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Abstract: This paper considers the robust stability for uncertain fractional-order (FO)
descriptor nonlinear systems. A key analysis technique is enabled by proposed a fundamental
boundedness lemma, for the first time. It is used for rigorous robust stability analysis of
FO systems, especially for Mittag-Leffler stability analysis of FO nonlinear systems. More
importantly, how to obtain a more accurate bound is analyzed to reduce conservative. An FO
proportional-derivative controller is utilized to normalize the descriptor system. Furthermore,
a criterion for stability of the normalized FO nonlinear system is provided by utilizing linear
matrix inequality (LMI). Finally, two illustrative examples show the effectiveness of the proposed
stability notion.

1. INTRODUCTION

Fractional calculus investigates integrals and derivatives of
any orders [1, 2], which is introduced in early 17 century.
The stability and stabilization theorems of FO systems
have obtained a lot of attention[3, 4]. Many results about
FO systems have been obtained based on these theorems,
such as ([5]-[11]). In these papers, V = xTx is selected as
the Lyapunov function.

dβ̄V

dtβ̄
= Dβ̄V = (Dβ̄x)Tx+ xT (Dβ̄x) + 2Υ, (1)

where Υ=
∞∑
l=1

Γ(1+β̄)(Dlx)T (Dβ̄−lx)

Γ(1+l)Γ(1−l+β̄)
and β̄ is an arbitrary

finite positive non-integer, Dβ̄ is the β̄th-order fractional
derivative operator. To prove the stability of FO systems,
the boundedness condition is assumed in these papers

∣∣∣∣∣
∞∑
l=1

Γ(1 + β̄)(Dlx)T (Dβ̄−lx)

Γ(1 + l)Γ(1− l + β̄)

∣∣∣∣∣ ≤ μ ‖x‖ , (2)

in which ‖·‖ denotes an arbitrary norm.

However, since
∞∑
l=1

Γ(1+β̄)(Dlx)T (Dβ̄−lx)

Γ(1+l)Γ(1−l+β̄)
is the sum of an

infinite series, the existence of the boundedness condition
needs to be verified. Otherwise, the results in the above
literatures are questionable, since the main stability anal-
ysis technique relies on the boundedness condition (2).
In order to investigate the boundedness condition, the
problem when β̄ ∈ (0, 1) has been discussed in our previous
work [12]. Nevertheless, how to obtain a more accurate
bound μ is an interesting problem. Furthermore, if β̄ is
not restricted within (0, 1), such as [9], the boundedness
condition should be verified for more general FO systems,
due to the lack of appropriate mathematical tools.

With this motivation, we will prove the boundedness con-
dition on Υ and establish a fundamental boundedness lem-
ma in this paper. This fundamental boundedness lemma
is derived to use for stability analysis of FO systems, espe-
cially for Mittag-Leffler stability analysis of FO nonlinear
systems.

On the other hand, a descriptor system is presented
by combining differential equation with algebraic equa-
tion [13]. Intuitively, a descriptor nonlinear system has a
stricter exprecession for an extensive class of systems than
a state-space system. It has been employed to many areas,
such as robotics, power systems, and economic plants
[14, 15]. However, there exist limited works [16, 17, 18]
about the stability and stabilization of FO singular nonlin-
ear systems, due to the lack of appropriate mathematical
tools.

This paper studies the stability and stabilization for FO
descriptor nonlinear systems with uncertainty, based on
our proposed fundamental boundedness lemma. The cen-
tral idea is firstly proving a fundamental boundedness lem-
ma, which is utilized to stability analysis of FO nonlinear
systems. According to this lemma, the FO PD controller is
derived to not only to normalize the descriptor FO system,
but also achieve the robust stabilization of the normalized
FO system. Furthermore, the novel stability criteria is
given via LMIs. Some simulations show the effectiveness
of the proposed stability notion.

2. PROBLEM FORMULATIONS

Consider the uncertain FO descriptor nonlinear system

EDβx(t) = A(t)x(t) + F (t)f(υ(t)) +Bu(t),

υ(t) = Hx(t) (3)

where x(t) ∈ Rn, u(t) ∈ Rm, υ ∈ Rη denote the state
vector, the control input and the output, f(·) ∈ Rl

represents the vector of the nonlinearities, E ∈ Rn×n is
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a singular square matrix, B ∈ Rn×m, H ∈ Rη×n represent
constant known matrices, A(t), F (t) are matrix functions
which contain time-varying uncertainties, and β is the
fractional commensurate order satisfying 0 < β < 1. Let
A(t) = A+δ1(t), F (t) = F+δ2(t), in which A ∈ Rn×n, F ∈
Rn×l are constant known matrices and δ1(t), δ2(t) are
time-varying uncertain of appropriate dimensions. They
are assumed as

[δ1(t) δ2(t)] = DG(t)[N1 N2], (4)

in which D,N1, N2 are constant known matrices, the
unknown function G(t) satisfies ‖G(t)‖ < 1, ∀t ≥ 0. We
assume that f(υ)=̂[f1(υ1), f2(υ2), · · · , fl(υl)]T belongs

to sector bound [bi, ai] i.e. bi ≤ fi(υi)
υi

≤ ai. Thus, fi(·)
could be written by using a convex mixture of bi, ai

fi(υi) = (Λu
i (υi)bi + Λl

i(υi)ai)υi, i = 1, 2, · · · , l, (5)

where Λl
i(υi) =

fi(υi)−biυi

(ai−bi)υi
,Λu

i (υi) =
aiυi−fi(υi)
(ai−bi)υi

.

Since Λl
i(υi) + Λu

i (υi) = 1,Λu
i (υi) ≥ 0 and Λl

i(υi) ≥ 0,
fi(υi) can be expressed as fi(υi) = Λi(υi)υi, in which
Λi(υi) belongs to the convex hull Co{bi, ai}, with Co
denotes the convex hull. Next, define

Λ = diag{Λ1(υ1(t)),Λ2(υ2(t)), · · · ,Λl(υl(t))},
Δ1 = diag{b1, b2, · · · , bl},Δ2 = diag{a1, a2, · · · , al}.

Thus, f(υ) can be written as

f(υ) = Λυ, (6)

where Λ ∈ Co{Δ1,Δ2}
In order to derive the main results, the following definition
and lemmas are introduced.

Definition 1. [1] Fractional calculus performs an impor-
tant role in modern sciences.

I α̂ζ(t) =
1

Γ(α̂)

t∫
0

(t− ρ)α̂−1ζ(τ)dρ, (7)

in which ζ(t) denotes an any integrable function, I α̂

represents the α̂th order fractional integral on [0, t], and
Γ(·) is the Gamma function. Likewise, the Riemann-

Liouville definition of the β̃th-order derivative is

Dβ̃ζ(t) =
1

Γ(n− β̃)
(
d

dt
)n

t∫
0

ζ(τ)

(t− τ)1+β̃−n
dτ , (8)

in which n− 1 ≤ β̃ < n, n is an integer.

Lemma 2. [2] The fractional integration operator I α̂ with
fractional-order α̂, (α̂ ∈ C,Re(α̂) > 0), is bounded in

Lp(â, b̂), (1 ≤ p ≤ ∞,−∞ < â < b̂ < +∞):

||I α̂ζ|| ≤ K||ζ|| , (K =
(b̂− â)Re(α̂)

|Γ(α̂)|Re(α̂) ). (9)

Lemma 3. (Fundamental boundedness lemma) Consider
the FO nonautonomous system

Dβ̄x(t) = h(x, t)

with initial condition x(t0), where β̄ is an arbitrary finite
positive non-integer, h : Ω × [0,+∞] → Rn is locally

Lipschitz in x and piecewise continuous in t on Ω ×
[0,+∞] and Ω ∈ Rn denotes a closed set that includes
the origin x = 0. Moreover, x0 represents an equilibrium
point (without loss of generality, assume that x = 0 is
the equilibrium point). Consider a Lyapunov candidate
V (t) = xTx. The β̄th-order time derivative of V (t) can

be expanded as V (β̄) = (Dβ̄x)Tx+ xT (Dβ̄x) + 2Υ, where

Υ =
∞∑
l=1

Γ(1+β̄)(Dlx)T (Dβ̄−lx)

Γ(1+l)Γ(1−l+β̄)
, by according to the Leibniz’s

rule of differentiation. Then, there exists μ > 0 such that
the sum of the infinite terms Υ involving fractional-order
derivatives is bounded satisfied as∣∣∣∣∣

∞∑
l=1

Γ(1 + β̄)(Dlx)T (Dβ̄−lx)

Γ(1 + l)Γ(1− l + β̄)

∣∣∣∣∣ ≤ μ ‖x‖ . (10)

Proof. First, one has∣∣∣∣∣
∞∑
l=1

Γ(1 + β̄)

Γ(1 + l)Γ(1− l + β̄)
(Dlx)T (Dβ̄−lx)

∣∣∣∣∣
≤

∞∑
l=1

Γ(1 + β̄)

Γ(1 + l)|Γ(1− l + β̄)|
∥∥Dlx

∥∥ ∥∥∥Dβ̄−lx
∥∥∥. (11)

Since Dlx, (l = 1, 2, 3, · · ·) exist, Dlx are continuous.
Moreover, one has that Dlx, (l = 1, 2, 3, · · ·) are bounded
since Ω is the closed set. Thus, there exists M such that∥∥Dlx

∥∥ ≤ M, (l = 1, 2, 3, · · ·).
Since β̄ is a positive non-integer, there exists an integer
N̂ such that N̂ − 1 < β̄ < N̂ . Dβ̄−lx, (l = 1, 2, 3, · · ·)
can be divided two parts Dβ̄−lx, (l = 1, 2, · · · , N̂ − 1) and

Dβ̄−lx, (l = N̂ , N̂ + 1, N̂ + 2, · · ·). Firstly, for Dβ̄−lx, (l =

1, 2, · · · , N̂ − 1), one has that
∥∥D−ly

∥∥ =
∥∥I ly∥∥ ≤

K̄max ‖y‖ , (l = 1, 2, · · · , N̂ − 1) in which K̄max > 0, ac-
cording to Lemma 2. Meanwhile, there exists L > 0 such
that‖h(x, t)‖ ≤ L ‖x‖, because that h is Lipschitz in x on

Ω. Hence, one has
∥∥∥Dβ̄−lx

∥∥∥ ≤ K̄maxL ‖x‖. ForDβ̄−lx, (l =

N̂ , N̂ + 1, N̂ + 2, · · ·), according to Lemma 2, there exists

Kmax > 0 such that
∥∥Dβ−lx

∥∥ ≤ Kmax ‖x‖ , (l = N̂ , N̂ +

1, N̂+2, · · ·). Let K = max{K̄maxL,Kmax}, therefore, one
has

∥∥∥Dβ̄−lx
∥∥∥ ≤ K ‖x‖ , (l = 1, 2, 3, · · ·).

Furthermore, there exist no complexor z satisfying Γ(z) =
0) [13]. Thus, 1/Γ(z) should be an entire function, with
zeros at z = 0,−1,−2, · · ·. Hence, one has 0 < Lmin ≤
|Γ(1− β̄ + l)| for l = 1, 2, 3, · · ·, where Lmin > 0.

Because Γ(l)
Γ(l+1) = 1

l , (l = 1, 2, 3, · · ·), the infinite series
∞∑
l=1

1
Γ(1+l) is convergence. Therefore, there exists H̃ > 0

such that 0 <
∞∑
l=1

1
Γ(1+l) < H̃ .

From to the above analysis, the following inequality can
be derived∣∣∣∣∣

∞∑
l=1

Γ(1 + β̄)(Dlx)T (Dβ̄−lx)

Γ(1 + l)Γ(1− l + β̄)

∣∣∣∣∣ ≤ μ ‖x‖ , (12)

where μ = Γ(1+β̄)MKH̃
Lmin

. This completes the proof.
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Remark 4. In order to investigate the boundedness condi-
tion, the problem when β̄ ∈ (0, 1) has been discussed in
our previous work [12]. Based on this work [12], the bound-
edness condition on Υ should be derived for more general
FO nonlinear systems. The above lemma is proposed to
solve this issue in its full generality.
Lemma 5. ([20]) For constant matrices Ξ1,Ξ2,Ξ3, in
which Ξ1 = ΞT

1 ,Ξ2 = ΞT
2 > 0, then Ξ1 + ΞT

3 Ξ
−1
2 Ξ3 < 0 if

and only if[
Ξ1 ΞT

3
Ξ3 −Ξ2

]
< 0, or

[−Ξ2 Ξ3

ΞT
3 Ξ1

]
< 0. (13)

Lemma 6. ([20]) For any matrixM1 andM2 of compatible
dimensions and any scalar ς > 0, one has MT

1 M2 +
MT

2 M1 ≤ ςMT
1 M1 + (1/ς)MT

2 M2.

Lemma 7. [18] Assume that Ω ∈ Cn×n is a complex
matrix. Then Ω is nonsingular if and only if a nonsingular
matrix Ψ ∈ Cn×n satisfies

ΩΨ + Ψ̄Ω̄T < 0, (14)

where Ω̄ is the complex conjugate of Ω.
Lemma 8. [3] Assume that x = 0 is an equilibrium point
of Dβx(t) = h(x, t). If there exists a Lyapunov candidate
V (t, x) satisfying

α̃1 ‖x‖ã ≤ V (t, x) ≤ α̃2 ‖x‖ãb̃ ,
DβV (t, x) ≤ −α̃3 ‖x‖ãb̃ , (15)

in which α̃1, α̃2, α̃3, ã, b̃ > 0. Then x = 0 is Mittag-Leffler
stable.

3. ROBUST STABILITY AND STABILIZATION

3.1 Normalization

The technology of converting descriptor systems into nor-
mal systems is named a regularization or normalization
[13]. An FO PD controller for the uncertain FO descriptor
nonlinear system (3) is proposed to normalize the system

u(t) = KdD
βx(t) +Kpx(t), (16)

where Kd,Kp are gain matrices. They should guarantee
the system (3) can be normalized. Furthermore, the cor-
responding normalized plant with the controller can be
asymptotically stable. Adding the controller (16) into the
system (3), one has

(E −BKd)D
βx(t) = (A+BKp + δ1(t))x(t)

+(F + δ2(t))f(v(t)). (17)

Next, we consider how to normalize the FO descriptor
nonlinear system (3) by choosing the gain matrix Kd. Let
us consider the system (17). The following proposition pro-
vides the existence condition of normalizable, by selecting
Kd in the LMI formulation.
Proposition 9. The system (3) is normalizable if and only
if the LMI

EΘ −BW +ΘTET −WTBT < 0, (18)

exists, in which Θ is a nonsingular matrix andW satisfying
Kd = WΘ−1.

It is obvious that the system (3) is normalizable iff there
exists Kd such that (E −BKd) is nonsingular. According

to Lemma 7, one has (E−BKd) is nonsingular if and only
if

(E −BKd)Θ + ΘT (E −BKd)
T < 0, (19)

in which Θ is a nonsingular matrix. The inequality (19)
equals to the LMI (18). In the following, the system (17)
is assumed to be normalizable. Moreover,Kd can be solved
from the result of Proposition 9. Next, the design of the
gain matrices in the FO PD controller will be investigated
in order to ensure the stabilization of the corresponding
normalized system.

3.2 Robust stability and stabilization analysis

From Proposition 9, the normalized system is derived

Dβx(t) =E1(A+BKp + δ1(t))x(t)

+E1(F + δ2(t))f(v(t)), (20)

where E1 = (E − BKd)
−1. In the following, the stability

analysis of the normalized FO nonlinear system will be
investigated.

Theorem 10. Assume that the uncertain FO descriptor
nonlinear system (3) is normalizable, then there exist gain
matrices Kd,Kp such that the corresponding normalized
system (19) under the FO PD control (16) is asymptot-
ically stable, if there exist any matrices Mi, (i = 1, 2, 3)
with appropriate dimensions and positive scalars ε1, ε2, ε3
satisfying:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0 0 0 0 Ξ1r∗ Ξ22 Ξ23 0 0 Ξ26 0 0 Ξ29 0
∗ ∗ Ξ33 Ξ34 0 0 Ξ37 Ξ38 0 0
∗ ∗ ∗ Ξ44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξrr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (21)

where

Ξ11 = (E1A+ E1BKp)
T + E1A+ E1BKp + 2μI

+(M1ΛH)T +M1ΛH + ε1N
T
1 N1,Ξ12 = (M2ΛH)T ,

Ξ13 = E1F −M1 + (M3ΛH)T ,Ξ14 = NT
1 ,Ξ15 = E1D,

Ξ1r = E1D,Ξ22 = −ε3I,Ξ23 = −M2,Ξ26 = Ξ29 = E1D,
Ξ33 = −M3 −MT

3 + ε2N
T
2 N2,Ξ34 = NT

2 ,Ξ37 = E1D,
Ξ38 = E1D,Ξ44 = −(ε3I)

−1,Ξ55 = −ε1I,Ξ66 = −ε1I,
Ξ77 = −ε1I,Ξ88 = −ε2I,Ξ99 = −ε2I,Ξrr = −ε2I.

Proof. First, define ξ(t) = [xT (t) pT (t) fT (v(t))]T . Con-
sider V (t) = xTx. The βth-order time derivative of V is

DβV = (Dβx)T x+ xT (Dβx) + 2Υ, (22)

where Υ =
∞∑
l=1

Γ(1+β)(Dlx)T (Dβ−lx)
Γ(1+l)Γ(1−l+β) .

From Lemma 3, one has

DβV ≤ ξT (t)

[
Ω11 0 E1(F + δ2)∗ 0 0
∗ ∗ 0

]
ξ(t). (23)

where Ω11 = (E1A+ E1BKp)
T + E1A+ E1BKp + 2μI +

E1δ1(t) + δT1 (t)E
T
1 . Considering the uncertainty δ1 in the

above equality (23), from Lemma 6, one has
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[
E1DG(t)N1 + (E1DG(t)N1)

T 0 0
∗ 0 0
∗ ∗ 0

]

=Σ

[
G(t) 0 0
0 G(t) 0
0 0 G(t)

][
N1 0 0
∗ 0 0
∗ ∗ 0

]

+

[
NT

1 0 0
∗ 0 0
∗ ∗ 0

]⎡
⎣GT (t) 0 0

0 GT (t) 0
0 0 GT (t)

⎤
⎦ΣT

≤ ε1

[
NT

1 N1 0 0
∗ 0 0
∗ ∗ 0

]
+ 1/ε1ΣΣ

T, (24)

in which Σ =

[
E1D 0 0
0 E1D 0
0 0 E1D

]
.

Similarly, considering the uncertainty δ2, one has[
0 0 E1DG(t)N2∗ 0 0
∗ ∗ 0

]

=

[
0 0 E1D
0 E1D 0

E1D 0 0

][
0 0 G(t)
0 G(t) 0

G(t) 0 0

][
0 0 N2
0 0 0
0 0 0

]

+

[
0 0 0
0 0 0

NT
2 0 0

]⎡
⎣ 0 0 GT (t)

0 GT (t) 0
GT (t) 0 0

⎤
⎦Π

≤ ε2

[
0 0 0
∗ 0 0
∗ ∗ NT

2 N2

]
+

1

ε2

[
0 0 E1D
0 E1D 0

E1D 0 0

]
Π, (25)

in which Π =

⎡
⎣ 0 0 DTET

1

0 DTET
1 0

DTET
1 0 0

⎤
⎦.

Utilizing the convex property of f(υ) in (23), one has

f(υ) = ΛHx. (26)

In order to derive a less conservative stability criterion,
the zero equation is used

2ξT (t)

[
M1
M2
M3

]
[ΛH 0 − I]ξ(t) = ξT (t)Πξ(t) = 0. (27)

where

Π =

[
Π11 Π12 Π13∗ Π22 Π23∗ ∗ Π33

]
,

with Π11 = (M1ΛH)T + M1ΛH,Π12 = (M2ΛH)T ,Π13 =
−M1 + (M3ΛH)T ,Π22 = 0,Π23 = −M2,Π33 = −M3 −
MT

3 . On the other hand, define p(t) = G(t)(N1x(t) +
N2f(v(t)). Therefore, the inequality can be obtained

pT (t)p(t) ≤ ξT (t)NTNξ(t), (28)

where N = [N1 0 N2]. Using the S-procedure [21],
suppose there exists ε3 > 0 satisfying[

Ω̄11 0 E1F∗ 0 0
∗ ∗ 0

]
+

[
Π11 Π12 Π13∗ Π22 Π23∗ ∗ Π33

]
+ ε1

[
NT

1 N1 0 0
∗ 0 0
∗ ∗ 0

]

+ΣΣT + ε2

[
0 0 0
∗ 0 0
∗ ∗ NT

2 N2

]
+

1

ε2

[
0 0 E1D
0 E1D 0

E1D 0 0

]
Π

0 10 20 30 40 50 60 70 80 90
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+
l)

Fig. 1. The value of
h∑

l=1

1
Γ(1+l) .

+ε3N
TN +

[
0 0 0
∗ −ε3I 0
∗ ∗ 0

]
< 0, (29)

in which Ω̄11 = (E1A+E1BKp)
T +E1A+E1BKp +2μI.

Then, based on Lemma 8, we have V̇ < 0. By Lemma 5,
the inequality (29) is satisfied if the inequality (21) holds.
Hence, it guarantees the normalized system asymptotic
stability.

3.3 Obtaining a accurate bound and reduce conservatism

For the stability and stabilization of the FO nonlinear
system (19), the key analysis method is enabled by Lemma
3. Obtaining a more accurate bound μ can help to reduce
conservatism. The following remark is presented to show
how to derive a more accurate bound in the fundamental
boundedness lemma.

Remark 11. The fundamental boundedness lemma has
been proven in Lemma 3. Furthermore, how to obtain
a more accurate bound μ can be solved by analyzing of
the upper bound H̃ > 0. From the definition of Gamma
function, one has Γ(1 + l) = l!. Therefore,

∞∑
l=1

1

Γ(1 + l)
= 1 +

∞∑
l=1

1

(l + 1)!
.

Set ãl =
1

(l + 1)!
, b̃l =

1

(l + 1)l
. Obviously, 0 < ãl ≤

b̃l, (l = 1, 2, 3, · · ·). Now, one can calculate that
n∑

l=1

1

(l + 1)l
=

n∑
l=1

(
1

l
− 1

l + 1
) = 1− 1

n+ 1
→ 1, (n → ∞).

So,
∞∑
l=1

b̃l ≤ 1. So
∞∑
l=1

1
Γ(1+l) ≤ 1 +

∞∑
l=1

b̃l = 2. (
h∑

l=1

1
Γ(1+l) is

depicted in Fig. 1. It shows
∞∑
l=1

1
Γ(1+l) < 2.) Thus, one can

set H̃ = 2. Hence, one can obtain μ = 2Γ(1+β̄)MK
Lmin

.

Remark 12. In our previous work [12], the boundedness
property for β̄ ∈ (0, 1) can be used in ([5, 6, 7, 8, 9, 11]).
However, other references (such as [10]) use the bound-

edness condition

∣∣∣∣ ∞∑
l=1

Γ(1+β̄)(Dlx)T (Dβ̄−lx)

Γ(1+l)Γ(1−l+β̄)

∣∣∣∣ ≤ μ ‖x‖ , β̄ ∈
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Fig. 2. Time responses of x1, x2, x3 for the FO descriptor
nonlinear system under the FO PD controller.

(1, 2), which cannot be verified by the results in [12]. Based
on Theorem 10, the boundedness condition on Υ can be
used for more general FO systems.

4. SIMULATION RESULT

4.1 Example 1.

Consider the FO descriptor nonlinear system shown in (3)
with the following parameters

E =

[
1 0 −1
0 1 −1
0 0 0

]
, A =

[−ām1 a 0
1 −1 1
0 −b̄ 0

]
, δ1(t) =

[
ε 0 0
0 ε 0
0 0 ε

]
,

B =

[
1
1
1

]
, F =

[−ā(0 −1)
0
0

]
, H = [1 0 0] , (30)

with f(x1) = 0.5(0 − 1)(|x1 + �| − |x1 − �|), ε =
0.01 sin(0.5t) and β = 0.9, ā = 9, b̄ = 14.28, � = 1, 0 =
−(1/7), 1 = (2/7). The nonlinear function f(x1) belongs
to the sector bound b1 = 0, a1 = 10. The uncertain
δ1 = DG(t)N1 is expressed as

D = N1 =

[
0.1 0 0
0 0.1 0
0 0 0.1

]
, G(t) = sin(0.5t)

[
1 0 0
0 1 0
0 0 1

]
, (31)

The purpose of designing an FO PD control law is to
guarantee the stable of the resulting normalized FO sys-
tem. Let Kd = [0 0 − 1]. It is obvious that the system
with the above parameters (30) can be normalized by
the gain Kd. Then, in order to stable the system via
the FO PD controller, let us solve the problem given
in Theorem 10. By computing the LMI (21), one has
Kp = [−12.4681 2.4812 −0.7860] .

By applying the controller, the time responses of x1, x2, x3
for the FO descriptor nonlinear system are drawn in Fig. 2
with x(0) = [0.11 − 0.17 0.22]T . It means that x1, x2, x3
converge to zero. Fig. 3 illustrates the state trajectory of
the system under the FO PD controller. The time response
of the controller u is depicted in Fig. 4.

4.2 Example 2.

Consider the FO descriptor system shown in (3) with the
following parameters
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Fig. 3. The state trajectory of the FO descriptor nonlinear
system under the FO PD controller.
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Fig. 4. The time response of the controller u.

E =

[
1 0 0.5
2 1 1
0 0 0

]
, A =

[
2.4 0.2 1.2
−2 −1.5 −4
0 0 0

]
, B =

[
4 1
1 1
1 2

]
,

δ1 =

[
0.01 sin(0.2t) 0 0

0 0.01 sin(0.2t) 0
0 0 0.01 sin(0.2t)

]
. (32)

In order to normalize the above FO descriptor system

Θ=

[−0.1328 1.5656 −1.0313
1.5656 0.6657 0.7753
−1.0313 0.7753 −0.4713

]
,

W =
[−1.3845 0.5131 0.2415

0.6015 −0.3557 −1.4225

]
, (33)

the gain matrix Kd is given by

Kd =
[−0.8754 0.4099 2.0775

1.6701 −1.2761 −2.7355

]
. (34)

Hence, the FO descriptor system with the parameters (32)
under the FO PD controller can be normalized. Then,
to stable the system via the controller, let us solve the
problem given in Theorem 10. By calcuting the LMI (21),
one obtains

Kp =
[−1.8017 −2.0010 −0.1002

3.8547 −1.9850 2.8851

]
. (35)

Fig. 5-6 show the simulation results for the selected system
under the FO PD controller. By applying the FO PD
controller, the time responses x1, x2, x3 for the normalized
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Fig. 5. Time responses of x1, x2, x3 for the FO descriptor
nonlinear system under the FO PD controller.
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Fig. 6. The time responses of the controller u.

FO system (43) are shown in Fig. 5 with x(0) = [5.2 −
4.5 1]T . This shows that x1, x2, x3 to zero. Fig. 6 shows
the time responses of the FO PD control input u =
[u1 u2]

T . They support the effectiveness of the proposed
stability notion.

5. CONCLUSION

This paper has investigated the stability and stabilization
of uncertain FO nonlinear system under the FO PD con-
troller. The key issue is to prove the boundedness property

of
∞∑
l=1

Γ(1+β)(Dlx)T (Dβ−lx)
Γ(1+l)Γ(1−l+β) . In addition, how to reach a

more accurate bound μ and reduce conservatism has been
analyzed. With the help of the fundamental boundedness
lemma, the FO PD controller has been applied to ensure
the regulation of the FO descriptor system. Furthermore,
it has also guaranteed stability and stabilization of the
normalized FO nonlinear system. Two examples have been
used to show the effectiveness of the proposed stability
notion.
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