψ66 ∗ ∗ ∗
0 Ψ72 0 0 0 0 Ψ77 ∗ ∗
0 0 Ψ83 0 0 0 0 Ψ88 ∗
0 0 0 Ψ94 0 0 0 0 Ψ99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (16)

where

Ψ11 = N1E + ETNT
1 + P̄E + ET P̄ + ε2N

TN,
Ψ21 = N2E +WTNT

1 ,Ψ22 = N2W +WTNT
2 − ε1I,

Ψ31 = N3E + CTNT
1 + CT P̄ ,Ψ32 = N3W + CTNT

2 ,
Ψ33 = N3C + CTNT

3 ,Ψ41 = N4E −NT
1 ,

Ψ42 = N4W −NT
2 ,Ψ43 = N4C −NT

3 ,Ψ44 = −N4 −NT
4 ,

Ψ55 = −(ε1I)
−1,Ψ61 = WT P̄ ,Ψ66 = −ε2I,

Ψ72 = WT P̄ ,Ψ77 = −ε2I,Ψ83 = WT P̄ ,Ψ88 = −ε2I,
Ψ94 = WT P̄ ,Ψ99 = −ε2I, E = −C−1

1 C2K − I.

Proof. Since the overall closed-loop dynamics is depen-
dent on the control law, the sliding mode dynamics can be
derived

ẋ = (−C−1
1 C2K − I + δ(t))x(t) + Cw(t). (17)

For simplicity, define p(t) = G(t)q(t) = G(t)Nx(t). Then,
the system (17) is rewritten by ẋ = Ex(t) + Wp(t) +
Cw(t), where E = −C−1

1 C2K − I. Define the augmented
vector η(t) = [xT (t) pT (t) wT (t) ẋT (t)]T . Construct the
Lyapunov function V (x(t)) = xT P̄ x, in which P̄ > 0. The
time derivative of V is obtained

V̇ = ηT (t)

⎧⎪⎨
⎪⎩
⎡
⎢⎣
ET P̄ + P̄E ∗ ∗ ∗

0 0 ∗ ∗
(P̄C)T 0 0 ∗

0 0 0 0

⎤
⎥⎦

+

⎡
⎣ δ(t)T P̄ + P̄ δ(t) ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦
⎫⎬
⎭ η(t). (18)

Considering the uncertainty in the second matrix of the
left side of the equation (18), from Lemma 3, one has

⎡
⎣ P̄WG(t)N + (WG(t)N)T P̄ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦

≤ 1

ε2

⎡
⎢⎣
P̄W ∗ ∗ ∗
0 P̄W ∗ ∗
0 0 P̄W ∗
0 0 0 P̄W

⎤
⎥⎦
⎡
⎢⎣
WT P̄ ∗ ∗ ∗
0 WT P̄ ∗ ∗
0 0 WT P̄ ∗
0 0 0 WT P̄

⎤
⎥⎦

+ε2

⎡
⎣NTN ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦ , in which ε2 > 0. (19)

The following inequality is obtained

pT (t)p(t) ≤ ηT (t)N̄T N̄η(t), (20)
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where N̄=[N 0 0 0]. In order to get less conservative, the
zero equation is used

2ηT Ñ(Ex+Wp+ Cw − ẋ) = ηTΠη = 0, (21)

where

Φ =

⎡
⎣Φ11 ∗ ∗ ∗
Φ21 Φ22 ∗ ∗
Φ31 Φ32 Φ33 ∗
Φ41 Φ42 Φ43 Φ44

⎤
⎦ ,

Φ11 = N1E + ETNT
1 ,Φ21 = N2E +WTNT

1 ,
Φ22 = N2W +WTNT

2 ,Φ31 = N3E + CTNT
1 ,

Φ32 = N3W + CTNT
2 ,Φ33 = N3C + CTNT

3 ,
Φ41 = N4E −NT

1 ,Φ42 = N4W −NT
2 ,

Φ43 = N4C −NT
3 ,Φ44 = −N4 −NT

4 .

Using the S-procedure, suppose there exists ε1 > 0 satis-
fying

⎡
⎣ δ(t)T P̄ + P̄ δ(t) ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦+ ε2

⎡
⎣NTN ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦

−
⎡
⎣ 0 ∗ ∗ ∗
0 ε1I ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎦+ ÑT ε1IÑ +

⎡
⎣Φ11 ∗ ∗ ∗
Φ21 Φ22 ∗ ∗
Φ31 Φ32 Φ33 ∗
Φ41 Φ42 Φ43 Φ44

⎤
⎦

+
1

ε2

⎡
⎢⎣
P̄W ∗ ∗ ∗
0 P̄W ∗ ∗
0 0 P̄W ∗
0 0 0 P̄W

⎤
⎥⎦
⎡
⎢⎣
WT P̄ ∗ ∗ ∗
0 WT P̄ ∗ ∗
0 0 WT P̄ ∗
0 0 0 WT P̄

⎤
⎥⎦

< 0, (22)

then, we have V̇ ≤ 0. By Lemma 2, the inequality (22) can
be hold if the inequality (8) exists. Hence, it guarantees the
sliding mode dynamics asymptotic stability.

6. SIMULATION

Two examples are utilized to show the advantage and
applicability of the proposed control methods.

Example 1. Consider the double-integrator plant{
ẋ1 = x2,
ẋ2 = u, (23)

The initial state is set as x0 = [0.5, 0.5]T , the switching
surface and the FO reaching law are proposed as

s= c1x1 + c2x2, (24)

ṡ= c1ẋ1 + c2ẋ2 = slaw, (25)

in which slaw = −h|s|lDqsgn(s) is the FO power rate
reaching law, the parameters c1 = 5, c2 = 1, h = 10
and q = 0.2. The Hurwitz condition c1 > 0 guarantees
the sliding mode dynamics stable. Substituting (22) into
(25), the following FO SMC can be obtained u = −5x2 −
10|s|lDqsgn(s). Using this controller, the phase trajectory
of sliding mode, the time responses of s, x1, x2 are sepa-
rately shown in parts (a), (b), (c), (d) of Fig. 2. The time
response of u is depicted in Fig. 3.

So as to show the advantage of the FO power rate type
reaching law, the simulations are performed while q is
changed. xi = [xi

1, x
i
2]

T , (i = 0, 1, 2, 3) denote the states
of the system (22) via the SMC based on the FO power
rate type reaching law with different qi (i.e. q0 = 0, q1 =

0 0.1 0.2 0.3 0.4 0.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

x
1

x 2

(a)

 

 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Time(s)

x 1

 

 
(c)

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Time(s)

x 2

 

 (d)

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

Time(s)

s

 

 
(b)

s

x
2x

1

x

S

Fig. 2. (a) Phase trajectory of the state x under the FO
power rate type reaching law and sliding surface S;
(b) the time response s; (c) the time response x1 and
(d) the time response of x2.

0 0.5 1 1.5 2 2.5
−25

−20

−15

−10

−5

0

5

Time(sec)

u

 

 

u

Fig. 3. The time response of SMC with FO power rate type
reaching law.

0.2, q2 = 0.34, q3 = 0.42). The phase trajectories of xi, si

under the FO SMC are given in Fig.4. The time responses
of xi

1, x
i
2 are plotted in Fig.5. It shows that the FO

power rate type reaching law can have a better control
performance.

0 0.1 0.2 0.3 0.4 0.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

x
1

x 2

(a)

 

 

x0

x1

x2

x3

S

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

Time(s)

s

(b)

 

 

s0

s1

s2

s3

Fig. 4. (a)Phase trajectories of the states xi, (i = 0, 1, 2, 3)
under SMC with qi = 0, 0.2, 0.34, 0.42 and S; (b)the
time responses of si, (i = 0, 1, 2, 3).

Example 2. Consider Chua’s circuit ([15])

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5372



0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Time(s)

x 1

(a)

 

 

x0
1

x1
1

x2
1

x3
1

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Time(s)

x 2

(b)

 

 

x0
2

x1
2

x2
2

x3
2

Fig. 5. The time responses of xi
1, x

i
2, (i = 0, 1, 2, 3).

ẋ=

{[
18/7 9 0
1 −1 1
0 −14.78 0

]
+ δ(t)

}
x+

[
1 0 0
0 1 0
0 0 1

][
f(x1)
0
0

]

+

[
1 0 1
0 1 1
0 0 1

]
u(t), (26)

in which f(x1) = 0.5(n0 − n1)(|x1 +�| − |x1 −�|) with
� = 1, n0 = −1/7, n1 = 2/7, β = 0.2. The uncertainty
δ(t) = WG(t)N with

W = N =

[
1 0 0
0 1 0
0 0 1

]
, G(t) =

⎡
⎣ δ̃ 0 0
0 δ̃ 0
0 0 δ̃

⎤
⎦ .

where δ̃ = 0.1 sin(0.1t). Let

C1 =−
[
0.5639 0 0

0 0.5639 0
0 0 0.5639

]
, C2 =

[
1 0 0
0 1 0
0 0 1

]
,

H =

[
0.18 0 0
0 0.18 0
0 0 0.18

]
.

By using Theorem 7, a feasible solution of the symmetric
matrice and scalars is found using LMI Control Toolbox:

K = −
[
4.3510 0 0

0 3.6941 0
0 0 1.5869

]
, ε1 = 0.3278, ε2 = 0.5819.

By using (11), we can obtain the following SMC law:

u=

[−5.6302 −23.2800 3.8142
−1.0000 −20.8310 2.8412

0 14.7800 −3.8412

]
x−

[
1 0 −1
0 1 −1
0 0 1

]
f(x, t)

+

[
κ 0 −κ
0 κ −κ
0 0 κ

]
ū, (27)

where κ = 1.7734, ū = 0.5639||Nx||sgn(s)+HDqsgn(s)−s
with q = 0.12. By Theorem 5, the system (26) under the
controller (27) converges to the sliding surface:

s = −
[
0.5639 0 0

0 0.5639 0
0 0 0.5639

]
x+

[
1 0 0
0 1 0
0 0 1

]
z,

ż = −
[
4.3510 0 0

0 3.6941 0
0 0 1.5869

]
x−

[
1 0 0
0 1 0
0 0 1

]
z. (28)

0 5 10 15
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Fig. 6. Time responses of states for the system (26) via the
FO SMC (27).
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Fig. 7. (a) Time responses of the controller (27); (b) time
responses of the sliding surface (28).

Fig. 8. The fractional horse power dynamometer.

The initial condition is [3.2,−0.8,−1.5]T . Fig. 6 shows the
time responses of x1, x2, x3 under the controller (27). The
time responses of the switching surface (28) and SMC(27)
are drawn in Fig. 7. It is obvious that the designed
controller asymptotically stabilizes the unstable Chua’s
system.

7. EXPERIMENT

Experimental example is presented of applying the FO
SMC with the FO power rate type reaching law on a
fractional horsepower dynamoneter ([16]). In Fig. 8, the
dynamometer has a DC motor, an optical encoder, a
hysteresis brake, a tachometer. It communicates with a
Quanser Multi-Q3 terminal board for the connect with
the Matlab/Simulink Real-Time Workshop environment
through WinCon 4.0. The DC motor in dynamometer is
identified as

Gm(s) =
1.52

1.01s+ 1
. (29)

In order to show the effectiveness of the FO reaching
law, we perform a position tracking control by SMC with
the FO reaching law. Let the reference signal r(t) =
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Fig. 9. Simulink/RTW model built in the SMC experiment.
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Fig. 10. Position tracking under the FO power rate reach-
ing law with q = 0.1.

4sin(2π/40). The FO reaching law and sliding surface are
defined as ureach = −0.85|s|0.1Dqsgn(s) and s = e + ė in
which e = r− x1. The Simulink/RTW model built for the
experiment is shown in Fig. 9. The tracking is performed
in Fig. 10. As illustrated in Fig. 9, the disturbance sin(t)
is added to the Magtrol Hysteresis Brake in order to
test the robust property of the FO reaching law. The
experimental results show the applicability of the proposed
control methods.

8. CONCLUSION

The FO SMC with the FO power rate type reaching law
has been proposed for nonlinear systems with disturbance
and uncertainty. The FO power rate type reaching law has
proven to ensure the occurrence of the reaching phase in
finite time. The calculation formula of the reaching time
has been provided. The stability criterion for the sliding
mode dynamics has been derived by solving LMIs. Simu-
lation and experimental examples have been presented to
illustrate the effectiveness and advantage of the designed
control method.
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Appendix A. PROOF OF LEMMA 2

Omitted due to space limit.
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