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Abstract: Accurate stroke volume (SV) measurements can convey large amounts of information about 

patient hemodynamic status. However, direct measurements are too invasive in clinical practice and 

current procedures for estimating SV require specialised devices. This study presents an analysis of the 

accuracy of SV estimation by combining pulse-wave and windkessel analyses. What makes this study 

different to existing pulse-contour analyses is that pressure contour variation due to altered arterial 

mechanical properties (resistance, characteristic impedance and compliance) were related to correct 

corresponding pressure zones, enabling this model to more accurately capture SV from aortic pressure 

measurements alone.   

Using data from three porcine experiments, the median difference between measured and estimated SV 

was 1.4 ml with a 90% range (5
th

-95
th

 percentile) -11.3ml - 12.2ml. This result relies on an estimate of the 

average value of just one windkessel parameter. The presented method demonstrates that SV can be 

estimated from pressure waveforms alone, without the need for identification of complex physiological 

metrics where strength of correlations may vary from patient to patient.  
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1. INTRODUCTION 

Inadequate ability to diagnose cardiac dysfunction is 

prevalent in critical care (Franklin et al., 1994, Perkins et al., 

2003) and is a significant cause of increased length of 

hospital stay and potential mortality (Angus et al., 2001, 

Brun-Buisson, 2000). However, detection, diagnosis and 

treatment for cardiac dysfunctions are very difficult, with 

clinicians confronted by large amounts of often contradictory 

numerical data. Thus, it is important to synthesise this raw 

clinical data into a readily understood physiological context 

to aid diagnosis and treatment. 

This goal can be accomplished using computational models 

and patient-specific parameter identification methods to 

unmask hidden dynamics and interactions in measured 

clinical data (Taylor et al., 2009, Taylor et al., 1999). This 

approach can create a clearer physiological picture from the 

available data, making diagnosis simpler and more accurate, 

and enabling personalised care. In addition, this approach 

provides a means to monitor patients in real-time, which 

could enable faster diagnosis and detection of dysfunction 

(Kruger et al., 2011). 

Ventricular stroke volume (SV) measurements are essential 

for evaluating cardiovascular system (CVS) function (Tibby 

et al., 2003, Ellender et al., 2008, Zile et al., 2002). Currently, 

there are many methods available for determining SV, 

ranging from non-invasive procedures such as ultrasound, 

through moderately invasive methods such as thermodilution 

(Alhashemi et al., 2011), to highly invasive direct 

measurement with admittance catheters. However, all these 

methods require specialised equipment and/or personnel, and 

often only provide intermittent values of SV or measures of 

average SV over long periods (cardiac output).  

What is required is a means to accurately and continuously 

estimating SV on a beat to beat basis, or over a short time, 

frame that is not simply cardiac output (CO). Clinically, CO 

captures total flow increase whether it is due to increased 

heart rate (HR), or SV per beat. It is clinically important to 

separate these effects with an accurate SV estimation because 

these differences can require different therapies, but currently 

are not easily differentiable (Felker et al., 2001). Thus, an 

accurate estimate of SV would provide additional critical 

insight necessary for better decision making and care. 

This study investigates how well continuous beat to beat SV 

can be estimated using only the measured aortic pressure 

waveform. Many other studies and devices use an arterial 

waveform and pulse-contour analysis to estimate SV (Marik, 

2013). The unique aspect of this study is that it relates arterial 

mechanical properties (resistance, characteristic impedance 

and compliance) to the corresponding pressure zones in the 
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pressure waveform, enabling this model to more accurately 

capture SV from aortic pressure measurements alone. This 

study analyses the impact of fixing only one model parameter 

on the accuracy of the SV estimate.  

2. METHODOLOGY 

This study combines arterial windkessel behaviour 

(Westerhof et al., 2009) and pulse wave theory (O'Rourke et 

al., 2001) to estimate left-ventricular stroke volume. This 

approach improves estimation of SV from pressure 

measurements as the two are linked with improved 

assumptions. Figure 1 presents a schematic of the process 

used in this study. 

 

Fig. 1. Schematic of estimation procedure showing input, 

identified and estimated parameters/variables. 

2.1 Porcine Trials and Measurements 

This study uses data from experiments performed on pigs at 

the centre Hospitalier Universitaire de Liege, Belgium. These 

experiments were primarily conducted to investigate 

respiratory failure, but extensive measurements of CVS 

variables were also recorded (van Drunen et al., 2013). All 

experimental procedure, protocols and the use of data in this 

study were reviewed and approved by the Ethics Committee 

of the University of Liege Medical Faculty. 

Experiments were performed on three healthy, pure pietrain 

pigs weighing between 29 – 37kg. During the experiments, 

each subject underwent several step-wise positive end 

expiratory pressure (PEEP) recruitment manoeuvres (RM), 

causing changes to SV (Luecke et al., 2005). Details of the 

experimental procedure are published elsewhere (van Drunen 

et al., 2013). It should be noted that these experiment were 

performed with open chest. However, chest of pig 1 and 2 

were held closed with forceps. Thus the SV and arterial 

waveform were affected by direct pressure on the 

mediastinum area from expanding lungs. 

Left and right ventricular volumes and pressures were 

measured using 7F admittance catheters (Transonic Scisense 

Inc., Ontario, Canada) inserted directly into the ventricles 

through the cardiac wall. Aortic pressure was measured with 

a 7F pressure catheter (Transonic Scisense Inc., Ontario, 

Canada) inserted into the aortic arch through the carotid 

artery. All data were sampled at 200 Hz and were 

subsequently analysed using Matlab (version 2013a, The 

Mathworks, Natick, Massachusetts, USA). 

2.2 Aortic Pressure Model 

The aortic pressure model used in this study is based on 

model proposed by Wang et al (2003). This model proposes 

that aortic pressure Pao can be separated into two components, 

reservoir pressure and excess pressure. Reservoir pressure, 

Pres, accounts for the energy stored/released by the elastic 

walls of the arterial system. Excess pressure, Pex, is defined 

as the difference between the measured aortic pressure and 

the reservoir pressure that varies with time, (t). This model 

also describes the proportionality between the excess pressure 

and flow into the aortic compartment from the left ventricle 

(Qin):  

)()()( tPtPtP exresao +=  (1) 

proxinex RtQtP )()( =  (2) 

Where Rprox is the characteristic impedance relating inflow 

and excess pressure. In addition to the pressure relationships 

defined in Equations (1) and (2), classical three element 

windkessel theory was also applied (Westerhof et al., 2009), 

relating reservoir pressure and flow: 
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C, R, and Pmsf are defined as compliance, resistance and mean 

systemic filling pressure, respectively and Qout is flow leaving 

the aortic compartment. In this case, aortic model parameters 

C, R, and Rprox are assumed to be constant during single 

heartbeat.  

By combining Equations (1) - (4), reservoir pressure can be 

expressed in terms of Pao,  Pmsf, Rprox, R, and C: 
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The analytical solution to Equation (5) for Pres gives: 
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Where β = 1/RproxC + 1/RC. Equation (6) can be used to 

calculate reservoir pressure, which is dependent only on three 

parameters RC, RproxC, and Pmsf. 

The diastolic regions of the aortic pressure decay curve were 

used to identify exponential time decay constant RC and Pmsf. 

In this pressure region, inflow to the aortic compartment is 

assumed to be zero as a result of closure of aortic valve and 

that pressure decay results from only volumetric change of 

the arterial compartment (Aguado-Sierra et al., 2008):  

)()()( fdaores ttttPtP ≤≤=  (7) 

With this assumption, Equation (5) can be reduced such that 

Pres is a function of only two parameters RC and Pmsf. Thus, 

the diastolic reservoir pressure can be expressed: 
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Where td and tf are the time of closure of aortic valve and 

total time for one cycle of heart beat, respectively. In this 

work, the start of diastole was defined by the time of the 

minimum rate of change of Pao (Abel, 1981). 

For identification of RproxC, the systolic pressure waveform 

was used along with the estimated values of Pmsf and RC from 

the previous step. The identification of RproxC involves 

additional assumptions about the behaviour of the reservoir 

pressure curve. In particular, zero net flow in the 

compartment occurs in the region between the point of 

maximum Pao and td. Using this additional information and 

Equations (5) and (6), value of Pao is iterated in this range for 

the identification of RproxC until below condition is satisfied: 

RCCR

CPRRCP
P

prox

msfproxao

res +

+
=

)(
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τ
τ   (9) 

Where τ is the time when inflow Qin is equal to the outflow 

Qout. Once the parameters RC, RproxC, and Pmsf are estimated, 

Pao is decoupled into reservoir and excess pressure using 

Equations (1) and (6). Figure 2 shows approximated 

separated pressures and flow using identified parameters RC, 

RproxC, and Pmsf. 
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Fig. 2 Top panel: example of aortic pressure separation 

showing estimated diastolic curve (red dashed line), reservoir 

pressure Pres (blue line), valve closure time td (dashed black 

line), and measured aortic pressure Pao (solid black line). 

Bottom panel: Estimated aortic inflow Qin (solid black line), 

outflow Qout (blue line), and zero net flow time τ (dashed 

black line. 

2.4 Stroke Volume Estimation 

Structural identifiability analysis of this model for SV shows 

unique values for SV cannot be estimated unless one of the 

three windkessel parameters are fixed. In this analysis, 

experimentally measured left-ventricular SV values enable 

each windkessel parameter R, C, and Rprox to be identified for 

each pig by minimising the error between the measured and 

estimated SV. By fixing one of these parameters at its 

optimal value, and estimating stroke volume, we can evaluate 

the accuracy of SV estimation from the aortic pressure 

waveform. Repeating this process for each ‘fixed’ parameter 

enables us to evaluate the best-case SV estimation. 

Identification of each optimal, or ‘fixed,’ windkessel 

parameter was conducted by grid-search within reported 

physiological ranges (Hannon et al., 1990). Values of 

resistance, compliance, and characteristic impedance, (Rfixed, 

Cfixed, Rprox, fixed), were tested with resolution of 0.001 for each 

parameter: 

∑
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Where Tbeats is total number of heart beats for each subject. 

Thus, the fixed values of these parameters represent the 

optimal average values over all beats. Stroke volume 

estimation was performed using identified calibrated value of 

Rfixed, Cfixed, and Rprox, fixed together with derived values of Pex, 

Pres, RC, and Pmsf. 
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Where SVR, SVC, and SVRprox, represents the estimated SV 

using the fixed values for resistance, compliance, and 

characteristic impedance, respectively. Each of the SV values 

represents SV estimation with only one parameter held 

constant within the three element windkessel (R, C, or Rprox) 

for the duration of the experiment.  

2.5 Data Analysis 

The original aortic waveform data were pre-processed by 

removing regions where obvious measurements error 

occurred due to equipment or catheter disturbance or failure. 

Using this pre-processed data, the aortic pressure waveform 

was split into reservoir and excess pressure components using 
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the aortic model, prior to calculation of SV. In this study, 

agreements and distribution of differences between measured 

and approximated stroke volume were shown with Bland-

Altman plots. In addition, zero lag cross correlation value 

were calculated between two waveforms, SV estimate and 

SV measured in the RM region where SV trend were most 

apparent.  

3. RESULTS 

The optimal average parameter values, Rfixed, Cfixed, and 

Rprox,fixed  for each of three pigs used in this study are 

presented in Table 1. Bland-Altman plots for each pig are 

presented in Figure 3, where there are approximately 300 to 

1000 estimated SV values per pig. These plots compare 

directly measured values of SV to values estimated using 

Equations (11) - (14) with values from Table 1. Table 2 and 3 

summarises the results of the Bland-Altman plots and 

calculated zero lag cross correlation values, respectively. 

Table 1: Optimal average parameter values in the three 

element windkessel model for the estimation of SV 

Pig No Rfixed  

(mmHg.s/ml) 

Cfixed 

(ml/mmHg) 

Rprox,fixed 

(mmHg.s/ml) 

Pig 1 1.2104 0.6363 0.0825 

Pig 2 2.1353 0.3837 0.1333 

Pig 3 0.7008 0.9930 0.0395 
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Fig. 3: Bland-Altman plots comparing agreements between 

measured and estimated SV for Pigs 1, 2 and 3 for each case 

of using a fixed estimate of R, C, or Rprox. 

 

 

 

 

 

 

Table 2: Differences between estimated and measured stroke 

volumes calculated using different calibration parameters. 

Data are presented as the median [5-95
th

 percentiles] from the 

Bland-Altman plots of Figure 2. . 

Pig No Bland-Altman results ( ml) 

 ∆SV Rfixed ∆SV Cfixed ∆SV Rprox,fixed 

Pig 1 0.9 

[-11.4, 13.3] 

-1.1 

[-15.5, 8.1] 

0.6  

[-10.6, 12.3] 

Pig 2 3.9  

[-6.5, 8.7] 

1.0 

[-7.7, 5.1] 

2.7  

[-5.6, 8.6] 

Pig 3 -2 

 [-7.2, 12.5] 

-0.4 

[-12.8,10.8]  

0.2  

[-11.0, 15.0] 

All Pigs 2.0 

 [-10.5,12.9] 

0.6 

[-13.3, 8.0] 

1.5 

[-9.9, 12.0] 

Overall Average: 

1.4 [-11.3, 12.2] 

Table 3: Cross correlation coefficient between estimated and 

measured SV waveforms in the RM time zone 

Pig No Zero lag cross-correlation value 

 Rfixed Cfixed Rprox,fixed 

Pig 1 0.68 0.60 0.45 

Pig 2 0.65 0.86 0.68 

Pig 3 0.66 0.85 0.67 

4. DISCUSSION 

4.1 Optimal Parameter Values 

Table 1 shows the optimal average values for resistance, 

compliance and characteristic impedance for the 3 pigs. The 

values are noticeably different between pigs for a given 

calibration parameter. This result suggests the use of mean 

population parameters could lead to significantly different 

approximations and would lead to inaccurate estimation of 

SV if comparing across subjects. However, trends and 

changes would be captured, which is of clinical importance.  

 

Figure 3, Table 2, and Table 3 demonstrate the ability for this 

model to capture SV. Across all beats and pigs, the median 

difference between measured and estimated SV was 1.4 ml, 

with a 90%-range of -11.3-12.2 ml. The median differences 

and 90%-ranges were similar for each fixed parameter. Thus, 

the proposed model is capable of estimating suitable SV by 

applying any of the three fixed parameters. It is also noted 

that cross correlation coefficient were in the range of 0.6 – 

0.85, which suggests that SV trends due to PEEP interaction 

were accurately captured. This outcome allows wider 

application, since if any of the three parameters can be 

derived or estimated from additional, a priori, knowledge, a 

continuous SV estimation without external calibration (e.g. 

thermodilution) becomes possible.  
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4.3 Stroke Volume Estimation 

Pulse contour methods have been extensively studied as a 

mean of estimating SV from continuous arterial blood 

pressure measurements (Montenij et al., 2011). However, 

conversions of pressure measurements to magnitude of flow 

are restricted to the assumptions made in the model-based 

approach. In particular, there are no direct relationships that 

can provide the scalars of volume from pressure 

measurements alone. As a consequence, the precision of SV 

estimations via model-based approaches are always limited to 

the assumptions made, such as strength of parameter 

correlations or stability of calibrated measurements (Siegel et 

al., 1992, Alhashemi et al., 2011).  

Historically, these models have evolved and increased in 

complexity to capture more accurate representation of 

realistic physiological phenomena (Shi et al., 2011). More 

realistic models can provide better approximations of the SV 

and more detailed physiological insight. However, 

identification of the model parameters becomes much more 

difficult if not impossible, eliminating their use in practical 

application based patient-specific context, while increasing 

their use as models for understanding (Docherty et al., 2011, 

Raue et al., 2009).  

The aortic model presented in this study incorporates pulse 

wave theory that is based on one dimensional flow in an 

elastic tube (Alastruey et al., 2009). Despite the fact that the 

model is a zero-dimensional cardiovascular analysis, it can be 

treated as one segment from a whole network of arteries 

represented by multiple compartments, having many zero 

dimensional models connected together (Parker et al., 2012). 

While the assumptions of this model are simplistic, they are 

made in consideration with what is accessible in clinical 

scenes (Dickstein, 2005). 

Combining pulse wave theory (van de Vosse et al., 2011) and 

the arterial windkessel model increases the information that 

can be extracted from the aortic pressure contour (Thiele et 

al., 2011). This combination reduced the number assumptions 

required and allowed non-fixed parameters to be constrained 

within the identified parameters RC and RproxC, helping to 

increase the ability of the model to represent the true 

physiological conditions and thus estimate SV. In addition, 

beat-to-beat pressure contour variation due to altered arterial 

mechanics, R, Rprox, and C, were related to correct 

corresponding pressure zones, enabling this model to more 

accurately capture SV from aortic pressure measurements 

alone.   

4.4 Limitations 

The SV estimates were compared with directly measured left 

ventricular volumes, providing a true validation of the model 

accuracy to within errors using such measurements. Although 

left ventricular volume was measured directly and with the 

best available method, the sample size was small, with only 3 

pigs being considered in this study. However, this study 

analysed over 1500 heart beats, across a range of SV values 

induced by changes in PEEP. The range of SV analysed 

covers the expected normal range for most of the pigs 

(Hannon et al., 1990). Thus, despite the small sample size, 

this study demonstrates the feasibility of accurately 

identifying SV using non-invasive, clinically available 

measurements. 

In this experiment, changes to SV were induced by varying 

mechanical ventilation pressures, creating variation in the left 

ventricular preload. The effect of an increase or decrease in 

the thoracic cavity pressure alters the venous return to the 

ventricle and, as a consequence, stroke volume changes. In 

this study, the variations of systemic arterial mechanics are 

considered to be reasonably constant and the accuracy of the 

presented method may not be the same in the cases where the 

subject’s hemodynamic conditions were significantly 

changed due severely diseased condition or extreme levels of 

care such as high ventilation pressures. 

A further limitation of this aortic model is that the separation 

of aortic pressure waveform into reservoir and excess 

pressure represents a separation of forward and backward 

travelling waves. This assumption is based on the work of 

Wang et al (2003), which shows proportionality in the inflow 

Qin and excess pressure Pex. This rationale may not hold for 

subjects with extraordinary or highly dysfunctional 

physiological conditions. 

5. CONCLUSIONS 

Physiological models are simplified representations of reality 

which can provide clinicians with information for decision 

making, without the need for additional invasive direct 

measurements (Massoud et al., 1998). The models presented 

in this study show the potential for continuous, accurate SV 

measurements using measurements typically available in the 

intensive care unit.  

This method of obtaining SV from aortic pressure waveform 

alone is more adequate for relating our knowledge about 

circulatory physiology to blood pressure values. The study 

showed SV variations across all beats and pigs, can be 

captured with precision of median difference between 

measured and estimated SV of 1.4 ml, with a 90%-range of -

11.3-12.2 ml. Moreover, the SV trends agreement showed 

cross correlation coefficient of above 0.6 for all cases. Thus, 

the aortic model is capable of estimating SV in both healthy 

and ARDS states with suitable accuracy. 

The aortic model shows the ability for extending our current 

understandings of the CVS mechanics, and to optimise real-

time diagnosis and cardiovascular therapy. 
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